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Abstract

We proposc a class of non-interior-point algorithms for solving the complementarity
problems(CP): Find a nonncgative pair (z,y) € IR?" satisfying y = f(z) and z;y; = 0 for
cvery i € {1,2,...,n}, where f is a continuous mapping from IR” to IR”. The algorithms
arc bascd on the Chen-Harker-Kanzow smooth functions for the CP, and have the following
features; (a) it traces a trajectory in IR®™ which consists of solutions of a family of systcms
of cquatlons with a paramcter, (b) it can be started from arbitrary (not necessarily positive)
point in IR?" in contrast to most of intcrior-point methods, and (c) its global convergence is
cnsured for a class of problems including (not strongly) monotonc complementarity problems
having a feasible-intcrior-point. To construct the algorithms, we give a homotopy and show
the cxistence of a trajectory leading to a solution under a relatively mild condition, and
.proposc a class of algorithms involving suitable ncighborhoods of the trajectory. We also
give a sufficicnt condition on the neighborhoods for global convergence and two examples
satisfying it. '

1 Introduction

We consider the (standard) complementarity problem(CP):
Find  (z,y) € R™
such that y= f(z), (z,y) 20, z;y; =0 (t € N).
where N = {1,2,...,n} and f is a mapping from R™ to IR®. If the mapping f is linear, i.e.,

f(z) = Mz +q for some n X n inatrix M and ¢ € R”, then it is called a linear complementarity
problem (LCP), and if the mapping f is monotone, i.e., (z* —2?)*(f(z') = f(2*)) > 0 for every

~ "A preliminary result of this paper was presented at the symposium Linear Matriz Inequality and Semidefinite
programming, Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-01, Japan.
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122 € R™, then a monotone complementarity problem (monotone CP). It is well-known that

many optimization problems can be put into the class of CPs. For instance, we can model any
convex programining as a monotone CP and any linear programming problem(LP) as an LCP
with a skew-symmetric matrix M.

T

While there have been many algorithms for solving CP (see [33, 4, 49), etc.), we focus on
the following two types of the algorithimns:

Interior-Point Method: It generates a sequence {(z*,y*)} in the positive orthant of R?" ([1,

12, 13, 14, 15, 9, 10, 23, 22, 21, 20, 25,’28, 31, 30, 29, 32, 37, 41, 38, 39, 40, 43, 44, 45,
46, 48, 50],etc.).

(Equation-based) Non-interior-Point Continuation Method: It does not confine the generated
sequence to the positive orthant of ]Rzn ([2, 3, 6,17, 19, 16, 18, 26, 35, 36], etc., also see
[11, 8, 27, 34] for other non-interior-point methods including merit function algorithins).

Our work is motivated by the folloWing obsewafions:

Many of interior-point methods solve a class of CPs including LPs and QCPs polynomially,
and can be regarded as path-following algorithms for tracing a trajectory leading to a
solution of the problem (see Kojima[22]). However, they lack flexibility in the choice of
the trajectory; the trajectory must be confined in the positive orthant.

The non-interior-point methods can be started from any point in R?". However, most of them
require either of the assumptions below to show the global convergence properties:

Condition 1.1. The mapping f is strongiy monotone, i.e., there exists aw € (0, 00) such
that

(&~ 2! (&) = 1) 2 wlla? = 2|2
for every «!,z? € R™.

Condition 1.2. The mapping f is linear, i.e., f(x) = Mx+ q and the matric M belongs
to the class P)NRy. Here M € Py iff all the principal minors are nonnegative, and M. € Ry
iff s Mz = 0 implies & = 0. It is well-known that the class Py can be characterized
equivalently as the set of matrices satisfy that for any nonzero vector x € R™, there exists
an index ¢ € N such that z;[Mz]; > 0 where [Mz]; denotes the ith component of the
vector Mz (see [4]).

It should be noted that the mapping f of the CP arising from LP is an LCP with a skew
syminetric matrix M, which implies that f is not strongly monotone and that the matrix M
does not belong to Ry. Thus the global convergence does not necessarily ensured as long as we
directly apply the continuation methods to such CPs.

In this paper, we will propose a non-interior homotopy continuation method for which we
can choose any (not necessarily positive) initial point (z!,y') in IR?", whenever the following
condition holds. '
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Condition 1.3.
(i) The mapping f is monotone, i.e.,
(z! = ) (f (=) = F(=?)) > 0.
for every ©! € R® and 2% € R™.

(ii) Thév_‘e exists a feasible-interior-point (x,y) of the CP, i.e.,
(z,y) >0 and y= f(x).

" This condition has been used in many interior-point algorithmns for solving the CP (see
[24, 21, 25, 13, 43], etc.). We should mention some relationships among Conditions 1.1, 1.2
and 1.3. Suppose that Condition 1.1. It is obvious that the requirement (1) of Condition 1.3 is
satisfied. Moreover, we can see that ‘

max(s; — 23)(fi(z!) = fi(=") 2 (@/)lla" ~ =*||”

for every x!, 22 € IR™, which implies that f is a uniform P-function. The CP with a uniform
P-function f has an feasible-interior-point (see Section 3 of [21]). Thus Condition 1.3 holds
whenever Condition 1.1. Also, since the LCP with a matrix M € PyN\ Ry has a feasible-interior-
point (see Remark 5.9.6 of [4]), the requirement (ii) of Condition 1.3 is satisfied if Condition
1.2 holds. Howevel the monotonicity of the mapping f does not necessarily ;:,ucud.nteed To
see this, let us consider the following matrix

M=(;-;).

Then M € Py since all of the principal minors are nonnegative. In addition, we have
al' Mo — (o Y ST
@t Mz = (31 + %9)° + z129

for every x = (1, 24)? € R? which implies that M € Ry, i.e.,if > 0 Mz >0and e Mz =0
then z = 0. However, it is obvious that M is not positive semi-definite. We will discuss again
this subject in ReIﬂd.Ik 2.4.

Our approach is based on the use of Chen-Harker-Kanzow smooth function

bulab) :=a+b—1/(a—- b)2>+ 4p

with a positive numbel u> 0. Thlb function was given by Chen and Harker[2] to construct
the first non—mtenox path-following method for the LCP and then by Kd.IMOW[lS] It can be
regarded as a modification of the function
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a)(a,b) =a+b—/(a-1b)?

introduced by Fischer[5], which is a so—called complementarity function (CP-function) since the
equation ¢(a,b) = 0 is equivalent to the system

(a, b) >0, and ab=0.

Many other CP-functions and their applications can be found in (3, 6; 16, 19, 26, 35, 36, 47],
etc. :

Kanzow[18] shows that for every p > 0, ¢u(a,b) == a + b — V(e=0)2+4p = 0 if and
only if (a,b) > 0 and ab = p > 0. It follows that if (z,y) € R2" satisfies Sulziy:) =0 (i €
N) and y = f(z) for some p > 0 then the point (z,y) is an analytical center of the CP,
e (z,y) >0, zy; = p (i € N), y = f(z). Moreover, we can easily obtain the following
lemimas: o '

Lemma 1.4. For every nonnegative number g >0, a triplet (a,b,c) € R satisfies Pula,b) =

at+b—{a =0)F+4p = ¢ if and only if (a=c/2), (b—c/2) 2 0 and (s—c/2)(b—c/2) = p = 0.
Therefore, if (Z,7) € R?" satisfies
$u(Zi5) =i (i € N) and §— f(z) =7+
for somé 1 > ‘0, 7€ R" and 7 € R", then
(@ = 5/2), @ = 5/2) > 0, (=52 - 5D = p >0, g= f(B) 4.

which implies that the point (& — 9/2,§ — 5/2) € IR?" is an analytical center of the perturbed
problem CP(%,7) given by

Find («/,y) e R
such that ¢ = f(2'), («/,4/) >0, 2yl =0 (te N)

where f'(z') = f(+'+©/2) + 7 — 5/2. Figure 1 illustrates a perturbed problem for the CP with
n=1and f(z) =1.

Base on this idea, we will develop a new homotopy continuation method for solving CP’s.
The rest of this paper is organized as follows. In Section 2, a new homotopy map will be
presented and several properties of this map will be stated. In Section 3, we will prove the
existence of the trajectory leading to a solution of the CP under a relatively mild condition,
Condition 2.2. We will also show that the trajectory can be. started from any point, (x,y) in
IR?" as long as Condition 1.3 holds. In Section 4, a class of path-following algorithins will be
described to trace the trajectory involving its suitable neighborhoods. The requirements for the
neighborhoods will be collected in Condition 4.4. After establishing the global and monotone
convergence of the algorithm in Section 5, two examples of the neighborhoods having the desired
properties will be presented in Section 6.
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Figure 1: A perturbed problem for the CP with n =1 and f(x) =

Recently, Xu and Bulke[47] proposed an interior-point method based on Chen-Harker-
Kanzow techniques and showed its polynomial complexity. Their result suggests a posslblhty
of deriving a similar result for our non-interior continuation method.

Throu::,hout.this paper, we use the symbols IR}, R}, R and RZ_ to denote the non-
negative orthant, the positive orthant, the nonposltlve orthant and the negative orthant of R,
respectively. The triplet (u,z,y) (the pair (x,y) ) denotes the column vector

(w5, 9) = (' y"Y () = (&)Y,

for given columm vectors u,z and y. Also the symbol e denotes the vector with all components
equal to one. For each mapping b with the domain X and each subset D C X, we define

h(D) := {g: g(x) = g for some x € D}.
For ease of notation, we often use the symbols z and w to denote the triplets (u,w,y) and
(u,v,7), respectively. ’ '
2 A homotopy map for the CP

To construct a contimation method, we introdube the following mappings based on the function
but .
v : IRY} x R - R,
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vi(u, x, J) = (-"1 +!Iz) - v — ;) + du; (" € N)

r @ RT xR*™ = R",
T(’lt’ "L'y) =y f("l’)-
V : R} xR™ - R™,
» V(u,z,y) := (v(u,z,9),r(u,z,y)),
U : R} xR™ - R} x R™,
U(u,z,y) := (u,v(u,z,y), (e, z,v)),
Our intention is to find a (@,7,7) € R}, x R*" for which
W = {6(,5,7) € R:, x R*™: 6 € (0,1]} C U(R%, x R*™")
and the set

U~ (W) := {(u,z,y) € RE, x R*™": U(z) = 0(w,,7) for some 6 € (0, 1]}

forms a one-dimensional curve (subtrajectory) lea.dmg to a solution of the CP.

The following results are useful to find %u(,h a pomt (w v,7):

Lemma 2.1.

(i) V(]R"+ X ]RZ") is an open subset of ]Rz"
i) If (5,7) € V(R?, x R?") then '

(8+R*) x (F+ R}) C V(R x R*™)

(iii) Specially, if (0,0) € V(RY, x R*"), which is equivalent to that the CP has a feasible-
interior-point, then

R" x R: C V(R™, x R?"),

Proof: Suppose that (7,7) € V(RY, x R?"™). Then, by the definition of the set V (R}, x
R?") and by Lemma 1.4, there exists a point (@, %,7) € R% T X IR?" such that

(& -5/2). (- 9/2)) >0, (% —5:/2)(Fi—5:/2) =% >0(GE€N) and §= f(&) +F.
Let us define

€ := min{(z; — 9;/2), (g: — v:/2) (i € N)} > 0.
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Then for every d = (dv,dr) € IR?" such that ||d|| < €/2, we obtain that

((z; = (v + dv;) [2), ((§; + dri) — (0; + dv;)/2)) > 0 (i € N),

§+dr = f(T)+ (F +dr). (1)4

Thus (7 + dv, 7 +dr) € V(R:, x R?") and the assertion (i) follows. Since the relation (1)
still holds if dv < 0 and dr > 0, we also obtain (ii). The assertion (iii) directly follows from

(ii).

Here we provide a condition which is relatively mild compared with Condition 1.3.

Condition 2.2.

(i) The mapping f is a Py-function, i.e., for every x',2? € R™ with 1 # x? there erists an
index 1 such that

i # o) end (zf = z))(fie") - fia™) 2 0.
(ii) There exists a feasible-interior-point (x,y) of the CP, i.e.,
(z,y) >0 and y= f(z).

(iii) U~Y(D) = {(u,z,y) € REL x R*™: U(u,z,y) € D}
is bounded for every compact subset D of R} x V(IRL | x R?™).

Lemma 2.3. If Condition 1.3 holds so does the Condition 2.2.

Proof: Tt follows immediately that the requirement (1) and (ii) of Condxtlon 2.2 hold. To
show (iii) of Condition 2.2, assume on the contrary that the set

U'(D) = {(u,z,y) € RE x R* : U(u,z,y) € D}
is unbounded for some compact subset D C R} x V(R x R*"). Then, since {u*} is
bounded by the definition of the map w and by the assumption, we can take a sequence

{(uf,z*,y*) € U"1(D) (k = 1,2,...)} such that ||(z¥,y*)|| = oo and

lim v(u*, 2%, y*) =% and lim r(uf,z* o*) =7

for some (9,7) € V(IR x R?"). Since V(R?, x R*") is an open subset of R?" ( see Lemma
2.1), we can find a (3,7) € V(R%, x R?") such that

'u('u,k,:z:k, yk) <¥ and r(uf zF yF) > 7

for every sufficiently large k. Since (9,7) € V( " . x R?), by Lemma 1.4, there exists a
point (@, #,§) € R%, x R?" such that . :
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(@~ 5/2). (5~ 9/2) >0, (& = /25 - 5:/2) =% >0 (i € N) and §=f(3)+F.

Then, by the monotonicity of the ma,pping f, we obtain that
0 < (@ -2)'(f(=") - £(@)
= @ - - - G-}
= @ -G -9) - ¢* =)
= (= b)) = (5= 5/2) + ok~ ) /2)"

AW =o"/2) = G- 5/2) + (0 - /2~ (* ~ )

= (’.:l ’lLk

~A@=9/2) + (- v")/2+ (- DY (=* — v*/2)
—{(&-9/2) + (5 — v*)/2}" (v* - v’“/?)
(G = 9/2) + (5 —v5)/2+ (F = )} {(E - 5/2) + (5 — v¥)/2).

Since (v*,rF) lies in the bounded set D for every k, we can find a positive number « such
that '

el +{(F - 5/2) + (8 - v*) /2 + (F = D)V {(& - 5/2) + (5 — v¥)/2} < .

Also, since (& — 9/2,§—9/2) > 0, (zF — v*/2, y* — v¥[2) >0, 59— vk >0 and rk —7 > 0, we
have '

(@-9/2)" (" ~*/2) < {(G-9/2)+ @-")/2 +(* ‘,— A (a* - vk /2),
&=3/27(W" =" /2) < {(E-3/2)+ @ -v")/2}" (s - o*/2)
and
@=5/2)" " = v*/2) + (& - 5/2)" (v* - v*/D) < @

Moreover, the boundedness of D also ensures that there exists positive numbers 3 and v such
that

(5= /2" 2+ (@~ */2) o /2 <

for every k and \ 7
of > uf/2>y, yf>uF/2>q

for every ¢« € N and k Thus thg boundgd set | | |
{(x,y) € R o > Fre, y > ve, (y — /) e+ (& - '6/2)”’& < a+p}

contains {(z*,y*)} for every sufficiently large k, which contradicts "(.Lk yF)| = 0. g
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Remark 2.4. Lemma 2.3 ensures that the CP arising from LP satisfies Condition 2.2. Here we
observe some conditions which have been imposed so far to analyze the interior-point algorithins
for the CP, and compare them with the condition above. Let us define .

« : R —RRE,

'll.,((l,', y) = (wiyie L2Y2y - s ,fl"n'!ln)l s
U : R —-Rj} xR,

U'(z,y) == (d (z,9),7(u, z,9)).

In the paper [21], the authors used the following condition and showed that the condition holds
if Condition 1.3 does:

Condition 2.5.

(i) The mapping f is a Py-function, i.e., for every z',2? € R* with a1 # 22 there exists an
index ¢ such that

wi # a7 and (5] = o})(fi(s") - fi(=") 2 0.
(i) There exists a feasible-interior-point (x,y) of the CP, i.e.,
(z,y) >0 and y=f(z).

iii) U'fl(p) = {(x,y) € ]Ri" : U'(z,y) € D'}
is bounded for every compact subset D' of R} x r(IR3™,

In view of Lemina 1.4, we can see that
(z,y) €RY, U'(x,y) = (@,F)

if and only if

U@, =z,y) = (#,0,7).
By using this relation, it is easy to see that Condition 2.5 holds whenever Condition 2.2 does.
However, the converse is not obvious. In linear cases, i.e., the mapping f is given by f(z) =
Mz + ¢ with an n X n matrix M and an n-dimensional vector ¢, the next condition has been
proposed in [22]:

Condition 2.6.

(i) The matriz M is a Py-matriz, i.e., for every z1, 22 € R™ with «! # 22 there exists an index
@ such that

x} # a? and (z} —2)M(z} — 2 > 0.
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Condition 2.5.

Condition 2.2.

Condition 1.3.

Condition 1.1.

Figure 2: Some relationships among the conditions.

(ii) There exists a feasible-inteﬁor—point (x,y) of the CP, i.e.,
(z,y) >0 and y= f(z).
(iid) S+(t) = {(z,y) e RY :y = Mz +¢q, z'y <t}

s bounded for every t > 0.

It is also easy to see that Condition 2.2 holds if f is linear and Condition 2.6 holds. Kojima et al.
[22] showed that the monotone and linear CP, i.e., the matrix M of f is positive semi-definite,
satisfies this condition. In addition, Kanzow[18] derived an interesting result concerning the
relationship between Condition 1.2 and Condition 2.6: If we enforce a more strict requirement
such that the set S;(¢) is bounded for every ¢ € R™ and for every t > 0 on Condition 2.6,
then the enforced condition is equivalent to Condition 1.2. See Figure 2 in which the discussion
above is summarized.

Note that by (iii) of Lemma 2.1, we can easily obtain the following lemma which will be
often used in the further discussions:

Lemma 2.7. If Condition 2.2 holds then
U~Y(D) = {(u,z,y) € RT x R*: U(u,z,y) € D}
is bounded for every bounded subset D of R} x R x IRY.

In the remainder of this section we show that the mapping U gives a homeomorphism.
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Lemma 2.8. Assume that (i) of Condztzon 2.2 holds. Then the mapping U is one-to-one on
]Rn+ X IRZn

Proof: Assume on the contrary that
Uul, 2t yt) = Uu?, 2%, y%)

for some distinct (u!,z!,y') and (u? z2,y?). By the definition of the mapping U, we can
assumne that ! = v? = @ and z! # z2. Let us define

(@,9,7) = U(a,a',y") = U(a,z*,y*).

Then we obtain that

fl=) - fa?) =yt =7
(z} = 5:/2) (v} — 0:/2) = («? — 0;/2) (v} = 5:/2) =@ >0. @)

By the assumption on the mapping f, there exists an index k such that x; # x} and

0 < (o — sD)(fels?) - fiule?)
= {(af — %/2) = (2 — o/2)H{ (¥} — %/2) — (v — /2)}.

~Here we may assume without loss of generality that
@} — 032 > wt — /2> 0,
and it follows that |
- uk/2 > yk - uk/2 > 0.
Thm contrddlcts the equd,hty (2) i
Lemma 2.9. Assume that (i) and (iii) of Condition 2.2.
(1) For every (u,9,7) € R} x V(R x R?"), the system
Ulu,z,y) = (u v,7)
has a solution.
(ii) U(R:, x R*™) =R}, x V(R x R*™)

Proof: Let (@,9,7) € R? x V(R?, x R*"). Since (7, r) € V(]R1+ X ]RZ") there ex1sts a

point (&, &, J) € R}, x ]Rj- such that

i — 0:/2)(9; — 0:;/2) = @ (z € N),
§=f(@+r.
Consider the family of equations with the parameter 6 € [0,1]
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U((1 - 80)a+0a,z,y) = (1 — 8)it+ 0, 5,7) and (z,y) € R*". | (3)

Let § < 1 be the supremum of the @’s such tha.t-(3) has a solution for every 6 € [0,4).
Then there exists a sequence {(z¥, y*, %)} of the system (3) such that limg_,. 6% = 8. Since
(1 - 6)a+ 6w, v,7) lies in the compact subset

D={(1-60)i+6a57): 6€01]}

of R} x V(IRZ, x R?"), (iii) of Condition 2.2 ensures that {(z*,4*)} is bounded. Thus we
may assume that there exists a point (Z,9) such that (zF,y*) — (%,7). Note that (z,7,6)
satisfies (3) by the continuity of the mapping U. Hence if # = 1 then the desired result
follows. Assume on the contrary that § < 1. Then we have

(@ = 0:/2) (5 — :/2) = (1= )i+ 6 > 0,
g=f@+r,

wnh'i_clvl implies that
((1 - 6)a + 6u,9,7) € URE, x.R*™).

It follows from Lemimna 2.8 that the mapping U is local homeomorphism at ((1—8)a+60a, z,3) -
(See the domain invariance theorem [42]). This implies that the system (3) has a solution for
every 0 sufficiently close to 8, which contradicts the definition of §. Thus the assertion (i) is
obtained. Note that the assertion (i) implies the relation of inclusion :

U(R:, x R*™) Cc R, x V(R}, x R*™).
Since we immediately see that
U(R?, x R*™) D R?, x V(R:, x R™),

the assertion (ii) is also obtained. g

Thus, the mapping U is one-to-one on the open subset R}, x RR?" of R3" (Lemia 2.8)
and the image U (R}, x R?") is given by R? | x V(R%, x R?") ((ii) of Lemma 2.9) if (i) and -
(iii) of Condition 2.2 hold. The following theorem follows from the domain invariance theorem
[42]). ‘ : - : :

Theorem 2.10. Assume that (i) and (i) of Condition 2.2 hold. Then the mapping U maps
? o x R?™ onto R}, x V(RY, x R*) homeomorphically.
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3 The existence of the trajectory
Let (u, v, ’r) € U(]R1 + xR™) =R}, xV(RY, x 1R2") and define-
W = {6(a,5,7) € R}, x R*: 0 € (0,1]}.

We have already seen that R} | xIR2 xIR} ¢ U(R%} xIRA") =R}, xV(R}, Xle") if (i) of
Condition 2.2 holds (Lemmas 2.1 and 2.9) d.nd U mdps 7. xR* onto R} | x V(R x R?™)
homeomorphically (Theorem 2.10). Thus, if Cond1t10n 2.2 holds then for every (u,,7) €
R}, x R? x R}, the subtrajectory : o

U'(W) e R}, x R?"

exists.

Moreover, if the more strict condition, Condition 1.3 (the monotone CP with a feasible-
interior pomt) holds then we can see that the trajectory exists for every (@, o, r) € U(IR} ;. x
R?") = R, x V(R?, x R?"). We first show the following lemma. —

Lemma 3.1. Assume that (i) of Con,datwn. 1.3 holds, i.e., the problem is a monotone CP Let
(u, ol 'rl) (@2, 92, 2) € U(]R"_,—_ X ]Rzn) = ]R"+ X V(]R"+ x R?) and define

(u(a), (8),7(8)) := (1 — O)(at, 31, 7') + 0(a2, 72, 72)

Jor every 6 € [0,1]. Consider the set

P((@t, 7, 7), (@2, 7%, 72)) _ .
= {(u,z,y) € IRL_ x R?™ : U(u,x,y) = (u(8),v(8),7(0) for some 6§ € [0,1]}

Then there exists a bounded set A((@!, @', 7), (@2, 92,72)) such that
A((@t, s, ), (@2, 9%, 7%) c P((al, o o ), (@2, 52, 7))
for every (" o, 7)), (@?, %, 7?) € t](]Ri_,_ X IR2“) = ]R;‘__,_ x V(R x R*").
Proof: Lef ('&l,v'z')l, 'Flb)f (u?, 92, 73) VE U(R?, x R?") and consider the line segment
= {(u(6),v(8),7(6)) : (u(6),v(6),r(8)) = (1 - 6)(a', 5", 7) + 6(a°, 9%, 7%), 6 €[0,1]}.

Suppose that (u(6),v(6),r(#)) € URY, x IRZ") for some 6 € [0, 1] Then, by the definition
of the mapping U, there exist a point (u(6),z(8),y(8)) such that

((z(6); — v(0):/2), (y(6); — v(6):/2)) >0,
(2(8)i — v(0)i/2)(y(0); — v(0)i/2)) = u(6); >0, (4)
y(0) = (=(0)) +r(6).
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We denote the point (u(8),2(8),y(9)) with 8 = 0 by ( at, z! Jl) and the one with 8 = 1'by
(w2, 32, §?), respectively. :

Let us assume that we have two points (u(61), u(()l) r(01)) (u(() ) ( ), 7(6?%)) for some
61, 6% € [0,1] both ofwhl(,hbelong to the set U (IR} xIR*"). Define (u!, 2, y') := (u(8Y), z(6),y(6%))
and (u?, 22, y?) := (u(6?), £(62),y(6%)). The monotonicity of the mapping f implies that
0 < (' =) {f(z") - f(=*)}
= @ = ) - - )
(e =2 {(y' =y*) = (' =)} S |
! =) = (! =) (! =) (5)
It follows from (4) that
(e = 2*) (' - y*)
= {(=! =v'/2) = (+* = 9*/2) + (v - 2)/2}1{ (v — 01/2) (y* = v*/2) + (v —v?)/2}

el'yl + el u?

~(a —v'/2)" (s = v*/2) = (a* ~ 0*/2)" (4 - vl/z) ’
! = o)) (o = v1/2) - (& = 0?/2D) + (4 = 01/2) - (4 = 02/2)) /2
ot - /4

= el ul + el'y?

~(a! =0 /2)" (1 = 0?/2) - (&% = o*/D)! (4 - 1 /2)
! = o) {(a =¥+ (4 - 4) - (0] - o))}/
+lot = *IP/4

= el'yl + el'y?

—-(.’L‘ _ v1/2)1‘(y2 _ ,02/2) _ (wz _ ,02/2)"1‘(,!/1 ’_',01/2) :

o =) (@ =)+ (0 = )2 |

= llot = v*|I%/4. | (6)
Combining (5) and (6), we have

(@ =02 (7 = 0*/2) + (&~ 0?2 @ = o)
< el +elu? — ot —0?)?/4 ,

o =0 =8+ (4~ D)2~ (= )T )
Now we consider the following two special cases. Fir st, let 6! = 0 and ? = 0. Then by (4) and
by the definition (u(6),v(8),7(8)), we see that

(7 — 7/ 10(6) = {(1 = 0)3* + 032} /2] + (5 = 9'/2)" y(6) - {(1 = O)7" + 63}/2
< elal + {1 -0)a +0a’} - 6%||5' — 72||%/4
+6(' - o)1 {(z' - 2(8) + (@ —y(O)}/2 - 6(F — )T (z" — x(0)). (7)
Second, let 61 = 1 and % = 0. Then,
@ - 02/2)1 [£(0). = {(1 - 6)3" + 65°}/2] + (2* — 5°/2)" [y(8) — {(1 — 6)%" + 6%°}/2]
< @+ {1 -0)a +0a%) — (1-0)?* - ¥4 : '
—- (1-0)0(3" = 2°)'{(&° — z(0)) + (¥° — w(6))}/2+ (1 — O)(F — 7)"(2* — = (6)R)

= (.Ll—.L
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Multiplying (7) by (1 — 6) > 0 and (8) by 6 > 0, and adding two inequalities, we obtain that
'z — {1 - 0)7 +08%}/2] + &' [y — {(1 - 6)7" +69°}/2]
< 2e0{(1 - 9)al + 0%} - 6(1 - 0)||5* - T¥||%/4
| +0(1 - 0)(@ - ) {(& -2+ 7 - §)}/2 - 01 - O)(F - ) (@' - 7°).
where

= (1-6)(F* —5'/2) + 6(5* — 7%/2) > 0,
= (1—0)(z! - 9*/2) +0(z° — 52/2) > 0,

ST~

Let us define

m = max{z} - 9/2, G —0}/2, 3 —0/2 G —0/2 (i€ N)} >0,
v = max{||z' - 5'/2]l, II7* - 9'/2Il, |2* - 2*/2ll, llg® - %°/2l} >0,

v = max{|[a'], ¥} >0, |

vsa = max{ela, el'a?}.

Then we can see that

(me)'z(6) +(11e) ' y() <75 (9)
where 75 is a positive constant given by

Y5 = 7273/2 + 274 :
Hio' - 82 /4 + 7" - DN - 2 + g - g°I)/2+ IF - #lllzt - 2°).

Moreover, letting
76 := min{@}/2, 52/2 (i € N)}

we have

zi > (1= 8)5} /2 + 057/2 > 7,
yi > (1—0)53 /2 + 057 /2 > 76
for every ¢ € N. Thus, the point (u(6),z(8), y(#)) lies in the bounded set
A(@ 3!, 7), (@,9%7) = {(wo,y) €RL xR™: (me) s+ (ne)'y <,
(2.9) 2 16(e.0), w=(1-0)a' +0a*, 6 €[0,1]}
. ,
Theorem 3.2. Assume.that (i) of Condition 1.3 holds, i.e., the problem is a monotone CP.

Then the image U(IRY | x R?") = T+ xV(RL, x R?") of.U on RL, x R?" is an open convex
subset of R% | X R>. .
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Proof: Let (a!,9',7), (u?,9%,7%) € U(R?, x R?) and consider the line segment

W = {(u(6),v(6),r(8)) : (u(6),v(8),7(8)) = (1 - 0)(al, 3", 7) + 6(a2, 52, 72), 6.€[0,1]}.
Let |

©:={0€[0.1]: (u(9),v(8),r(9)) € U(lRi; x R*)}
and define o |

6* .= inf{0 G.(") : [6,1] € ©}.

Since 1 € O, by the openness of the set U(R}, x R*") = R}, xV(R}, x ]RZ") (see Lemnas
2.1 and 2.9), we know that 6* < 1 and 6* ¢ ©. If 8 < 0 then (u(6), v(6),7(9)) € U(R%, xR*")
for every 6 € [0,1] and the convexity follows. Assume on the contrary that * > 0. Let
{6% € (0* 1]} be a sequence converging to 6*. Then for every k = 1,2, ..., there exists a point
(u*, z*, y*) such that U(uk v¥, 'rk) = (u(6*),v(6%), r(6%)). By Lemma. 3 1 (u*, 2%, y*) lies in
a bounded set A((u L7, (u 2,72)) for every k. Hence we may assume without loss of
generality that {(u,z*, k)} converges to some (&, Z, 7). By the continuity of the mapping
U, we have : : : : : o Co

U(a, Z,§) = (u(8*), v(6*),r(6%))

which implies that (u(6*),v(6*),r(6*)) € U(IR} . xR*") and 6* € © whu,h contradicts o* € o.
Thus we hd.ve shown thd.t U (]R’_f__*_ x R?) is convex. g

Thus, we are red,dy to show the following main theorem of this section.

Theorem 3.3. (I) Assume that Condition 2.2 holds. Let (@,9,7) = (8,0, 7) € R}, xR xIR"
and W = {0(u,5,7) e RT, x R® x R? : 6 € (0,1]}.

(i) Forevery6 € (0,1], the system U(u,z,y) = 6(@, 8, 7) has a unique solution (u(ﬁ) z(0),y(0))

which is continuous in 6. Hence U™ 1(W) forms a subtrajectory.

(ii) The subtrajectory {(u(8),z(8),y(0)) : 6 € (0,1]} is bounded; hence there is at least
one limiting point of (u(9),x(8),y(0)) as § — 0.

(iii) Every limiting point of (x(0),y(0)) is a solution of the CP.
(iv) If f is a linear mapping of the form f(x) = Mz + q then (x(0),y(0)) converges to a
solution of the CP as 6 — 0.

(II) Assume that the Condatwn 1.3 holds. Then the above assertions ( i) = (iv) in (I) hold even
&f we replace the set IRG | xRE xRY by the set U(]R"+ xR?") = R? | x V(R:, xR*™) D
Y+ xR xRL.

Proof: (I): By (ii) of Lemma 2.1, we observe that
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6(a,5,7) €W C R™, x R” xR C R%, x V(R x R?) = U(R%, x R*™")

for every 6 > 0. Hence the assertion (i) follows from Lemma 2.9. If we take D = {6(&,9,7) :
0 < 6 < 1} then by Lemma 2.7, the set
U~Y(D) = {(u,z,y) € R}, X IRQ" : U(u,z,y) € D} = {(u, 6),xz(0),y(8)): 0<6< 1}

is bounded. Thus we obtain (ii). Let us show the assertion (iii). By the contmmty of the
mapping U if (v, z,y) is a limiting point of (u(6), z(6), y(9)) then we have U (u, =, y) = (0,0,0).
By the definition of the mappings u,v,r, we have

(x,4) 20, z;yi=0(G€N), y= f(w)

which nnphes tha.t (z,y) is a complementd.nty solution. The assertion (iv) follows from a
similar discussion which can be seen in the proof of Theorem 4.4 of [21].

(IT): By Theorein 3.2, U(R}, x R?") is a convex set and 0 € U(IR?,. x R*") under Condition
2.2. 'We can prove (II) similarly as in the proofs of (i) — (iv) of (I). ‘

4 A class of methods for tracing the trajectory

In the remainder of this paper, we use the symbol z and w to denote the triplets (u,z,y) € R3"
and (u,v,r) € R3", respectively.

Suppose that Condition 2.2 holds Let us choose a point @ = (@, 9, 7) from the set ]R_,_ + X
V(RY, x R?") if Condition 1.3 holds, and otherwise from the set R}, x R x IR} which is a
subset of R2, x V(R%, x IR?"). Define W := {6 : 6 € (0,1]}. Then U-}(W) C ]R n, xR*™
formns a subtrajectory leading to a solution of the CP (c¢f. Theorem 3.3). Based on this fact,
we propose a class of iterative methods for tracing the subtrajectory U—1(W) that involves

e the merit function ,
¥(z) = o' U(2)/||@]l*, | o (10)

e a suitable neighbbrhood C of the tra,jectory which conﬁﬁes ‘the genera.ted sequence in a
bounded set,

o the Newton direction to the system of equations
U(Z) = (=)@ | - (11)
“with a constant S € (0,1) at a point z,

e an inexact line search procedure.

‘First, we impose the following condition on the mapping fi



57

Condition 4.1. The mapping f is continuously differentiable on R™.
Then we obtain the following results on the Jacobian matrix DU (u, z,y) of the mapping U.

Lemma 4.2. Aabu.me that € L) of Condl,twn 2.2 and Condition 4 1 hold, i.e., f isa Lontmu.ou,aly
differentiable Py-function.

(i) The Jacobian matriz Df(z) is a Py-matriz at every x € R". .

(ii) The Jacobian matriz DU (u, z,vy) is given by

DU(u,z,y)=| -2D I-(X-Y)D I+(X-Y)D
0 -Dfl) o

where
X = diag {z;(i € N)}, Y = diag {y:(: € N)}, D = diag{d;(i € N)}
- and .

di = 1/y/(zi — ;)2 + 4u; (i € N).

Jor every (u,x,y) € R, x R,

(iii) 0<1l—=(zi—yi)di <2, 0<1+ (z;—y))d; <2
and I-(X-Y)Dand I+ (X -=Y)D are positive dmyonal matrices for every (z) €
Zn
fe xR

(iv) DU (u,z,y) is a In x 3n nonsingular matriz for every (u,z,y) € RE, x R?".

Proof:  (i): The proof has been given in Lemma 5.4 of [21].
(i1): Recall that the function v; is given by

vi(2) = (i + ;) — /(i — 3)? + 4w
for every ¢« € N. We can easily see that

o 0 6 #3),

du; =2/ (i —yi)? + du; (i =),
Ov; 0 (¢ # j),
Ox; 1= (2 —y)/ V(i — ) +4u; (i =),
v _ 0 (@ #7).
dy; 1+ (zi — 9)/ V(@i — 4i)* + du; (r = 5).

for every (u,z,y) € R, x R?". By the definition of d, we obtain the assertion (ii). (iii): It
- follows from a direct calculation. (iv): It is known that the 2n x 2n matrix




58

D, D,
-M I
is nonsingular for every positive diagonal matrices D,, Dy if and only if the matrix M is a Py-

- matrix (see, e.g., Lemma 4.1 of Kojima, Megiddo, Noma. and Yoshise). Thus by the assertion
(i) the matrix :

( I-(X-Y)D I+(X~Y)D )
-Df(z) I

is nonsingular for every (z) € R} x IR?" and so is the Jacobian matrix D(z). g

Remark 4.3. Tt should be noted thd.t Theorem 2 10 and (iv) of Lemma 4.2 ensure that U maps
n . x R?" onto U(R2, x R*") =R}, x V(R x R?") diffeomorphically under Conditions
2.2 and 4.1.°

Thus the Newton direction for the system (11) can be defined at every point z € IR} | x R?"
and given by '

DU(2)Az = —U(z) + f(2)d - . ' (12)

with a 3 € (0,1). Define

 He = {weR™: o'w< o). | BN CE)
H, = {weR™: a'w>0}. : - (14)

Here we introduce a condition on the neighborhood C and then describe our algorithm. -We
will give a proof of its global convergence and some examples of the neighborhoods sa.tlsfymg
© the condition in the succeeding sections. .

Condition 4.4.
() WcintCCcCCHy.
(ii) Let us define

Q:=CNH,. | | (15)
Then Q is a compact subset of
U(RY, x R2) U {0} = (R, x V(R x R?) U {0},

(zu) For every sequence {zF : k=1,2,. } cQ, p(zF) =0 implies U (2 ky — O { see (10) for the
definition of the function ).
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(iv) Let 3 € (0 1) be given and let z be a point such that U(z) € intC'N H,,. Then there ezists a
positive number & and a continuous and decreasing function p : [0,&] — [0, 1] such that p(0)=1
and.

Uz +afz) € intQ, ’ :: " o (16)
Pz + alz) < p(a)(z) . (17)

for every « € (0,&). Here Az is the Newton direction at z satisfying (11).
Now we are ready to propose our algorithm. In the d,lg,omthm below the step length @ is

determined by an inexact line search procedure which hnds the sthallest nonnega.tlve 1nteg,e1 l
such tha.t ’

U(z + 5'Az) E‘ intQ2, ; : - S | : - (18)
¥z +6'A2) < p(8)(2). | | . (19)

Here § € (0,1) is a constant and &' is the Ith power of 6. The finite termination of the line
sed.lch procedure in Step 3is enbured by (1v) of Condition 4.4.

Algorlthm

Step 0. Let 2! := U~1(1), ¢! := (2?), ,B €(0,1) and k:=1.

Step 1. If U(2*) = 0 then stop. Otherwise, let z := 2* and 9 1= k.

Step 2. Compute the Newton direction Az which is the unique solution of (11).

Step 3. Let ! be the sma.llest nonnebd,tlve integer sd.tlbfymg (18) d.nd (19) d.nd dehne

— bl
z’“ =z akAz,
P = o (2F).

Step 4. Replace k by k +1 and gd to Step 1. _

5 Global and monotone convergence of the algorithm

In this section, we show that the sequence generated by our algorithin globally and monotoni-
cally converges to a solution of the CP if Conditions 2.2, 4.1 and 4.4 hold. '

Theorem 5.1. Suppoae that Conditions 2.2, 4.1 and 4.4 hold. Let {(z t/}k)} CQx [O 1] be
sequence generated by the algorithm (lebu Lbed n Sectwn 4

(i) The sequence {l/) } is monotomcally deuw.smg and converges to 0 as k — oo.

(ii) The sequence {(z Pp*) = (uF .k yk gk} s bvu.nded and every lzvrutzng pomt of { (.I:k Jk)}
s a solution of the CP.
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Proof: (i): We can easily see that ¥ > ¢*+¥1(k = 1,2,...) by construction of the algorithm -
“and by (iv) of Condition 4.4. Hence the sequence {4*} is monotonically decreasing. “Since

% > 0(k = 1,2,...) (see (i) of Condition 4.4 and the definition (10) of ), there exists a

1/; > 0 such that ¥ — . If (/; = 0 then we obtain the desired result. Suppose that 171 > 0.
‘Define a compact set '

Q= {weQ: ‘/;"lf’“2 <olw< "/’1"@"2}-

Note that 2 C U(IRT., x IR*") since 0 ¢ Q (see (iii) of condition 4.4). Thus, by Theorem 2.10,
the set U~1((2) containing the sequence {zF} lb a compact subset of R}, x V(RY, x ]Rz_'i‘)j
Taking a subsequence if necessary, we may assume that {z*} converges to some z € U(Q2).
Tt is easy to see that ¢ = @/ U(2)/||@]|?. Moreover, by (iv) of Condition 4.4, there exists a
positive number & and a continuous and decreasing function p such that for every a € (0, &),
U(z + alAz) € intQ,
Y+ ada) <ph(z)
Here (ii) of Lemina 4.2 ensures that the Jacobian matrix DU (2) is nonsingular and continuous
at z = 5. This implies that the Newton direction AzF generated at the kth iteration converges
to Az. Therefore, for a nonnegative integer I such that 8 € (0, &), we have
U(z* + 8'A2F) € intg, '
P2k + 6'02%) < p(8')9 (")
for every sufficiently large k. Let I¥ be the nonnegative integer determined at Step 3 of the'
kth iteration in the algorithmm. Then, for every sufficiently large k, we see that ¥ <1 and
gL . . . i . . . ’ . .
hence 6" > 6'. Since p is a decreasing function, we obtain the following relation

P < p(8 )yt
< p(8)g",
which contradicts the fact that the sequence {¢*} converges to ¢ > 0.

(ii): By the assertion (i) above and (iii) of Condition 4.4, we have
lim U(zF) = 0.
k—oc - i

Since the sequence {U(2F)} is bounded, so is the sequence {z*} by Lemma 2.7. Therefore, by
the continuity of the mapping U, we see that U(2) = 0 for any limiting point Z of the sequence

{zF}.

6 Some examples of the neighborhood C

Suppose that Condition 2.2 holds. Tn view of Lemmas 2.1 and 2.9, the set IR'_,‘_ + xR xRY is
a subset of U(R% . x IR?"). By using this fact, we propose two examples for the neighborhood.
C to satisfy Condition 4.4 ’
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Let z = (%, §) be a point satisfying U(z!) € IR'_:_+ ><.'1R'j_’ x R% . In fact, it is not
difficult to find such a point: Let 2 = (&,%, ) be an arbitrary point of R} x R?". Even if
U(z) ¢ R7; x R®_ x R}, we may choose a (dv,dr) € R?" so that -
((3i — (5 + dv;) [2), (i + drs) = (& + dvi)/2)) >0 (i € N),
¥ +dr = f(z)+ (7 + dr),
v4+dv <0, 7#4+dr>0.

By setting ‘ -

;= ((& — (9 + dvi) [2)((§; + dri) — (9; + dv;)/2)) > 0 (¢ € N),

I =

&5

y = y+dr
we obtain a point Z which satisfies U(2) e R}, x RZ_ x R% .
We consider the following two types of neighborhoods:

Ci(r) = {weR™: |lw= (&' v/|al’)a|| < (@ w/|lol*)} (20)

Co(Tu, 7oy ) = {w=(u,v,r) ER} xR: xR} : ] (21)
‘ u > ru(efu/n)e, v< T (efv/n)e, r>7.(eTr/n)e} (22)

with pa.rameterv. T, 'ru T, Tr € (0,1). Tt is easy to see that
W C intCi(r) c Ci(r) C Hy

for every T € (0,1) (see (14) for the definition of H,), and for every ® € R}, x R:_ x R},
Co(Tu, 7w, 7) C (R} xR2_ xR}, ) U {0}

and hence
Co(Tys T, 1) C Hy.

Moreover, if
0< 7 <min{|@;|:i=1,2,...,3n},
0 < 7y < nmin{@; : i € N}/(e''w),
0 < 7y < nmax{7; : i €. N}/(e!D),
0 < 7 < nmin{7 : i € N}/(e!'F)
then we can observe that the following relations hold:
Ci(t) C (R}, x R:_ xR}, )N {0}, W CintCo(ry, 7o, 7).
Let us consider the set Q given by (15) in two. cases; Case:C = Cj(r) and Case:C =

Cy (Tu Ty, Tr). In each case, the definition of the neighborhood and the relation Co(T, ta.u,v 7.) C
RY, xR_xR}, U {0} ensures that
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e the set (2 is a compact ﬂubﬂet of R}, xRZ_ xR}, U {0} whenever the parameters satisfy
the a.bove rela.tlom .

° a.nd hence :/;(zk) -0 unphes U (zk) — 0 for every sequence {zF : k =1,2,...} C Q (see (10)
for the definition of the function ). .

Thus we obtain the lemina below:

Lemma 6.1. Suppose that Condition 2.2 holds. Let w = (@,9,7) € R}, x RZ_ x R}, and
define

7i:=min{|@;] : 1= 1,2,...,3n},
7 = nmin{@; : i € N}/(e'a),
7, := nmax{; : i € N}/(e''),
7 := nmin{F; : i € N}/(*7).

(23)

Then the neighborhoods Cy (1) and Cy(Ty, To, Ty) given by (20) and (21) satisfy the requirements
(i) - (iii) of Condition 4.4 whenever-t € (0,7), 7y € (0,7), 7y € (0,7,) and 7. € (0,7;).

. To show that these neighborhoods also :sa.ti.sfy' the requirement (iv) of Condition 4.4, we use
the lemma below.

Lemma 6.2. Assume that Conditions 2 2 aml 4.1 hold. Let z € R} + X IR‘" and Az be the
Newton direction satisfying (11) with a 3 € (0,1). Define : , :

. o = max{a€ [0 1]: z+adz€ ]Rn IRZ”} . ‘ _ | (24)
9(@) = (gu(@). go(@), gr(@)) | |
= U(z+ alz) - U(z) — oDU(2)Az o S : - (25)

for every a € [0,a*]. Then

(¢} lim flg(e)ll/a =0,
(ii) U(z+alz) = (1= o)U(z) + a(fy(z)d + g(a)/a)

for every « € (0,a”],

Jor every a € (0,a*].
(iv) Define

wp = supld €[0a): flg@l/a< (L —ﬁ)¢(z)||wu/2
’ fm every o € (O « ]}

Then



63

0 < ay < d*_S I ' | : - 7 | (26)
and
¥(z+ aAz) < (1-a(l-p)/2)9(2)

Jor every a € (0, aryp).
(v) Let T € (0,1) be a constant and let z be a point such that U (2) € ihtC’l (). Define

ay = sup{d/ €[0,0%): (2+7/||@l)g(@)|l/a < TH(z)
Jor every a € (0,d]}.

Then

0<a<a*<1 7 o (27)
and

U(z+ alAz) € intCi (1)

for every a € (0,a1).

(vi) Let 1y, 7,7, € (0, 1) be constants and let z be a point such that U(z) € intCy(ry, Ty, 7).

Define
ay = sup{d €[0,a"): -
1+ m)llg(@ll/o < min{Bep(2) (8 — Tu(e" a/n)}
1+ mllg (@)l < min{ ()5 = ol o/))}
1+ m)llg(@)ll/e < min{Bu(2)(7i — 7 (e 7/n))}
for every « € (0,d']}.
Then i
O<awy<a*<1 _ ' (28)
and

U(z + alAz) € intCy(1y, Ty, Tr)
for every « € (0, a9).

Here the neighborhoods Cy(7) und Csy (Tu,Tv,T,.) are given by (20) and (21), Arespectively.
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Proof: Tt should be noted that o* > 0. The assertion (i) follows from the continuous
differentiability of the mapping U. By the definition (25) of g and the Newton equation (11),
we can see that

U(z + aAz) = U(z) + oDU (z2)Az + g(c),

U(z) + aDU(2)Az = (1 — 0)U(2) + afp(z)®
for every « € [0, *]. Thus, we obtain (ii) and, by the definition (10) of 4, that

Pz+abz) = (1—a)p(z)+a{fe(z) + @l g(a)/(a]|@]*)}
< (1= abllall® + a{pollal® + llg()ll/ (el @})}

for every «a € [0, o*].

The inequalities (26), (27) and (28) follows from (i) and the assumption oun z, i.e., U(z) €
intCy7 and/or U(z) € intCo(7y, 7y, 7).

The definition of «y, guarantees that

llg(ll

ofjo]

< (1=p(z)/2

for every « € (0, ;). Thus, (iv) is obtained by the relation (iii).

Also, it follows from the definition of «y, that

Cwl (B (2)® + g(a)/a)
(B (2)@ + g(a) /) — (B ﬁ"f’;ﬁ- 9(e)/ )E)

.LT)T( )/ ‘lIJT( Y
%w —'r»(ﬂ«/z(z)ﬁu_&)_

ll@?

llg(@ll/e

@l (Bp(2)@ + (o) /o)
ll@?|

g(zx)/cx -

< llg@ll/e+lg(ll/a = 7B¢(2) + 7 T
< C+r/lallg(ll/ e = mB(2)
< 0

for every « € (0,1). Hence we see that
Pp(z)@ + g()/a € intCy (7).
Since U(z) € mtCy(1), 1 — @ > 0 and « > 0, (v) follows from the relation (ii).

To see (vi), observe that

el B (2)a+ gu(a)/a .
n '

o, el'g,(a)/a
= ﬁ'(/)(Z) (w-— ‘ru(ej Ft/n)e) + (gu(a)/a - Tu—ill(———)/—e)

n

Pip(2)a + gula)/a — 7

Since @ € intCy(1y, Ty, ), we have
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Bep(2)(a— r(et'a/n)e) > 0.
The definition of «y gives us the relation
/Jz/z(z)(u — ru(efa/n)e) + yu(a)/a -7y ¢ Ju(cx)/(x

> fih(2) (@ = ru(e @/n)e) - llgu(@)|/a - 7, IIJu(a)II/a)e
(min{Ay (2) (@ — 7 (€ a/n)} = (L +D)llgu(@)ll/)e
> 0 ' '

v

for every « € (0, a2). In a similar way, we obtain that

LBy (2) «
P (2)5 + gu(a) o — 7y >vn+ go(@)/ex

el By (2)F + g,.(a)/(ie

(13

<0,

/3’:/)(2)7*; + gr(@)/x — 70 <0

for every a € (0,c9). Thus (vi) follows from the definitions of a9 and the neighborhood
02(7'u;7vs 7'1'). [ |

The next theorem is the desired result of this sec tion, which can be derived from Lemmas
6.1 and 6. 2.

Theorem 6.3. Suppose that Condition 2.2 holds. Let @ = (4,9,7) € R}, x R2_ xR}, and
let # € (0,1) be a constant. Choose the parameters T, 1,, T,, and 7, as in Lemma 6.1. Then
both of the neighborhoods C1(1) and Cy(Ty, Ty, 7r) satisfy Condition 4.4.

The neighborhood Cy () satisfies (iv) of the condition with & = min{ey, a1} and with p(a) =
1—a(l-f)/2, and the neighborhood Cy(ty,7,,7,) does with & = min{eay, as} and with p(«) =
1— (1 - f3)/2, respectively.

In the above discussion, we only impose a mild condition, Condition 2.2, on the problem.
Suppose that another relatively strict condition, Condition 1.3, holds. In view of Theorem
3.2, the image U(IR}, x R?™) of U is a open convex subset of R3". Hence, for arbitrary
point @ € U( by X IR?™), the line segment W := {#@ € R7, x R*™ : 6 € (0,1]} satisfies
W C U(R%, x R?") and there exists an open ball

B(w,€) .= {w € R}, xR™: |lw - a| < €}

contained in the set U(R} | x x IR?™). Therefore, if we choose a sufficiently small T € (0, €) then
the cone C1(7) given by (20) satisfies W C intC1(r) and w := C1(7) N Hy, C U(RY, x R?").
In fact, by a similar discussion, we can see that the cone Ci(7) satisfies Condition 4.4. Thus,
we can start the algorithmn from any point z = (@,Z,7) € R}, X R?" by setting w = U(2),
and its global convergence is theoretically guaranteed. In general, it may be difficult to know
such an open ball B(w,e). However, since the Newton direction can be computed at every
z = (u,z,y) € R%, x R?™, if we obtain a point z for which @ = U(z) is sufficiently close
to the origin, then it might be possible to obtain a solution of the CP by one step Newton
iteration, which implies that the method has a potential for post-optimal analysis and/or solving
parametric problems.
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7 Concluding remarks

We have proposed a continuation method for the CP using Chen-Harker-Kanzow smooth func-
tion. The method does not confine the generated sequence in the positive orthant and, for the
monotone CP, it allows us to start arbitrary point (z,y) € IR?" theoretically. We have also
shown a sufficient condition for the neighborhood to achieve the global convergence and two
examples satisfying it.

Another approach to construct a non-interior homotopy continuation method would be to
analyze the following mappings:

o(v,z,y) = v,

(v, z,y) = (ul(v x,y), (v, 2,y), ..., Gn(v, T, y))1
wi(v,z,y) = (zi—vi)(yi—vi) (i € N),
)

Uw,z,y) = (9(v,z,9), (v, z,9),...,7(v,z,v))

A similar approach has been studied by R. M. Freund in [7] for the linear programiming. It
should be noted that the mapping U is not necessarily one-to-one mapping on IR?® even if
Condition 1.3 holds (the monotone CP with a feasible-interior-point). For example, let

n=1 fx)=z+1, v=-1, u=2, r=0.
By solving the system
w(v,z,y) = (z+D)(y+1)=2, 7(v,z,y)=y—2—-1=0,

we obtain the two solutions, (0,1) and (=3, —2). In this case, we may have to choose the domain
of U as follows:

Az y) R (z—v,y—v) >0}
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