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Information Geometric Analysis of a Interior-Point Method for
Semidefinite Programming . :

REROCRFEPETHEE  /NE %% (Atsumi Ohara)

1 Introduction

Since Karmarkar proposed an interior point algorithm with polynomial-time complexity
to solve linear programming (LP) problems [11], many works have contributed to the
progress and applications of interior-point methods of mathematical programming (See
for some text hooks [16, 5, 21, 22]).

Among them, some researchers have brought differential geometric points of view and
elucidated mathematical structures behind the mechanism of interior-point methodology
[2, 12, 20, 8. 6]. :

In particular, (continuous version of) affine scaling trajectories in LP has been known
integrable via Legendre transformation and regarded as geodesics for a certain connection
[20, 6]. These results are crucially relying on several dualistic properties of the problem
and one of the key tool-unifying them has been so-called information geometry [1]. As for
the integrability of affine scaling trajectories, we should also refer to [10, 4, 15, 7].

On the other hand, recent study is developing the applicable area of polynomial-time

- interior-point framework to broader class of convex programming problems. One of the
most significant in the engineering application is semidefinite programming (SDP), which
is actually useful in system and control theory [3] and combinatorial optimization [21].
Further. the set of positive definite matrices is one of the examples where dualistic nature
appears in the simplest way and is easy to analyze [18], e.g., Legendre transformation turns
out to be essentially matrix inversion. This fact implies that analyzing SDP enables us to
exploit abundant dualistic structure of interior-point methodology via direct calculations.

This paper first introduce preliminary results of information geometry in Section 2.

Section 3 discusses the interior-point machinery for the general convex programming in
terms of the frame work of information geometry. In this case, we again find that various
dualistic structure on a considering convex region, such as Legendre transformation, dual
connection and so on, naturally appear and play important roles. This part can be
regarded as a simple extension of the work given by [20, 6] in LP case.

Next, by examining the above results, we consider in Section 4 the possibility of a new
algorithm using Legendre transformation. Consequently, we show some class of nontrivial
problems in SDP can be solved without any iterations. This class is characterized by
geometric term: V*-autoparallelism. Further this class turns.out to be related to Jordan
subalgebra of symmetric matrices under a certain circumstance.

Finally in Section 5, we exploit the above result quantitatively, i.e., we show a certain
geometric quantities called the second fundamental form (, or Euler-Schouten embedding
curvature) is directly related to predictor step size we can take without increasing compu-
tational complexity in the succeeding corrector phase. This result shows one approach to
analyze how over all computational complexity is dependent on structure of each problem
to be solved.
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Notation: Sym(n): the set of n by n real symmetric matrices, PD(n): the set of n by n
real positive definite matrices, N (= n.(n: + 1) / 2) dimension of the vector space Sym(n),
&/: Kronekar’s delta. S
Further, we obey the followmg conventlon for the s1mphc1ty of notation:

Convention: When Super- or subscripts are used without any range, Italic letters p,q,r
are supposed to index integers from 1 to N, e.g., p=1,...,N. Similarly, the other Italic
and Greek super- or subscripts are respectlvelv supposed to index mtegers from 1tom
and fromm+1toN,eg.,i=1,....mandk=m+1,....N.

2 Prelimiharies for Information Geometry

In this section, we give a brief introduction of some results in dualistic geometry to be
used in the following sections. Those who are interested in the details and further results
can refer to [1, 6, 18]. - :

Let M be an arbitrary -open convex set in R™. One of the simplest way to define
information geometry on M ‘is using a convex potential function. ‘As is shown in the
followings. we .can obtain key geometric quantmes which deﬁne dualistic structures as
derivatives of the function. : v :

Let () be any smooth convex function on M that has positive definite Hessian
matrix. ., where (2') is a coordinate system for R™. Now consider a Riemannian manifold
(M.g), whele its Riemannian metric is given by the Hessian matrix of #(x), i.e.,

0
_ oxt’
Here ¢; J( r) 1eplesent the Components of Riemannian metric g.
‘Next we will introduce a pair of connections V and V* on our Riemannian manifold
(M, g). While in mathematical physics the Levi-Civita connection on Riemannian mani-

folds plays an important role, non-Levi-Civita connections are crucial in our frame work.
Let denote the components of V and V* by -

Tnle) = 9(V,05,0).  Tl) = g(V5,0,0). (2.2)

and define these connections respectivelv’ by the1r components:

| gij(x) == 9;0;¢(x), where 0; := (2.1).

5 1 : A
Fije(x) == [ij: ]v]( ) — 3 re(x) =0, I(x):= ['],Iv] )+ ngk( ) = Tije(z) = Oigjn(T).
' ' ’ ’ (2.3)
Here, [ij: k] represent the components of the Riemannian (Levi-Civita) connectlon
[ij: L] —-' (Oigj + Oigri — Okgij)-
and
Tijr(x) := 0;0;0p(), ' (24)

Since Ijir(xr) = 0. the coordinate system & is called V- aﬂine Although V and V* are
not metric-preserving. (2 3) implies

9igjk = Iiji + Iy, 1e.. Ag(B,C)=g(VaB,C)+g(B,V;C) (2.5)
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for any véctor fields 4 B and Con ‘M. *Due to this property, ‘we say V and V* are
mutuallJ dual w ith 1espect to g. ‘

Thus, we can easily derive the structure: of 1nf01mat1011 geometry (M g,V,V* ) from the
potential function ¥(x) on M. :
In case that dual connections V and V* are derived from a potentlal functlon in the
manner of (2.3). it is known that torsion and curvature tensors on M with respect to V
and V™ vanish. If this is the case. we call M dually flat.
When M dually flat, we can introduce a new coordinate system (y;) and convex (with
respect to y) function o(y) via Legendre transform:

yi = 0v(x), oy) :=ut(y) = Sup{a?"yi - ¥(a)}. (2.6)

\’ote that we use subscripts for the components of y. Let us define as 6’ := J/0y;, then
the components of Riemannian metric g and the dual connections V and V* with respect
to y are represented in the dual manner as-

= 0"¢(y), 2.7
gy =0 ely), (2.8)
I'it(y) = 0'00%a(y), r=i*y) = 0. (2.9)

Since I'™*(y) = 0. y is similarly called V*- aﬁine A crucial point is that Jacobian matrix
of the transformation between x and y is just g, i.e.,

0 = g0, &' = g9, | (2.10)

and (g;;(x)) is an inverse matrix of (¢”(y)) at any same pomt spemﬁed bv z and y:
p = p(x) = p(y). Note that it follows from (2.10)

9(0:,07) = 61 @)

Finally. we should note that using the components of the connections, we can represent
differential equations of their geodesics as follows: For a geodesic with respect to the
connection V. we have

F(t) =0, Zgu )+ ZF’J‘yJ 1)y (z‘)=0,
7.k=1

which are represented in 2 and y coordinate system, respectively. Similarly for a geodesic
with respect to the connection V*,

Z JI_) Z J];TJ (t) = 0, y,(f) = 0

7.k=1

Here, " denotes derivative by the parameter t.
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3 Some Interior Point Meth.ods-and Geodesics

Here, we show the property of continuous trajectories associated with some (primal)
interior point methods in terms of information geometry. Next, we discuss the possibility
of new algorithm based on this result. : : ‘

Given a vector ¢ € R™ and convex functions f;(z),i = 1,... h, consider the following
convex programming problem with a linear objective functlon

minc’z, st.x€MC R™ M = {z|fi(x) £0,i=1,...,h}. (3.1)

Note that we can transform general convex programming problems with arbitrary convex
objective function fo(x):

min fo(x). st.reEMC R" M= {z|fi(x) <0,i=1,...,h} (3.2)
to the the form (3.1). By introducing new variable 2™+ and convex function

fh+1(17,117m+1) = fo(l’) - 17m+1, (33)
we obtain the equivalent problem
min 2™+ = T, FeMc R,

T=[0 1], & =[aT 2™,
M= {#|fi(x) <0,i=1,....,h+1}, fi(x):convex, i=0,....,h+1.
Thus, we can regard (3.1) as one of standard forms for convex programming problems.

In this section, we will assume M is bounded.
Let us consider a barrier function ¢(z) for M that satisfies the following conditions:

B1) ¥(x) is three times continuously differentiable on M,
B2) Hessian matrix of () is positive definite on intM,
B3) ¥(x) — oc, (x — OM).

For example, when f;(z) is linear or quadratic (, more generally, relatively Lipschitz [17])

h
- Y log(~fi(@) (3.4)

is known to satisfy the above conditions. ‘Such a function Y(zx) is said logarithmic barrier
for M and its unique minimizer on M, called analytic center, plays an important role in
interior-point methodology. -

Now among some classes of interior-point algorithms, we consider path followzng and
affine scaling methods for the ploblem (3.1) and analyze their associated continuous
trajectories. o

One of the simplest path following methods is barrier method, which involves the min-
imization problem for the following weighted sum of the barrier and objective functions:

¥, (x) := tcf 2 + (x) — min, (3.5)
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where t > 0 is a weighting parameter. Let z(t) and 2 be a minimizer of U;(z) and the
original convex problem (3.1), then we obtain

Ft)y-at (t- +00).

For the unplementatlon by discretizing properly ¢ as an increasing sequence {t¢;} and
finding. for each t;, approximant of z#(¢;) by Newton method, we obtain a sequence that
follows near the path z#(¢) converging to z*. The path z(¢) is called central path.

In addition to this method, there are also some variants of the path following methods,
which minimize, for example,

U () ;== —Clog(s — ¢'2) + ¥(x) — min, for given ¢ > 0 (3.6)

01\ E °
¢(z) » min, st. fz=7T. (3.7)

Let a* ( ) and r*(7) be the minimizers of (3.6) and (3.7), respectively, then We find they
converge to x* when the parameters t or 7 approach the optimal value of ¢z from the
above [16]. Note that, however, %(s) and z*(r) coincide with the central path z(t) with
different parameterizations.

Thus, the above three types of path-following methods finally generate sequences that
converge to the optimal solution z* following the central path. Further, when the barrier
function v'(x) has a property called self-concordance [16], i.e.,

m

Z | el W < a( Y gyh' )2, Vh = (hi) eR™ JaeR, (3.8)

ij.k=1 1,7=1

these methods are known to “01k efficiently in terms of worst-case computational com-
plexity.

On the other hand, afﬁne scahng method is essentially a gradlent method along the
vector field: . ‘

=g Yz)e, v (3.9)

where g(x) is the Hessian matrix of ¢(z), i.e '

ey

g(x) == (gi;(2)), gij( ) := 8%y (x)/0x 02’

The right-hand side of (3.9) can be mterpleted as gradient vector for the objective function
Tz with respect to the Riemannian metric g defined on M.

Now we show both central path and affine scaling trajectories are characterized as
V-geodesics of dualistic geometry derived from the barrier function t(z). This fact was
generalization of [20] for linear programming case. Let us consider -

Uy (z) :=tche +¥(z), o ::[cl .. Cm). (3.10)

Since the Hessian matrix of Wy(x) is also positive definite, z*(¢) is a unique' solution of the
optimality condition:

0¥(x) : .
— = {¢; — =0, 1=1,..., . .
Ers c; + o 0, i=1, ,m (3.11)
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This condition can be represented in dual coordinate system as follows: -
yi(t) = —cit, t>0, i=1,...,m. (3.12)

Thus, the central path y*(¢) turns out to be a half stnght line in the dual coordinate
'%vstem where its 1nlt1al pomt is the orlgm ‘Since y;(t) in ( 3 12) satisfies

-@iz—'c,, i = 1,...;m, | C(3.13)
dt : : ‘

we have differential equations for the central path z(¢) using (2.10)

dai m

— == ¢a= —Zg” clz), j=1....,m, (3.14)
dt ]

with its initial point 2(0) = xac, i.e., analytic center for- M. This is the same differential
-equation with (3.9) for the affine scaling trajectory, which implies the central path is also
a solution of the gradient system of the object function ¢’z under the Riemannian metric
g.

Finally, multiply both sides of (3.14) by g;; and differentiate them by t, then we obtain
the differential equation of V*-geodesms

- da? da* _ . 1 8.0:0.v 8.
Zgu If’ 7 IJL A = 0. _l—l,...,n, where Z ik = 0iOk0;0 = Orgij-

7.k=1
(3.15)

Hence both central path and affine scaling trajectories are proved to be V*-geodesics.
Further, in contrast with the primal coordinate case, following these trajectories in the
dual coordinate system is a very easy task with no iteration, i.e., just extending a stralght
line as shown in (3.13).

Therefore, one intuitive idea that arises from this fact is that following the central path
or affine scaling trajectories in the dual coordinate system, via Legendre transformation,
may have better performance than doing so in the primal coordinate system, in terms of
computational complexity. Additionally when () is a self-concordant, there also exists
the relation between ¢ and an error [16]

Tat) - Tt <9t o (3.16)

where the constant ¥ is a paianiietm depending Only on Y(z). Consequently, the rough
sketch of the algorithm is as follows: ‘
Algorithm

Step 1. Find the initial feasible poiilt. 2*0) € M
Step 2. Calculate y#(0), the Legendre transform of x#(0), using (2.6).

Step 3. For sufficiently large ¢ (decided by the accuracy estimate (3.16)), calculate y(¢)
by (3.12).

Step 4. Find 1*(t), inverse Legendre transform of y*(t), by (2. 7).
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However, -this optimistic-idea, of course, turns out false. Generally, obtaining the
Legendre conjugate ¥*(y) explicitly as a function of y is difficult. Hence, to find z#(t) for
given y(t) in Step 4. we must solve, instead of using (2.7) directly, the following nonlinear
equation:

- given y;(t),i=1,....m, ﬁnd T; (1‘) s.t.,
Y . | .
817( ) = Jl(f) 7 = 17 .t '7m" (3-11)

or equivalently the following convex problems:

m

arg min{v(z) =S wt)'}, i=1...,m

Even if ¥(x) is self-concordant, computing z*(t) in such a way might cost more, without
good initial estimates for z*, than the path-following methods mentioned before.. .

4 Semidefinite Programming

4.1 Information Geometry for Positive Definite Matrices

In this section. we specialize the previous discussions to sem1defin1te programmmg (SDP)
case.

Let c € R™ and E; € Sym(n).i = 0,...,m, where {E;}2, are linearly independent
basis of Sym(n). Consider the following form of SDP problems: :

minc’z, s.t. P(z) = Eg+ »_2'E; > 0. (4.1)
€T - l'—'l .

We introduce notation for some sets associated with the above SDP problem. Denote by
VY and Ey + V., vector and affine subspaces in Sym(n) respectively defined as
V= {X|X espan{E}", }, Eo+V:={X|X - E, € V}. (4.2)

Then the constrained set of P(z) in (—1.1) is the closure of £ which is defined as so-called
conic form [16], i.e.,

L= PD(n) (Eo+V). (4.3)
Note that V coincides with tangent space of £.
In SDP case, path-following algorithms commonly use a self-concordant function

¥(z) = —logdet P(z) | (4.4)

as a barrier. Then, according to the section 3, we can introduce information geometric
structure (£, g, V,V~) to define dual coordinate, Riemannian metric and V*-connection
as follows [18]:

y-=—tr<P<1) E) , (4.5)
gij(x) = tr(P(z) " E;P(z) "' E;), (4.6)
,,L( r) = =2tr( P~} (x)E:P(z) " E; P(z) "' Ey). (4.7)
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The affine-scaling trajectories and central path are still a solution of the V*-geodesic
equation (3.15) on the interior of £. As described in the previous section, Legendre
conjugate ¥"*(y) and transform x-= z(y) can not be generally expressed as functions of .
Now we turn our points of view to treating the problem in PD(n). Let {E;}L,, ., be
any basis matrices of a subspace complementary to V and define the set of bi-orthogonal

basis matrices { £/}, as follows:
—tr{E'E;} =6, i=1,...,N, j=1,...,N. (4.8)

Then we can express any P € Sym(n) as
N
P=P§):=) 0'F;. v (4.9)
i=1

Hence, § = (6'...6%)T is regarded as a coordinate system for PD(n). Note that 6
coordinate for P(z) € L is

=z +65,i=1,....m, =6 i=m+1,...,N, (4.10)
0=’<3’>+00, O (411)
where 6y = (6} ... 06‘")T is a @ coordinate for Ey, i.e., Ey = YL, 0E;. '

- To introduce information geometric structure on PD(n) [18], we use a barrier (poten-
tial) function on the whole PD(n)

() = —logdet P(4). ' (4.12)
Then the Legendre transform of 6, denoted by 7, is |

n:(0) = —tr(P(§) E;). : (4.13)
Note that for all P on £ , | ‘

yi=m t=1l...m (4.14)

holds from (4.5) and (4.13).»‘ The dual coordinate 5 = (n; ...7)7 represents any P ¢
PD(n) as follows: ; .

. -1
P = P(n) ::-(ZN: niEi) : (4.15)

i=1
Riemannian metric g and coefficients of V*-connection are also in the same form as (4.6)
and (4.7) except x replaced by §. We will use the same notation g, V., V* for both £ and
PD(n). Information geometric structure (£, g,V,V*) coincides with induced one from
(PD(n),g.V.V*) defined like this.
A significant point for the case of PD(n) is that we can give explicit expressions of
Legendre conjugate ¥™*(n) and inverse Legendre transform as functions of n:

v(n) = —logdet P(n)™, | (4.16)
0'(n) = —tr(P(n)E"). (4.17)

Thus, from (4.13) and (4.17) the (inverse) Legendre transformation on PD(n) from one
coordinate to the other is essentially. inverting symmetric positive definite matrices and
is very cheaply executed without iterative optimization procedures as in general cases.
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4.2 V*-autoparallel submanifold in PD(n)

Now computational difficulty of the inverse Legendre transform is avoided in case of
PD(n). Further, the central path and affine-scaling trajectories are V*-geodesics in £
and there holds a relation (4.14). Then the natural question that arises is as follows:
Question: Does the algorithm considered in the previous section work without iterative
optimization procedures in PD(n)?

Unfortunately, the answer is generally NO. The reason is that V*-geodesic of the
submanifold £ is not always that of the ambient manifold PD(n). However, if both
V-geodesics comade the answer for the question is affirmative. Such a property is char-
acterized by a geometnc term: ‘totally geodesic or autoparallel.

We use the following definition and fact:

Definition [13] : Let A be a manifold equipped with a certain connection V and M be
a submanifold with induced connection from V of ambient manifold N. The submanifold
M is said to be V-autoparallel if for any vector fields X and ¥ on M, covariant derivative
VY is again tangent to M at every point z € M.

Proposition 4.1 [13] : Let (N, V is torsion-free, then a submanifold M is autoparallel
in MV iff M is totally geodesic, i.e., an every geodesic of A starting from a point on M
with an initial vector tangent to M stays in M.

Recalling that the V* connection is torsion-free, we immediately obtain a main result
of this section:
Theorem 4.2: If £ is V*-autoparallel. we can solve SDP problem (4.1) without any
optimization procedure by executing the algorithm in the section 3.
Remark: i) The converse is not true, i.e.. there exist SDP problems that can be solved
by the algorithm while £ associated with them are not V*-autoparallel. This is due to
combination of the initial point and ¢ (See example 2 below). ii) The submanifold £
is always V-autoparallel by its definition [18]. Hence V*-autoparallel submanifold £ is
dually autoparallel with respect to both V and V* connections.

To check whether the £ is V*-autoparallel, we have the following condition:
Lemma 4.3: A submanifold £ of (4.3) in PD(n) is V*-autoparallel if and only if

- E.P7IE; - E;P7'E; € V, forVPe L, 1<i,j<m. (4.18)

Proof: Since the tangent space of PD(n)is isomorphic to Sym(n), we can identify the
tangent vector d; at P and the symmetric matrix E;. Then V*-covariant derivative V5.9
can be shown to have the following matrix representatlon [18]:

V;.0; = EP 'E; - EP IE,,

where the symbol = denotes the above 1dent1ﬁcat10n. Hence, the statements immediately
follows. » Q.E.D.

Especially, when Ey = 0, i.e.. £ is convex subcone of PD(1), the tangent space V of
V=-autoparallel submanifold £ has a relation with Jordan subalgebra of Sym(n).
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Definition [14, 9](Jordan algebra of Sym(n)): Let us define the product * on the vector
space S ym(n) by means of usual matrix ploduct as follows:

XY = 5(}{1”+YX). S (4.1’9)

We call the vector space Sym(n) equlpped with the usual matmc sum + and the product‘
* Jordan algebra of Sym(n).

Theorem 4.4: Assume Fy = 0 and the identity matrix I is an element of submanifold £
of the form (4.3). Then £ is V*-autoparallel (and hence is dually autoparallel in the sense
of both V and V* connections) if and ouly if TpL(= V) is Jordan subalgebra of Sym( n).

Proof: First note that £ C V due to Ey = 0. Let 4 B € TPL V be replesented as

A ‘;’Z_afE,f, ‘B= beEi
Suppose L is V" autopa1a11e1 then, using Lemma 4. 3 we have -
| AP'B4+BPAcY

forall P € L. By setting P=1.V proves to be Jordan sub‘alngebra of Sym(n).
~Conversely. let V be Jordan subalgebra and assume P € £ and A,B € V. Since

Ax(4%B)= %(A'ZB + BA?+24ABA) eV

and . ' 1 ' :
(_4 xA)x B = 5(_-12.3 + B“‘12) eV,

it follows 4BA € V. Using this and P~ € L (See [14]), we conclude
(A+B)P"Y(A+ B)— AP'A—-BP'B=AP'B+BP 'A€V
This implies £ is V*-autoparallel. - ' ' o Q.E.D.

- Example 1: The set of symumetric matrices whose eigenvectors are fixed is one of exam-
ples of Jordan subalgebra of Sym(n). Another example is the set of doubly symmetric
matrices, which is symmetric with respect with both main- and anti-diagonals [14]. Hence,
when V coincides to these set, SDP can be solved without any iteration for any vector ¢
and initial point x(0) using the algorithm discussed above.

Example 2: Consider the following SDP problem,

.1 p ot 2?
min -, st () =12 2241 ) > 0.

If we take any initial point satisfying 22(0) = 0 or z!(0) = 2%(0), the problem is readily
solved with-the above algorithm. 4
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5 General Case

5.1 Predictor-Corrector type algorithm in Dual Coordinate

In this section, we consider a simple modification of the algorithm given in the section
4 to solve general SDP problems even in-the case when £ is not V*-autoparallel. By
examining behaviors of the modified algorithm, we show its computational complexity is
directly related to a geometric quantity called the second fundamental form (or sometimes
called Fuler-Schouten embedding curvature).

We here denote, by P*(t), an affine scaling trajectory or central path on £, with a
given initial interior point Py € £, and represent it by # and 7 coordinates rather than
T to discuss its behavior in PD(n). Note that when P*(t) is the central path, P, is the
analytic center for £. The relation between the coordinates § and x has been given in
(4.10). '

Let us partition coordinate vector §, n and Riemannian metric matrix G = (gp,)

compatibly: »
_(® S ] _( G G .

where 8§ = (6%). 8 = (8%), T = (n). =), Gr = (gij), G2 = (gix), G3 = (gsr)(5.2)

From (3.14) and the fact that Pi(t) stays in £ for all t > 0, the 8 coordinate of P*(t)
denoted by #*(t) is the solution for

) y _ Gl(e)_lc _ - |
i (1)=-(507). wo=a -

where 8y = (6}, 65) is 8 coordinate of an initial point Py for the affine trajectory on L.
Since (0n,/00?). the Jacobian matrix of the Legendre transformation from 7 to 6, is
equal to G as in (2.10),  coordinate of P*(t) denoted by nf(¢) is the solution of

where 1y = (0. Nxo) is 1 coordinate of an initial point for P.

Now we show a rough sketch of a method to follow the path P¥(¢). Assume we are
given a certain point P! := (6*(t,)) = (*(t.)) on P¥(t) corresponding to the parameter
value t = ¢,. Let P(t) be the V*-geodesic of PD(n) which passes through P! with the
direction there equal to P*(t,). If we define constant vector ¢ = (c,) € R¥—™ as

¢:= =Ga(F (t))GT (1 (t0))e. Ly e 1= 3 s ()9 (1 (ta) s, where (g7) = G7,
. , ij=1 _

_ | (5.5)
then 7 coordinate of P*(t) denoted by 17(¢) is the solution of

=- ( Z ) con(te) = n“(ta)-' : _ (5.6)
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Thus. by view 1ng P~(t) and P*(t) via n coordinate, we can regard P*(t) as a lin-
earization of Pi(t) at the point P! Hence, the point P} := P”(tb) on the affine scal-
ing t1aJect0r\ corresponding to the new parameter ¢t = ¢, has first order approximation
Py := P*(t;). This is the predicting step to follow the path P%(t). However, when £ is
not V*-autoparallel, we need a correcting step returning from P; to P,, due to the approx-
imation error. Iterating each step alternatively leads us to so-called predictor-corrector
type algorithm. Note that the predictor P; is outside of the feasible region L.

The predicting step is easily executed because the 1n*(t,) is obtained as

T (ts) = 0 (ta) — ( z ) (ty — ta) (5.7)

or in a matrix form

' P 1( ty) = P (t,) — Cét,
where C is a constant matrix, the 7 coordinate of which coincides with (¢ ¢T)7.

Next, before we state about the correcting step, it is convenient to introduce the

following submanifold:
Definition: Given P € PD(n). define £+(P) € PD(n) as follows:

LH(P):= {P(Q)|P;1(' Ty Z nE", P(n) € PD(n)}
K=m-+1
Note that 5 is a coordinate system of this submanifold. See [18] for various properties of
L*(P). For the correcting step, we have the following result:
Theorem 5.1: [18] The corrector P} is the unique solution for the problem of minimizing
the quantity so-called divergence D(e,e): PD(n) x PD(n) — R, i.e.,

P} = arg Pe_%g%llﬂ;‘) D(F;. P). (5.8)
where D(P;, Py) := logdet P, — logdet P + tr(Py 'P)) —n  (5.9)

By representing P € £+(FP;) by n and log det Pg is a constant, the above minimization
problem is reduced to convex programming problem of

P(ty) = argmino(n), st P(n) € LHF), (5.10)
where  (n) := —logdet Pl Z 77,¢E"') — Z 'n,ﬁg”. (5.11)
. k=m+1 k=m+1

Since the first term of the objective function ¢ is self-concordant and the second one is
linear with respect to 7. the function ¢ is also self-concordant due to (3.8). Hence, we
can solve efficiently this convex optnmzatlon problem by dumped Newton method [16].

Since £+(P}) = LY(P}) by its definition, we can say, to sum up, this modified algo-
rithm is alternating predictors and correctors in the submanifold Upept(s) 9<:£L(P). Note
that the above predicting and correcting procedures can be completely executed with only
n coordinate without calculating 6 coordinate or matrix inversion.
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5.2 Stepf Length

Finally, let us discuss a estimate of the possible long step we can take in each predicting
direction, while keeping the number of iterations less than some prescribed upper bound
in the succeeding corrector step. In our settings this is equivalent to discuss how large
increment 6t := 1, — t, we can take at each predicting step. Our analysis may be useful
in design a long-step type algorithm.

We first show the 7 coordinate representation of the predicting error can be expressed
by so-called the second fundamental form. Let us define new coordinates l, on PD(n)
such that their vector fields are defined as

a . m 1] a

o j=191 507 (5.12)
0 0

5 = o (5.13)

Note that at any point on £, 0/d7; and 9/0F, are tangential and orthogonal to L,
respectively, because each 9/01; is a linear combination of 9/96" and ¢(9/96",9/dn,.) = &%
due to (2.11). Since (91,/307) = G as is shown in (2.10), we have the following Jacobian

matrices: _ ) . L ‘ 1
O\ _ (1 Gi'Gy\ (00 _ (I -Gi'Gy (5.14)
dil, 0 I anp 0 I
and o6 )
4P - Gl— 0 1 . T ~—1
(EZ) = ( _S1GTG 5! ) ., where S := G5 - G;G{'G,.

Let us denote J” := 9/ 7. Since & and 9~ are respectively tangential and orthogonal
to L at every P € L, we can represent the components of the second fundamental form
[13] of £ for V*-connection, denoted by H*, as a Christoffel’s symbol of V*-connection
with respect to 7 coordinate system:

N
H=I77=% g,["? ij=1....m, k=m+1,...,N. (5.15)
p=1
Here g,, is the components of the inverse matrix of (§7¢) such that
gt = g(87,99) (5.16)
and _ o '
P = (v3,89,9"). (5.17)

The quantities ﬁ ~J provide information about how locally curved the shape of £ is in
PD(n) in the sensec of V*-connection.

The followi ing result shows 5 coordinate of the error P; — P} can be represented by
H <,
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Lemma 5.2: For all t, = t, + 6t such that 6f > 0, the 5 coordinate representation of the
predicting error P; — P} has the following expression:

1 (ts) — i (ty) = 0.

ma(ts) — nhty) = — Z H=9( t0+§51‘)c¢c] (5.18)

i,j=1

Proof: Using (5.4) and (5.5), we have the Taylor series of 5*(t) for some ¢ € (0, 1)

17,(1‘(,+61‘)—77,(a) c;0t, 1=1,...,m
1 (5.19)
0h(te + 6t) = nh(tq) — cbt + §I)h(f0 + §6t)ét“ k=m+1,..., N,
Hence, from (5.6),
0 (ta + 6t) — 0 (te + 6t) =
N(te 4 0t) — ni(te + 0t) = —§7yi(t0 + £6t)6t2. o (5.20)

Since Pi(t) stays in L for all t, its derivative for the direction orthogonal to £ is zero, i.e.,
M.=0. k=m+1.....N on Pit). Accordingly, 7* has the following expression:

» m anh ~ m agklglj .
=3 gn = 2 el (5.21)

ijd=1

By means of the formula (A.1), it follows that the relation between f:’j and I'yP4, Christof-
fel’s symbols with respect to 7j and 5 coordinates, is
17\‘ A ) i V 2 PA Yo
Hi=frii= ¥ 91ty Oy Ol pepg i ‘?)’7@ Pl
g T a1 O O an, I: 1 On;i0n; On,
Recall  is V*-affine. then it follows I"7¢ = 0. Using this fact and substituting (5.14) into
the above equation, we obtain

" Qgaigl s - -
SOCIL _F for ij=1,...,m, k=m+1,...,N. (5.22)
= O

Since 77; =1, =—c;, i=1,...,mon P*t), the ' statement holds. Q.E.D.

Remark: Due to (5.2) and the formula (A.1), H “iJ can be calculated using the quantities
~ with respect to € coordinate.

m .
Ir=ij _ *u — i ik I
HY =TI =7% Z 9191 seu TR
Lk=1 p=m+1
where

(sep) =S, I = Z gﬂpFu\p

p=1
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From Lemma 5.2, when the second fundamental form H*7 is small in some sense, the
predicting error represented in 7 coordinate proves to be small and, consequently, we can
expect longer predictor step.

Next, we will discuss the possible long increment 6t under the following assumptions:
Al) On Pi(t) € L. the second fundamental form is small in the sense that

max {| Z H¥icie;|} < M,

r=m+1,..N ij=1
A2) The corrector returns to P*(t) € £ exactly.

The assumption A2) is not practical but just for the sake of simplicity. This is un-
necessary if we replace P*(t) € £ by some suitable neighborhood along P¥(t) € £ in
Al). : '

The crucial point is keeping P} in the neighborhood of P! (preferably the quadratic
convergence region) not to increase computational cost in the subsequent correcting step.

The suitable measures for this purpose are the error of the objective function '

. o 4
€(n) :=¢(n) — min p(n) = -
(n) = »(n) Jin o) ¢(g) (')
Since the dumped Newton method can decrease the value of self-concordant functions
greater than some constant, e can be a measure for number of iterations in corrector step.
Another measure is Newton decrement [16] for ¢(n): '

A1) = (¢l )

where /() and [2"(1)] are the gradient vector and the Hessian matrix of ¢ n), respec-
tively. Smaller value of A(n*(ty)), which is evaluated at Py, implies fewer (dumped)
Newton steps to reach P,, minimizer of ¢. Both measures are of course equivalent in the
following sense [16]:

WAL +w())

/\<1/3¢ <z 20 —w)

where  w()) =1 — (1 — 3\)¥3,

A< p7le), where p(A) := X —In(1+ \).

To evaluate these measures, define e = (e, ), where e,(6t) :='n,’:(ta + 6t) — ni(t, + 6t) and
introduce the following quantity:
(1) = (€75 ()e) 2
Lemma 5.3: If (") < 1, then
()
< m (5.23)

Further. if r(*) < 1/2 then
L ) =)
T (1=2r(n)?

(5.24)
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Proof: Since 7* is the minimizer of ¢(n), we have the following Taylor series at 1,
. 4 | ,’ |
¢(L* = o(1f) + 5¢"J'(1f + feJe, I € (0, 1). (5.25)

Comblnmg Theorem 2.1.1 of [16] and ¢"(n) = 1(17 we obtain

o (4 ]' II -
€= ) = PUF) = 576 0 + (€ = Vele = 57(" + (€ Do) S g (6:20)

For (5.24), we first recall the following result by [16, p. 24]:
r(n*) |
r(nf)) i= ——=———

- (1 =r(n"))?*

Since the function o(e) is monotone increasing on the interval [0,1), the right hand side is
not larger than o(r(n*)/(1 —r(n*))) due to Theorem 2.1.1 of [16]. Hence, we have (5.24).
Q.E.D.

(5.27)

Thus, both measures can be bounded by r(n*). The right-hand sides of (5.23) and
(5.24) are monotone increasing with respect to 7 when r < 1 and r < 1/2, respectively.
Hence, by setting a suitable constant 7* < 1/2 and solving 6t such that r(n*(t,+6t)) < r*
‘we can obtain the long predictor step 1"(f,+0t), where the number of iterations necessary
in the succeeding corrector phase is bounded by i(7*), a certain number decided by r*.

Since S™! = (s"*) is a submatrix of G™!, we have the following expression [18]:

S (te + 0t)) = tr{P"(t + 6t)E"P*(t, + 6t)E*}.
Recall that P*(t, + 5t) = (P + &C )~} and let T be nonsingular matrix such that
Pl =T5,17, C=TSI7, |
where ¥, = diag{ai,....a,} > 0 and S, = diag{71,...,7.}. Then we have
S (ta + 01)) = tr{(Sq + 6tS.) LE (S, + 6t.)LEHY, (5.28)
where E* := T-1E*T~T. Since (5.28) is a quadratic form of 1/(a;+6ty;) and P*(t,+6t) >

0 implies a; + éty; > 0,4 = 1,...,n, there exist n by n symmetric matrices A,,, Kk, =
m+1,....7N such that

1 T 1

ay+6ty a1 +6t7

|Sh“ t + ét))l - Afc/,t

1 1

Gn+6 507 Qn +6t')'n.
1 T 1

ay+6tyy oy +éty _
1 1

On +6t7n Qq +5t')’n
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where |4,,]| is a matrix. each component of which is the absolute value of corresponding
component of 4,,. Note that Ay, is dependent only on E* and not on ét.
Let us define

1 T 1 12
a1+6ty; N a1+8ty
\(6t) = Z IAR;JI ' ) (530)
1 rpu=m+1 1
Qn +5t’7u Qn +6t"/n

Theorem 5.4: Assume Al and A2. When the increment &t in the predicting step satisfies
ot < ot”,

the number of iterations necessary in the succeeding corrector phase is.less than i(r*).
Here 6¢" is the largest solution for the inequality

2
%\((%)M <

Proof) Straightforward from the following inequalities:
v 1/2
. 3 " ” s
)< D edled|s™|| < 5 X(6) M.
K p=m+1

QE.D.
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A Appendix

Let x and 2 be local coordinate systems on a manifold equipped with a linear connection.
When the coordinate system is changed from z to I, associated Christoffel’s symbol is
subject to the following transformation rule:

~ " 9zt Qxd OF¢ n9%pd 93c
G 3 JOUOR L, 5 O O |
ab > o Qrb gak + ng 07 Qb i~ - (A.1)

ijk=1



