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Abstract. MAX SAT (the maximum satisfiability problem) is stated as follows: given
a set of clauses with weights, find a truth assignment that maximizes the sum of the
weights of the satisfied clauses. In this paper, we present an approximation algorithm for
MAX SAT which is a refinement of Yannakakis’s algorithm. This algorithm leads to a
better approximation algorithm with performance guarantee 0.767 if it is combined with
the previous algorithms for MAX SAT.

1 Introduction

We consider MAX SAT (the maximum satisfiability problem): given a set of clauses with
weights, find a truth assignment that maximizes the sum of the weights of the satisfied clauses.
MAX 2SAT, the restricted version of MAX SAT where each clause has at most 2 literals, is
well known to be NP-hard even if the weights of the clauses are identical, and thus MAX
SAT is also NP-hard. Thus, many researchers have proposed approximation algorithms for
MAX SAT. Yannakakis [9] and Goemans-Williamson [4] proposed 0.75-approximation algo-
rithms. Later, Goeman-Williamson improved the bound 0.75 to 0.7584 based on semidefinite
programming [5]. Recently, Asano-Ono-Hirata also improved the bound and the best approx-
imation algorithm for MAX SAT has the performance guarantee 0.765 [1].

In this paper, we first present a refinement of the 0.75 approximation algorithm of Yan-
nakakis for MAX SAT based on network flows. Then we will show that it leads to a 0.767-
approximation algorithm if it is combined with the algorithms based on semidefinite pro-.
gramming approach [1],[2],[5].

2 Preliminaries

An instance of MAX SAT is defined by (C,w), where C is a collection of boolean clauses
such that each clause C' € C is a disjunction of literals and has a nonnegative weight w(C) (a
literal is either a variable z; or its negation ;). We sometimes write an instance C instead of
(C,w) if the weight function w is clear from the context. Let X = {zy,...,,} be the set of
variables in the weighted clauses of (C,w). We assume that no variable appears more than
once in a clause in C, that is, we do not allow a clause like z; V z; V 3. For each variable
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z; € X, we consider z; =1 (z; = 0, resp.) if z; is true (false, resp.). Then, Z; =1 — :z:, and a

clause Cjj € C can be considered to be a function of = (z1,...,z,) as follows:
CJ("B) =1- H (1 - =) H T (1)
zzEX+ :c,GX_

where X J"' (X;, resp.) denotes the set of variables appearing unnegated (negated, resp.) in
Cj. Thus, Cj = Cj(x) = 0 or 1 for any truth assignment z € {0,1}" (i.e., an assignment of 0
or 1 to each x; € X), and Cj is satisfied (not satisfied, resp.) if Cj(z) =1 (Cj(zx) = 0, resp.).
The value of a truth assignment z is defined to be

Fe(x) = ) w(C;)Cj(=). 2)

C;ec

That is, the value of « is the sum of the weights of the clauses in C satisfied by . Thus,
MAX SAT is to find a truth assignment of maximum value.
Let A be an algorithm for MAX SAT and let F¢(z4(C)) be the value of a truth assignment
z4(C) produced by A for an instance C. If Fe(z4(C)) is at least a times the value Fe(z*(C))
of an optimal truth assignment z*(C) for any instance C, then A is called an approximation
algorithm with performance guarantee a. A polynomial time approximation algorithm A
with performance guarantee « is called an a-approzimation algorithm.

The 0.75-approximation algorithm of Yannakakis is based on the probabilistic method
proposed by Johnson [6]. Let &P be a random truth assignment with 0 < z! = p; <1, that
is, z? is obtained by setting independently each variable z; € X to be true w1th probability
pi- Then the probability of a clause C; € C satisfied by the assignment P is

Ciay=1— T] —-p) I[ 2. 3)

S zEX) zi€X;
Thus, the eipected value of the random truth assignment x? is

Fe(a®) = 3 w(C)Cy(a?). @

C;ecC

The probabilistic method assures that there is a truth assignment x? € {0,1}" such that
its value is at least F¢(x?). Such a truth assignment ¢ can be obtained by the method of
conditional probability [4],[9].

Yannakakis introduced eguivalent instances for MAX SAT [9]: two sets (C;'w)', ', w
of weighted clauses over the same set of variables are called equivalent if, for every truth
assignment, (C,w) and (C',w’) have the same value. In this paper, we call (C,w),(C’,w')
are strongly equivalent if, for every random truth assignment, (C,w) and (C',w') have the
same expected value. Note that, if (C,w),(C’,w’) are strongly equivalent then they are also
equivalent since a truth assignment is always a random truth assignment (the converse is not
true). Our notion of equivalence will be required when we try to obtain an 1mproved bound
0.767. The following lemma, plays a central role throughout this paper.

Lemma 1 Let all clauses below have the same weight.
1. A={Z;Vainli=1,..,k} end A' = {z; VZ;11|i = 1,...,k} are strongly equi'palent (we
consider k+1=1). ' : : - : o .
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2. B={x1}U{Z;Vainli=1,...£} and B' = {x; VZ;i|i = 1,...,£} U {241} are strongly
equivalent. ‘

Proof. We can assume weights are all equal to 1. For a random truth assignment P with
z¥ = p;, let Fp(xP) = Y cep C(P) be the expected value of zP for D (D = A, A, B, B').
Then, by £ +1 =1, we have

k k k
Fa(e?) =3 (1-pi(l —pir1)) =k — >_pi+ Y pidit1,
=1 i=1

’ =1 '
k | k k
Fa(a?) =Y (1 -pipa(l—p)) =k=Y_pi+ Y pibis1,
=1 i=1 =1

e ¢ ¢
Fg(a®) = p1 + 2(1 —pi(l = pi1)) =€ — Zpi + ZpiPHlv

£ N
'FB’ (zP) = pet1 + Z(l Pi+1(1 —pi)) =L - sz + szpz+1
i=1 =2 =1
Thus, F4(xP) = Fy (:1:”) and Fg(x?) = Fg:(xP) for any random truth assignment x? and we
have the lemma. ‘ -0

3 A Refinement of 0.75-Approximation Algorithm of Yannakakis

The 0.75-approximation algorithm of Yannakakis [9] is based on the probabilistic method
and divides the variables X = {z1,...,z,} of a given instance (C,w) into three groups P’,
(P - P)UQ and Z based on maximum network flows. Then it sets independently each
variable z; € X to be true with probability p; such that p; = 3/4 if z; € P/, p; = 5/9 if
z; € (P—P')UQ and p; = 1/2 if z; € Z. The expected value F¢(x?) of this random truth
assignment P = (p;, p2, ..., Pn) is shown to satisfy ‘

3 3 49

Fe(x?) > W1+ W2+4W3+64W4+E(1—( Wi > Fc(a:”‘), ()

k>5

where Cy, is the set of clauses in C with k literals and Wy = 3" ccc, w(C)C(z*) for an optimal
truth assignment z* (and thus, Fe(z*) = 34>1 W) The probabilistic method assures that
a truth assignment ¥ € {0,1}" with value

'Fc(mY) > Fe(xP) > 0.75F(x*)

can be obtained in polynomial time. Thus, Yannakakis’s algorithm is a 0.75-approximation
algorithm. In this section, we will refine Yannakakis’s algorithm and find a random truth
assignment «? = (p1, po, ..., Pp) With value ’

3, 31 . 101 1037 _—
Wi+ g%+ g%+ g +kz>:6(1 -~ ©

3
Fc(ﬂ?p) W]_ +

To divide the variables X of a given instance (C,w) into three groups P/, (P—P')UQ and
Z, Yannakakis transformed (C,w) into an equivalent instance (C’,w’) of the weighted clauses
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with some nice property by using network flows. Our algorithm is also based on network
flows and consists of five steps three of which are almost similar to Steps 1-3 of Yannakakis.
Let C12 = C1 U Cy (the set of clauses in C with one or two literals). As Yannakakis did, we
first construct a network N(C) which represents the weighted clauses in (C;2, w) as follows.
The set of nodes of N(C) consists of the set of literals in C and two new nodes s and ¢ which
represent true (T') and false (F) respectively. The (directed ) arcs of N(C) are corresponding
to the clauses in C; 3. Each clause C =z V y € C; corresponds to two arcs (Z,y) and (9, x)
‘with capacity cap(Z,y) = cap(§,z) = w(C)/2 (T = z). Similarly, each clause C = z € (;
corresponds to two arcs (s,z) and (Z,t) with capacity cap(s,z) = cap(Z,t) = w(C)/2. Thus,
we can regard a clause C' =z € C; as z V F when considering a network as above. Note that
N(C) is a naturally defined network sincecVy=Z - y=9§ — z. :

Two arcs (Z,y) and (7, z) are called corresponding arcs. If each corresponding two arcs
in a network are of the same capac1ty, then the network is called symmetric. By the above
correspondence of a clause and two corresponding arcs, a symmetric network N exactly
corresponds to a set C(IN) of weighted clauses with one or two literals. In the case of N = N(C)
defined above, we have C(N(C)) = (C1,2,w). Thus, we can always construct the set C(N) of
weighted clauses with one or two literals from a symmetric network N and we sometimes use
the term “the set of weighted clauses of a symmetric network”. ,

- Then we consider a symmetric flow f of maximum value v(f) in No = N (C) from source
node s to sink node t (flow f is called symmetric if f(Z,y) = f(y,z) for each corresponding
arcs (Z,y), (§,z)). Let Mp be the network obtained from the residual network No(f) of No
with respect to f by deleting all arcs into s and all arcs from ¢. Then My is clearly symmetric
since Ny is a symmetric network and f is a symmetric flow.

~Let (C] 5, w’) be the set of weighted clauses of the symmetric network Mp ((C] 4, w') =
C(Mp)) and let (C',w’) be the set of weighted clauses obtained from (C, 'w) by replacing
(C1,2,w) with (C] 5, w'). Then, for each truth assignment =,

Fe(@) = Y w(C)C@) = ¥ w/(C)C(@) +v(f) = For (@) + v(f). )

cec Cc'ec’

Note that (7) holds even if z is a random truth assignment. This can be obtained by Lemmal
using an observation similar to the one in [9]. Note also that, for A, A, B, B’ in Lemma 1, A
corresponds to a cycle and A’ corresponds to the reverse cycle. Similarly, B corresponds to
a path from z; to zp4; (plus (s,z1)) and B’ corresponds to the reverse path from zg41 to z1
(plus (s, Ze41))-

Since f is a maximum flow, there is no path from s to £ in My. Let R be the set of
nodes that are reachable from s in Mo and let Y = {g|y € Y} for Y C X. Then, there is
no arc from a node in R to a node not in R and the set of nodes that can reach ¢ is R (in
a symmetric network, x1, T3, ..., Tx—1, Tk i a path if and only if Zx, Zx_1, ..., T2, Z1 is a path)
and R does not contain any complementary literals, since Mj is a symmetric network and f
is a maximum flow (z,Z € R implies that there is a path from s to ¢ since My is symmetric
and there are paths from s to z (by z € R) and z to t (by Z € R), which contradicts the
maximality of f). This implies that every clause of form z V y with z € R satisfies y € R.
Thus, we can set all literals of R to be true consistently and, for each truth assignment x in
which all literals of R are true, every clause in C] , that contains a literal in RUR is satisfied.
iFrom now on we assume that all literals in R are unnegated (R C X and thus all literals in
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R are negated). .
By the argument above we can summarize Step 0 of our algorithm as follows.

Step 0. Find R and (C’,w') from (C,w) using the network No, a symmetrlc flow f of Np of
maximum value and the network-My defined above. :

Note that, by (7), if we have an a-approximation algorithm for (C’,w’), then it will also
be an a-approximation algorithm for (C, w). Thus, for simplicity, we can assume from now
on (C',w') = (C,w) (and thus, f =0 and My = Ny) and have the following assumption.

Assumption. C and Np = N(C) satisfy:

(a) RC X and z € R for each C = z € C (there are arcs (s, z), (Z,1)).

(b)yec RforeachC=zVyeC withzeR (there is no arc going outside from a node
in R).

To obtain a 0.75-approximation algorithm, Yannakakis tried to set each variable in R to
be true with probability 3/4 and each variable in X — R to be true with probability 1/2. Then
the probability of a clause in Cy,2 being satisfied is at least 3/4. Similarly, the probability of
a clause in C with five or more literals being satisfied is at least 3/4. Clauses satisfied with
probability less than 3/4 have 3 or 4 literals and are of form ZV§V Z with z,y, z € R or of form
IVYVZVE with z,y,z,u € Ror of form ZVyVa withz,y € Rand a € (XUX)—(RUR). Let
Ak be the set of clauses C of form C =3 VZ V---V Z, with zy,2,...,2; € R (k = 3,4,5).

To split off such clauses in .43 U A4 U A5, we consider the network N obtained from
My = Ny as follows (we split off clauses in As too for later use, although Yannakakis split
off the clauses in A3 U A4 and did not split off the clauses in As). Let My be the network
- obtained from My by deleting all arcs from R to R, all arcs from R to (X — R)U (X — R)
and all arcs from (X — R) U (X — R) to R. Let (Ciayw) = C(My) (the set of weighted
clauses of the symmetric network M ). Nj is the network obtained from M, as follows.
For each clause C' = Z; VZy V --- V& € A with z1,29,...,2 € R (k = 3,4,5), we
add two nodes C, C and 2k + 2 arcs (z1,C), (z2,C), .. ., (zx,C), (C, 1), (C, %), .. ., (C, Zr),
(5,C), (C,t). Furthermore, we set, for k = 3,4, all arcs of forms' (z:,C) and (C, %;) to have
capacity w(C)/(2k) and arcs (s,C), (C,t) to have capacity w(C)/2. If k = 5, we set all arcs
of forms (z;,C) and (C, Z;) to have capacity 'w(C) /12 and arcs (s, C), (C,t) to have capacity

5w(C)/12.
Then, we find a symmetric flow g of maximum value from s to ¢ in N; such that g(z;,C) =
9(z2, C) == g(a:k,C) for each clause C =Z; VZy V- -- V Zy € A with z1,29,...,7;, € R

(k = 3,4,5). Such a flow g can be obtained in a polynomial time by [8]. Let M; be the
network obtained from the residual network Nyi(g) of N; with respect to g by deleting all
arcs into s, all arcs from ¢ and all nodes C, C' (and incident arcs) with C € A3 U A4 U As.
~ Now we can split off clauses in A3 U A4 UAs. Foreach C = Z Vi V.- VI € A
with 21,%3,...,2% € R (k = 3,4,5), let G¥(C) = {x1,23,...,7k,C}. The weights of the
clauses in G¥(C) are defined as follows: Let g(C) = g(x1,C). Then, wi(z1) =wi(zy) =--- =
wi(zg) = 2g(C) and if k = 3,4 then wy(C) = 2kg(C) else (i.e., k = 5) 'wl(C') =12¢(C). Let
G° = UoeusG(C), G* = Uce,G4(C) and G° = Uge, G°(C).
Let (Diq,w1) = C(Mi) (iee., (D1g,w1) is the set of weighted clauses of the symmetric
network M3) and let (D,w;) be the set of clauses with weight function w; obtained from
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(C,w) by replacing (Ci g, w) with (Dy,,w1) and by replacing the weight w(C) of each clause
C e A3 U A4 U A5 with

w(C)—69(C) (C € A;)
wi(C) ={ w(C)—89(C) (Ce€Ay)
w(C) —12¢(C) (C € As)

(note that w1(C) > 0 and we assume clauses with weight 0 are not included in D). _

Then (C,w) and (C! = DUG? UG* U G>, w;) are shown to be strongly equivalent based
on Lemma 1 (note that a clause C' € Cy, with k = 3,4,5 may be split off and appear in two
groups of C1, for example, in D and G3, but the total weight of C' is not changed). Let R;
be the set of nodes reachable from s in M;. Clearly, R; C R (R; C R). Furthermore, there
are no clauses in D with k (k = 3,4, 5) literals all contained in R; by the maximality of g.

By the argument above, we can summarize Step 1 of our algorithm and have a lemma as
follows.

Step 1. Find R; and (C!,w:) (C' =DUG3UG*UGO) using the network Ny, a symmetric
flow g of N; of maximum value and the network M; defined above.

Lemma 2 (C,w) and (C1,w) are strongly equivalent. Furthermore, the Jollowing statements
hold.

(a) z € Ry for each C =z € D.

(b) y € Ry for each C =z Vy € D withx € R;.

(c) there is no clause in D with 3,4 or 5 literals all contained in R;.

(d) Ry CR.

Next we will split off clauses C € D such that C =zVyVa withz,y € Ry anda € Z;UZ;
(Z1 = X — R;). Let Bs be the set of such clauses in D. Let M. i be the network obtained from
the network N(D) representing the set of weighted clauses in D with one or two literals by
deleting all arcs from X U Z; to R; and all arcs from Ry to Z1UZ. Let (D} 29 wy) = C(M+)
(the set of weighted clauses of the symmetric network M;). Let N be the network obtained
from Mj as follows. For each clause C = ZV §V a € Bs, we add two nodes C,C and 8 arcs
(a:,C’),(y,C’),(C’, a), (C,1), (C,%),(C,),(a,C), (s,C) all with capacity wi(C)/4. Then, we
find a symmetric flow h of maximum value such that h(z,C) = h(y,C) = h(C,a) = h(C, 1)
for each clause C = ZVFVa € B;s. Let M; be the network obtained from the residual network
N3(h) with respect to h by deleting all arcs into s, all arcs from ¢ and all nodes C,C (and
incident arcs) with C =ZV§Va € Bs.

Now we can spht off clauses C € B;. ForeachC =zZV{Vae€ 83, using k(C) = h(z,C),
let H(C) = {x,y,a, C,x0, Zo} with weights wz(x) = w2 (y) = wa(a) = 2k(C), w2(C) = 4h(C)
and wa(zo) = w2(Zo) = —h(C) (xo is any variable in X and the negative weights are accepted
in this case). Let " = Ucep, H(C). Let (£]5,w2) = C(My) (the set of weighted clauses of
the symmetric network M) and let (£,w2) be the set of weighted clauses obtained from
(D, w;) by replacing (D12,w1) with (€12, w2) and by replacing the weight w1(C) of each
clause C' € B3 with ’IU2(C) =wi(C) - 4h(C’) > 0 (we assume clauses with weight 0 are not
included in £).
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Then, by the same argument as before, (D, w;) and (£ UH,w;) are shown to be strongly
equivalent based on Lemma 1. Let Ry be the set of nodes reachable from s in Mj. Clearly,
Ry C R (R C R;). Anodea € Z;UZ,U(R; — Ry) is called uncovered if there is a
clause C = ZV §Va € € such that x,y € Ry (wa(C) > 0). Let Q5 be the set of nodes in
Z1U Z3 U (R1 — R») that are reachable from an uncovered node by a path in M. Let R’ be
the set of nodes a € Ry — Ry such that there is a clause C' = ZVa € € with z € Q) — (R; — R)
(note that such arcs from Q4 —(R; — Ry) to (R1 — R;) are deleted in M;") and let R} be the set
of nodes in (R; —Ry) that are reachable'frbm anode in R’ by a path in Ma. Let Q2 = R,UQ5.
Then, by the symmetry and maximality of h, @5 and Q2 contain no complementary literals
and we can assume all literals in Q, are unnegated. Note that some variable in R — R; will
be in @, and we have to correct the previous assumption that R C X. It suffices to assume
that R; C X (not R C X) in the argument below. »

By the argument above we can summarize Step 2 of our algorithm and have a lemma as
follows.

Step 2. Find Ry, Q2 and (£ UH,wz) from (D, w;) using the network M, N, a symmetnc
flow h of Ny of maximum value and the network M, defined above.

Lemma 3 Let C? = EUHUG3UGAUG and let the weight function wy be generalized to be the
same as w1 for GEUGUGS. Then (C,w) and (C%,w2) are strongly equivalent. Furthermore,
the following statements hold.

(a) z € Ry for each C =z € €.

(b) y € Ry for each C =% Vy € & with z € Ry.

(c)y € Q2URy for each C =z Vy € € with z € Q.

(d) there is no clause in € with 3,4 or 5 literals all contained in R;.

(e)a € Q2UR, for each C=ZIV§Vae€& withz,y € Ry.

(f) R2 € Ry and Q2 € X — Rs.

Now we would like to set each variable in Ry to be true with probability 3/4, each variable
in Q, to be true with probability 3/5 and each variable in Z; = X — (Q2 U R;) to be true
with probability 1/2. Then, each clause in £ except for a clause C of form C = z; V Z3 V 3
with z; € Ry and z2,23 € Q; or of form C = %, V T3 V Z3 V T4 with z1,29,23 € Ry and
x4 € Qq is satisfied with probability at least 3/4.

Thus, we will try to split off such clauses. Let A} be the set of clauses C' € £ of form
C =2Z1VZ,VZ3 with ; € Ry and z3,z3 € Q. Similarly, let A} be the set of clauses C € £
of form C' = Z; VZ3 V Z3 V &4 with z1,%2,73 € Ry and 24 € Qy. Let B} be the set of clauses
C € € of form C =%, VZ2 Va with 21,29 € Ry and a € Q.

Let M;" be the network obtained from N(£) by deleting all arcs from X U Q2 U Z5 to
Ry, all arcs from X U Z; to Q; and their symmetric arcs. Let (&f'9,w2) = C(M) (the
set of weighted clauses of the symmetric network M. +) and let N3 be the network obtained
from M, ;5 as follows. For each clause C = % V &2 V a € By with 21,29 € Ry and a € @,
we add two nodes C, C and 8 arcs (z1,C), (z2,C), (C, a), (C, 1), (C, ), (C, Z2), (@,C),(s,C)
all with capacity wy(C)/4. For each clause C' = %V T, V Z3 € A} with ; € Ry and
3, %3 € Q2, we add two nodes C, C, 6 arcs (z1, C), (z2, C), (z3,C), (C, %1), (C, %), (C, F3) all
with capacity w2(C)/6 and two arcs (s, C), (C, t) each with capacity wa(C)/2. For each clause
C=2Z,VZ VI3V Iy € A with z1,72,73 € Ry and x4 € Q,, we add two nodes C, C, 8 arcs
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(21,C), (%2,0), (x3,C), (24,C), (C,71), (C,%2), (C,Z3), (C,Z4) all with capacity wy(C)/8
and two arcs (s, C), (C,t) each with capacity wy(C)/2. Then, we find a symmetric flow A’
of maximum value such that h'(z1,C) = k'(z2,C) = h'(C,a) = h'(C,t) for each clause C =
T1VIyVac€E Bé with 11:1,.'1:2 € Ry and a € 9, hl(.’L'1,C) h’($2, C)= h'(mg,C) h’(C t)/3
for each clause C = 71 V Z3 V 23 € A} with £1 € Ry and 2,73 € Q3 and that h'(z1,C) =

K (z2,C) = W(z3,C) = h'(z4,C) = K'(C,1)/4 for each clause C = Z; VZ, VZ3 V 34 € A
with z1, 22,23 € Ry and 4 € Q3. Let M3 be the network obtained from the residual network
N3(h') with respect to A’ by deleting all arcs into s, all arcs from ¢ and all nodes C,C (and
incident arcs) in By U A U Aj.

Now we can split off clauses C' € By U A5 U Aj. For each C = %, V%, V a € B} with
z1,Z2 € Ry and a € Qq, let H'(C) = {z1,%2,8,C,x0,Zo} with weights w3(z1) = wa(z3) =
w3(a) = 2k (C), w3(C) = 4k'(C) and ws(zo) = w3(Fo) = —2k'(C) using h'(C) = K(z1,C)
(zo is any variable in X). Let H' = UC€3!H (C). For each clause C € & of form C =
Z1 VI VI3 € A3 with 21 € Ry and 23,23 € Q2, let G4(C) = {z1,z2,23,C} with weights
w3(z1) = wa(x2) = ws(xz) = 2h/(C) and w3(C) = 6h/(C) using h'(C) = h'(x1,C). For each
clause C € £ of form C = Z; VZ, VI3V Z4 € Ay with z1,20,23 € Ry and z4 € Qy, let
G4(C") = {z1, %2, T3, 24,C'} with weights w3(z1) = wa(z2) = ws(z3) = ws(zs) = 24'(C") and
w3(C) = 8h'(C") using h'(C") = I'(z1,C"). Let G° = Upe4,6(C) and G" = Ucea,6(0).

Let (F] 4, w3) = C(M3) (the set of weighted clauses of the symmetric network M3) and
let (F,ws3) be the set of weighted clauses obtained from (£,w;) by replacing (£ 9, W2) With
(F1,2,w3) and by replacing the weight wy(C) of each clause C € By U A U A with w3(C) =
wz(C) —3Rr'(C) (C € A3) or w3(C) = w2(C) — 4k (C) (C € B U.AQ) (w3(C) > 0 and we
assume clauses with weight 0 are not included in F). : _

Then, by the same argument as before, we have (C,w) and (C3,w3) (C3 = FUGiugGtu
GSUHUGRUG" UM, w3 = w; for GFUGAUGS and w3 = w, for H) are strongly equivalent
based on Lemma 1. Let R3 be the set of nodes reachable from s in Ms. Clearly, R3 C R,
(R3 C Rg). We call a node a € Q2 an entrance if there is a clause C' = Z; V Z, V a € F such
that 1,72 € R (w2(C) > 0). Let Q3 be the set of nodes reachable from entrances in M.
Clearly, Q3 C Q2 (Q3 C Q).

By the argument above, we can summarize Step 3 of our algorithm and a lemma as follows.

Step 3. Find R3, Q3 and (FUG? UG UH',w3) from ‘(5,11)2) using the network M,', Ns, a
symmetric flow A’ of N3 of maximum value and the network M3 defined above.

Lemma 4 (C,w) and (C3,w3) (C3 = FUGPUG* UG UNHUGRUG*UN, w3 = wi
for G3UGY UGS and ws = wy for H ) are strongly equivalent. Furthermore, the following
statements hold.

(a) z € R3 for each C =z € F.

(b) y € R for each C =T Vy € F with = € Rj.

(c) y € Ry for each C =z Vy € F with x € Ry — R3.

(d) y € Q3 U Ry for each C =z Vy € F with z € Qs.

(e) there is no clause in F with 3, 4 or 5 literals all contained n R;.

(f)a€Q3UR2 for each C =ZV §Va€ F with z,y € Rs.

(g) there is nmo clause C € F of form C = Z; V Zy V 3 with 1 € Rs and z3,73 €
Q3U (R — R3) or of form C = %1 VZTa VI3V T4 with T1,%2,23 € Ry and 4 € Q3 U_(Rz — R3).
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(k) R3 C Ry and Q3 C Q>.

(i) Ycee, w(C) = Leer, w(O) (F2=0C3).

(5) For each clause C € Cy, with k > 3, w(C) = Y, w3(C) where summation is taken over
for sl T =F,G6%G%G°H,G° G", N withI > C. '

Now we are ready to set the probabilities of variables to be true.

Step 4. Obtain a random truth assignment ? by setting independently each variable z; to
be true with probability p; as follows:

3/4 (z; € R3)
pi=4 3/6  (z; € Q3U(R2 — R3))
1/2  (mi€Z3=X—(RUQs)).

Then find a truth assignment x4 € {0, 1}" with value Fg(x4) > Fe(aP) by the probablllstlc
method.

4 Analysis

In this section we consider the expected value F¢(xP) of the random truth assignment xP
obtained by Step 4. Let x* be an optimal truth assignment for (C,w). Then, the random
truth assignment xP satisfies (6), which will be shown below.

Let =" be any random truth assignment and let W{(Z) be the expected value of " for
weighted clauses in (Z,ws) with k literals (Z = F,G%,G%,G% H,G",G"*, H'). Similarly, let
W = W[ (C) be the expected value of " for weighted clauses in (C, w) with k literals. Thus,
W} (Z) is the value of the optimal truth assignment z* for weighted clauses in (Z,ws) with k
literals and Wy = W (C) is the value of z* for weighted clauses in (C,w) with k literals. Then
we have the following lemmas by Lemma 4 and (C,w) and (C3,ws) are strongly equivalent.

Lemma 5 For_ any random truth aséignMent x", the following statements hold.

. (a,) le‘ = W,:(Cg) (Wé-(c3) = ZIG{.7—',93,(]4,65,H,g'3,g’4,ﬂ'} W,:(I)) fOT lI,ll k Z 3 More
specifically,

W5 = WE(F) + W3(G%) + WE(H) + WE(G®) + WE(H)),
Wi =W (F) +W](g*) + W[(g"),
WE = Wi(F)+ Wi(G%) and

= W (F) for all k > 6.

(b) W{(C:,) = W- (f) and Wl (63) = 21'6{.7" G3,G4,G65 H,G'3, gr4 'H’} W1 (I), i.e. _—
W) = W (F)+ W] (G¥)+ W (G4)+ W (G°)+ W] (H)+ W] (G°)+ W] (G")+ W] ().
Furthermore, W1 5 = W{,(C®) where Wi, = W] + W3 and W],(C?) = W](C?) + W3 (C3).

Lemma 6 For the random truth assignment =P obtamed in Section 4 and an optimal truth
assignment x*, if

Fea(a?) > SWC)+2 W3 ()45 Ws(c3)+128W4(c3)+1g§(§w5<c3>+z(1 W)

E>6
S - | 8)
then Fc(xP) satisfies (6).
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Proof. By Lemmia 6, we have Wi + W5 = Wi (C?) + W5 (C®) and Wi = WE(C3) for all
k > 3 and (8) implies

3 31 101 1037 3
‘ A 2y > 2 * * bl 7, 74 fahdnk ¢ 14 Il 7 V4. \ _(Z\E *
Fea(xP) = Fe(xP) > 4(W1 + Wy) + 40W3 + 128”4 + 1280”5 +k§>6:(1 (4) Wi

by Lemma 5. ' 0O

By Lemma 6, we have only to show that Fgs(zP) satisfies (8). Furthermore, it suffices
to show that each group Z satisfies (8) for T = F,G3,G4,G5 H,G", G, H', since Fes(z?) =
Fr(xP) + Fgs(aP) + Fga(xP) + Fgs(xP) + Fy(x?) + Fgis (x?) + Fgia(xP) + F3y(xP). Similarly,
if each Z(C) with C € J satisfies (8) then Z satisfies (8), since Fr(z?) = Y e g Fr(C)(xP)
for each pair (Z, J) = (G, Ax), (M, B3), (G, Ay), (H', BY) (k = 3,4,5 and k' = 3, 4). Thus,
for simplicity, we assume the following (in fact, we can always assume so without loss of
generality in our argument below):

g3 = {.’L‘l, T2,%3,T1V I Vfﬁg} with 21, 29,23 € R bf weight Kg, and Z; VI,V Z3 of weight
3Kg,, '

G* = {¥1,92,93, 96,51 Vi V J5 V Ja} with y; € R of weight K¢, (i = 1,2,3,4) and
Y1 Vy2V Y3V g of weight 4Kg,, _

G® = {21,729, 23,24, 25,21 V 22 V. 23 V 24 V 35} with z € R of weight Kg, (i = 1,2,3,4,5)
and 21 VZ3V Z3V Z4 V Z5 of weight 6Kg;, _ _

H = {mh”xhzajhg,fi'hl V:i‘hzv.’vhs,,’ro,.’fo} with Thy,Th, € Ry, Zhy € Zluzl (Zl = X——Rl)
of weight 2Ky, Zp, V Zp, V Tpy of weight 4Ky and zg, T of weight —K (zg is any variable
in X), ‘

G® = {1, 25, 75, Z1 V Ty V 33} with &} € Ry, z}, x4 € Qy of weight Kgy and Z1 V Z5 V &4
of weight 3Kg:,,

gl4. = {yllvyé’yéaya,g{l v gé v gi,i \ gt’.l.} with yllvylmyg € R27 yz’l. € Q2 of Weight KG;a
TV VT,V 7, of weight 4K g,

H = {z},, Thy» Thyr Ty, V T, V T}, %o, To} with z}, , ), € Ry, T}, € Q2 of weight 2Ky,
Ty, VT, V zy,, of weight 4Ky and zo, Zo of weight —2K .

For each set Fj of the clauses in F with k literals (k = 1,2,...), |

ECE}E ws(C) = ZCECI w(C) — 3Kg; —4Kg, — 5Kg, — 4Ky — 3KGQ — 4HG14 — 4Ky
Ycer, ws(C) = Xeee, w(C)

ZCG]":; ’wg(C) = ZCEC;; ’LU(C) - 3KG3 - 4KH - 3KG§ - 3KH’

Ycer; w3(C) = Loec, w(C) — 4Kg, — 4Kg

2cers w3(C) = 2 cecs w(C) — 6Kg,

Fr = C for all k > 6 (weight of a clause in this class is not changed).

Thus, it is easily shown that

Fgs(2*) < 5Kgy, Fgi(@*) < TKa,, Fgs(z*) < 10Kg,, Fy(z*) < 7Kg,
Fgia(x*) < 5KG§7 Fgu (z*) < 7KG{1 and Fyy(x*) < 5K, ’
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Now we will find a lower bound on the expected value of Fr(x?) for each (Z,w3). We first
consider the expected value Fgs(xP) of P for (G2 = {z1,72,%3,71 V Zy V Z3},ws3). Let

p = p1p2ps and f(G%) = 3K, (p+ (1—p°)). Then
Fgo(a?) = Ky (p1 +p2 +p3 + 3(1 — pipaps)) > £(G°)

by the arithmetic/geometric mean inequality. Here, :1:z ¢ Ry (i = 1,2,3), since z; € R and
z; ¢ Ry C R (i =1,2,3). Thus, p; # } and 2 < p; < 3. This implies p € [2, 3] and, in this
interval, f(G2) takes a minimum value at p = § Thus,
3 255
f(G°) > 3KG3( +1 —-( ) )= KG3 = 3.984375Kg,.

On the other hand, Fgs(z*) = Wy (g3)+W3 (G®), Wy (G3) = Kg,(z} +x2 +x3) and W3(G3%) =
3KG3 (1 1:1(1321;3) Note that

k k
l—H.’vZSmin{l,k—Zw:} 9)
© =1 i=1 ‘
for z¥ = 0,1 (this holds even for 0 < z} < 1). Thus,

SWIHGY) + 3 W30 < Kc3<§<m:+z;+w§>+ (@) min{1,3 - (a5 + 23 + )

INA

3
KGs(Z@) + (3)) 3.825Kg;
and we have

Fgs(xP) > f(G%) > 3.984375K g, > 3.825Kg, > 3W1 () + W3 (G3). (10)

- Similarly, the expected value Fgs(xP) of =P for (G* = {z1, 2, 23,24, %1 VT2V T3V T4}, w3)
is expressed as follows (for simplicity, we assume y; = z;).

Fgi(2?) = K, (p1 + p2 + p3 + pa + 4(1 — p1papspa)) > f(G*)
where p = ¢/p1p2psps and f(G!) = 4Kg, (p + (1 - p*)). For the same reason as above we

have p € [2,3] and f(G*) takes a minimum value at p = 2. Thus,
2 2 3436
4y 5 Lo (A —
f(G%) > 4KG4(5 +1 (5) ) 625 KG4 5.4976Kg,.
On the other hand, Fgs(z*) = Wi (G*) + W;(GY), Wi(GY) = Kg,(z3 + 3 + =3 + x3),

W;(G*) = 4Kg, (1 — ziz3alzy) and 1 — ziziaiz) < min{l,4 — (z] + 25 + 25 + 23)} by (9).
Thus, : ‘ -

-W *(94) WG

128
KG4(Z(:6I + 25 + 3 + z}) +

IA

198 (4) min{1,4 — (z] + 25 + =3 + z7)})

3
Ke,(3(3) 4 o 28 O 4)) = 5.40625K ¢,

IA
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and we have

- Fga(x?) > £(G*) > 5.4976K¢, > 5.40625K¢, > W1 (‘&) + W4 (G4). (11)

128

The expected value Fgs(a?) of x? for (G° = {z1,z3, x3, Z4, 5,31 VI3 VI3V Ty v Zs }, ws3)
is expressed as follows (for simplicity, we assume z; = z;).

Fgs(xP) = K, (p1 + p2 +p3 +ps + ps + 6(1 — p1papapaps)) > F(G°)

where p = §/p1pap3paps and f(G°) = Kg,(5p + 6(1 — p°)). For the same reason as above, we
have p € [5, 4] and f(G°) takes a minimum value at p = % Thus,

£(6°) > Kax(5(3) +6(1 - (3)7)) > 7.93856 K,

On the other hand, Fgs(z*) = Wi (G°) + Wg(G®), W} (G®) = Kg,(a} + o3 + o5 + of + xt),
W2(G°) = 6 K¢, (1 — ziz3aizial) and 1 — zizizizial < min{l,5— (& + 25 + 25 + 2} + %)}
by (9). Thus,

1037
1280
< KGs( (2] + 23 + 25 + =3 + x7) +
1037

1280 (6)

EW*(gf’) + 13 (6%

1280 (6) min{1,5 — (z] + 25 + x3 I+.:1:Z +z3)})

< KGS(Z(4) + T525(6)) = 7.8609375 K,

and we have

1037
1280

The expected value FH(mp) of =P for (H = {z1,22,23,Z1 VT3 V 563} 'w;:,) is expressed as
follows (for simplicity, we assume zj, = ;).

Fgs(zP) > f(G5) > 7.93856 K¢, > 7.8609375K g, > §W{(gf”) + ——W2(G%). (12)

Fy(xP) = Kg(2(p1 + p2 + 1 —p3) — 14+ 4(1 — p1p2(1 — p3))) > f(H)
where p = ,/p1p2 and f('H) Kn(4p+2(1 —p3) — 1+ 4(1 = p*(1 — p3))). Here, z1,2 € Ry,
x3 € Z1 U Z, and thus, p1,p2,p € [2, 4] and p; € [5, 5] and f(H) takes a minimum value at
pP=3 L and p3 = — . Thus,
' 1, .2 12
F(H) 2 Kr(4(3) +2(3) - 1+4(1 - 15)) = 54Ky

On the other hand, Fy(z*) = W{(H) + Wi(H), Wi(H) = Kg(2(a! + 2} + 1 - z3) — 1),
W3 (H) = 4Kg(1 — 2iz3(1 — 23)) and 1 — z3z3(1 — 23) < min{1,3 — (2% + 3+ (1 — 23))} by
(9). Thus,

—W1 (H) + Ws (H)

IA

31 . ’ * ° . * :
K2 + 23 +1 -5 —1) 4 @) min{1,3 - (af + 23+ 1- D))

IA

KH(% (4-1)+ 4%(4))): 5.35Kn
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and we have
3
Fru(a?) > f(H) > 54Ky > 5.35Kg > Wi (H) + W3 (H). (13)
The expected value Fg::s (zP) of z? for (G = {z1, %2, 23,71 VT2 V T3}, w3) is expressed as
follows (for simplicity, we assume z} = z;).

Fgn(aP) = Kei(p1 +p2 + p3 + 3(1 — pipaps)) > f(G*)

where p = V/P2P3 and f(GR) = KG's(Pl +2p + 3(1 — p1p?)). Since x; € Ry, 9,73 € Q3, We
have p; € [£,3] and p,ps,ps € [}, 2] and f(G"®) takes a minimum value at p; = 3andp=2
- Thus, '

£(0%) 2 Ky (3 +2(3) +3(1 - 2(5)%) = 414K,

On the other hand, for the same reason as for G3, we have Swy (9’3)-!— sW3(G") < Kg, (32)+
(3)) = 3.825K¢, and

3

Fgi(xP) > f(G") > 4. 14K, > 3.825Kg, > W1 (G") + W3 (G"). (14)

The expected value Fgiu(zP) of =P for (G"* = {z1,%9,23,74,%1 V T2 V T3 V Z4},ws) is
expressed as follows (for simplicity, we assume y; = z;).

Fgu(aP) = K1 (p1 + p2 + p3 + pa + 4(1 — pipapsps)) > F(G™*)

where p = y/p1p2ps and f(G") = K¢t (3p + pa +4(1 — pPp4)). Since z1,22,73 € Ry, 24 E Q2,
we have P1,P2,P3,D € [5, 4] and p4 € [2, 5] and f(Q"4) takes a minimum value at p = § 3 and
pa = 3. Thus, f(G") > K (3(3) + 2 +4(1 - (3)%2)) = 5.8375K¢; > 5.40625K:. On the
other hand for the same reason as for Gs, we have W} (G") + 1wy (G") < KGQ(%(3) +
198(4)) = 5.40625K; and

3

Fgu(x?) > f(G'*) > 5.8375K g, > 540625KG, > W1 G" + W4 (G"). (15)

128

The expected value Fyp (:cp) of &P for (H' = {x1,x2,3,%1 V T2 V 3}, w3) is expressed as
follows (for simplicity, we assume Tpy = z;).

Fro(2?) = Kp(2(p1 + p2 + 1 — p3) — 2+ 4(1 — p1pa(1 — p3))) > f(H')

where p = /p1pz and f(H') = K (4p+2(1 —p3) — 2+ 4(1 — p2(1 — p3))). Since z1,z2 € Ry,
3 € Zl U Z1, we have py, pa,p € [5, 4] and p3 € [2, 5] and. f(H) takes a minimum value at

p= and p3 = § Thus,

f(H)> Kn (4(§) + 2(-1—) -2+4(1- %3)) = 4.624K .

On the other hand, for the same reason as for H, we have 3W7y (H') +3 W3 (’H’ ) < Ku(3(4-
2) + 31(4)) = 4.6K%; and ' o ‘
Fre(z®) > f(H') > 4.624Ky > 46Ky > %Wl*(’}{')_ +.%W;(H’)~. (16)
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Let Wi(F) = Ecer, wa(C). Then Wi(F) > WE(F) = > cer, w3(C)C(z*). Further-

more, by Lemma 4, the expected value Fr, (x?) of P for (Fi,ws) satisfies
Fr(a?) > §Wi(F) > §Wi(F), (17)
where '
b1=6=3%,6=3 6, =1, 6= 13T and 6, = 1 —( )* (k> 6).

Thus, we have shown that each group 7 satisfies (8) for Z = F,G3,G%,G°% H,G", G, H'
by (10) through (17) and that, by Lemma 6, Fes(xP) of =P satisfies (6), i.e., N
3 31 101 1037

_ k
Vet Wt 128W4 1280W5+kz>;5(1 (4) Wi

Fe(2?) = Fc(a:p) > 3W1 +

5 0.767-Approximati0n Algorithm

In this section we give an 0.767-approximation algorithm which is obtained by combining
the modified Yannakakis’s algorithm presented in Section 3 with the algorithm proposed in
(1]. In their algorithm in [1], they have considered the following relaxation of MAX SAT for
(C,w) which is based on the linear programming relaxation and the semidefintie programming
method [3],[4]. :

(S): Maximize Z w(Cj)z; (18)

C;ec
: / 1+ yoi 1 —yoi
subject to: Z —2—z + Z 5 >z VC;eC (19)
e xieX+ C EEX]
2k+1 (1) .
a5 C; (Y) > 2 VC; €C, Vb 2> 1 (20)
Cya=1 0<Vi<nm
0<2 <1 VCj eC

Y = (yi,i,) is a symmetric, positive semidefinite matrix.

We briefly review the’ notatlon in the above problem (S). Variables ¥y = (y0,91,.-,Yn)
corresponding to - '

Yoy = 2z; — 1 with |yo| = |gi| = 1 (21)
are first introduced for semidefinite programming. Thus, z; (Z;, resp.) becomes —yﬂl

(—-L’iL resp.) and a clause C; € C can be considered to be a function of ¥ = (yo, 1, . ,yn)_

as follows by (1): . .
: ' ~ YoYi + Yoyi ’
G=Cw=1- J] = [ —2% (22)

x,-eX+ ' x,eX .

Let c( )(y) be the sum of the terms in C;(y) of forms-1 :i:yoy, and 1+y; 4, ie., for C; € Ck,

P = 5 Y a +yoyz)+2k > a- yoy,>+2k > (1 -gav)
=y meX; sumaXy
1 | 1 '
+2_k Z (1 - yilyiz) + Z_k Z (1 + yilyiz)' (23)

xil,xiZGX; ) Ziy EXf,z,'z EX;
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Using an (n 4 1)-dimensional vector v; with norm ||lv;|| = 1 corresponding to y; with |y;| = 1,
we replace y;, ¥i, with an inner vector product v;, - v;, and set yi,i, = Vi, - vi,. Then, the ma-
trix Y = (yi,i,) is symmetric and positive semidefinite since Y = vTo for v = (vg, v1,...,Vn)
and 'cg-l) is a function of Y.

The first constraints (19) imply that, if C; =1 (i.e., z; = 1) then one of the literals in C;
is true. Thus, they hold for any truth assignment x:. The second constraints are introduced
in [1] and serve as a kind of approximation of original MAX SAT constraints. Of course,
they hold for any truth assignment . The second constraint (20) is the same as the first one
for a clause C; with one literal (z; < C;(Y)). The other constraints also hold for any truth
assignment and thus, (S) can be considered to a relaxation of MAX SAT. In this paper we
use the following relaxation of MAX SAT.

(T): Maximize ) w(CHC;(YV)+ ) D w(Cj)zj

CJ €Cy,2 k>3 CjECk'
’ . 2k+1 (1) : .
subject to: TR (Y) > 2 VC; € Cp with k>3 - (24)

Yiria + Yisia + Yisziy Z _11 —Yirin + Yisiz — Yiziy 2. —11
~Yirie — Yigis T Yisis = — L, Yigiz — Yigis — Yizia = —1

0<Vi; <Vig<Vig<n (25)
yi =1 V0<i<n
0<% <1 VCj € Cywith k£ > 3
Y = (yi,i,) is a symmetric, positive semidefinite matrix.  (26)

We first show that (T') is a relaxation of MAX SAT. Let =? = (z7) € {0,1}" be any
truth assignment for (C, w) Define Y7 = (yi,i,) to be y¢; = 2z — 1 and ¢} ;, = v§; v§;, for
0 < i3 < iy < n. Then y§; € {-1,1}, ym2 € {-1,1} and y}, = 1. Furthermore, (25) can be
shown to be satisfied. For example, yg; -i-yoz2 —}—y2122 = 2z} —1+42a], 1-|—(2:1: 1)(2.’E -1) =
(2:1:?Jl -1+ 1)(2:B ~14+1)—1=(2z])(2}) 12> ——1 Slmllarly, v, + Yiis T UEi, =
Y0i Y0i + yOzzyOzs + ?/o:ayou = (yGi; + yon)(you + yom) - (you)z Thus, by symmetry, if (at
least) one of y§; » ygw, 9013 is equa.l to 1 then ylm + yzzza + ym1 > —1 is obtained as above.
Otherwise (i.e., all y3; , &, vd;, are equal to —1), yf, + vl +yml = 3 > —1. Other cases
are similarly Vshown

Define z; = 1 if C; is satisfied by « and z; = 0 otherwise. If Cj is satisfied by x9,
then some literal in Cj, z; € X or Zy with zy € X, is true and (1 + ya)/2 =zl =1
or(1—gd)/2 =12} =1 and c(l)(Yq) # 0. Thus, by Lemma 1 in [1], 2k+1 (1)(Y‘1) > 1.
Otherwise, all literals in C; are false and (1+9§)/2 =z =0and (1 - ym,) / 2 =%} = 0
and ¢”(Y9) = 0. Thus, (24) holds. Since Y¥ = (1,38}, 98, -, 48T (1, 981, 98, - 98), ¥
is a symmetric and positive semidefinite matrix. Thus, (T') was shown to be a relaxation of
MAX SAT.

We next show that a solution (¥; z) to (T) leads to a solution to (S), that is, (Y, z) with
appropriately setted z; for C; € Cy 5 satisfies (19) and (20). Note that cgl)(Y) = C;(Y) for
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any Cj € C1 2 and.

( (1 +y0:)/2 , , (Cj =z € (1)
(1 —y0i)/2 - (Cj=7Z;€Cy)
Ci(Y) =4 (1+yoi +1+yoi, +1-5iy5,)/4 (Cj =i, Vi, €Ca) (27)
(1= yoi, +1+y0i, +1+yi5,)/4 (C; =2y, Vi, €Cy)
. (I —yoi, +1 - Yoi, + 1 — ¥4yi,) /4 (Ci=2y; VT, € Ca).

Thus, we set z; = C;(Y) for each Cj € C13. Then, clearly (19) and (20) are satisfied for
Cj € C1 (in fact, (19) and (20) are the same for C; € C;). Similarly, (20) is satisfied for
Cj € C2. Note that, for a clause C; with two literals, (19) is redundant since if Cj =z, Vi,
then

1 1, | 1
5(1 + y0i;, + 14 yoi,) — Z(l +yo0i, +1+yoi, +1—yiy4,) = Z(l + Y0i; + Yoiy + Yiyi) >0

by (25) (by symmetry we can argue the other cases similarly). Furthermore, for a cluase C;
with one or two literals, z; < 1 is automatically satisfied since C;(Y) < 1 by (25) and (27),
%i=1and Y is a symmetric positive semidefinite matrix. Thus, (Y, 2) with zj = C§(Y) for
Cj € C1,2, say (Y, zs), is a solution to (S) and (Y, z) and (Y, zg) have the same value. Thus,
(Y, z) is an optimal solution to (T') if and only if (Y, z5) is an optimal solution to (S).

Let (Y#, 2#) be an optimal solution to (T') and let Wf (C) be the value of (Y#,2#) for
the weighted clauses in (C,w) with k literals. Thus, W7 (C) = Y cec, w(C)O(Y#), Wi (c) =
Y cec, W(C)C(Y#) and W,;# €)= Yc;ecy w(C)zJ# for k£ > 3. Now we would like to have the
following lemma. : v

Lemma 7 For the random truth assignment xP obtained in Section 4 and an optimal solution
(Y#,2#) to (8), the following inequality holds.

3 3 31 101 1037 : 3
2y > _VV# _VV# _VV# ___VV# I/V# § : 1 — (2)k ‘{r# 9
FC((B ) =4 1 + 4 2 + 40 3 + 128 4 + 1280 5 +k>6( 7 (4) ) k ( 8)

Before proving the above lemma, we consider the following MAX 2SAT relaxed formulation
P):

(P): Maximize z w(C;)C;(Y)

C;€C1,2

subject t0:  Yiyi; + Yigis + Yiris > —1,  —Virip + Yigis — Yiris > —1,
~Yiriz ~ Yinis + Yiris = ~ Lo Yirip — Yinis — Yigig = —1

0<Vi; <Vig<Vizg<n
yii=1,_ 0<Vi<n
Y = (yi,i,) is a symmetric, positive semidefinite matrix.
As noted before, for any truth assignment z = (:z:l,mz,...,:tn) for C, Y = (yi,4,) with

Yiria = Yi1¥ir» YiYo = 2x; — 1 and [y;| = 1 satisfies the constraints of (P). Furthermore, if
Cj € Cy2 is satisfied by @ then C;(Y) = 1. Thus, (P) can be considered to be a relaxation
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of MAX 2SAT. An optimal solution Y to (P) has the value F, ,(Y) = 3¢, ec, , w(C5)C5(Y)
at least the value Fg, ,(z*) = Y ¢,ec, , w(C;)Cj(x*) of an optimal truth assignment z* for
(C1,2,w). Let C] , be a set of weighted clauses obtained from C; » by using strongly equivalent
tranformations in Lemma 1. Then the MAX 2SAT formulation (P') for C1 , is expressed as
follows.

(P'): Maximize Y. w'(C})C{(Y)
C]’-eq,2
subject t0:  ¥iyiy + Yiris + Yiris = —L,  —Uiria + Yigiz — Yiriz = —1,
~Yiriz — Yigiz + Yiziz 2 -1, Yirig — Yigiz — Yiyis = —1
0<Vi; <Vig<Vig<n
y” =1 0<Vi<n

= (¥i,i,) IS @ symmetric, posxtlve semxdeﬁnlte matrlx
Then we have the following lemma.

Lemma 8 Two problems (P) and (P') have the same feasible solutions and optimal solutions.

Proof. Clearly (P) and (P') have the same feasible solutions since constraints are the
same. It suffices to show that both have the same optimal value for the case Cl,z =A=
{Z;Vaili=1,...,k} and C] , = A' = {z;VZi41|i = 1,...,k} (we consider k+1 =1) and the
case Cro =B = {z1} U{Zi Vziy1li = 1,....€} and C] 5 = B' = {z; V Fir1]i = 1,..., £} U {zg1}
in Lemma 1. We can assume weights are all equal to 1. Let C12 = A = {Z; Vzii|i = 1,..., k}
and Cj 5, = A" = {z; V Zi11|i = 1,...,k} and Cj = Z; V zj11 and C} = Zj4; V xj. Then

k : k
> Ci(Y) =) Cj(Y)
i=1 i=1

since EJ 1G5(Y) = Zg-—l (1 —yo; + 1 + 041 + 1 + yj541) = Z?:l $(3 + yjj41) and
2_7 1 CI(Y) Z] =1 4(1 +yoj +1- Yoj+1 +1+ ?JJJ+1) E;::l %(3 + ?/jj+1)v-
Analogous argument can be done for the case C; 3 = B and Cip=B.
’ a
Since the transformations described in Section 3 use only the strongly equivalent trans-
formations in Lemma 1, we have the following equivalent MAX SAT formulation (Q) for
(C3,w3) by Lemma 8.

(Q): Maximize Y ws(Cj)C;(¥)+). Y ws(Cj)z

Cjecy, k23 cjec
k+1 (1)
subject to: T (Y) > 2z VC; € C} with k > 3

Yiriz T Yigis + Yiris = —1, yuzz + ytzzs Yiris = —1,

—Yiyig — Yigiz T Yirig = -1, Yivio — Yiziz — Yigiz = —1
0<Vii <Vipg <Vizg<n

vi=1 " V0<Li<n

0<z <1 VC; e C3

Y = (yii,) is a symmetric, positive semidefinite matrix.

(29)
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As noted before, each-clause C of (C,w) with three or more literals has the weight equal
to the sum of the weights of C in (C3,w3) (C may be contained in two or more groups in
(C3,ws3)). Thus, the constraints of (T') and (Q) are the same and they have the same optimal
solution by Lemma 8, since (C1,2,w) and (C3},,ws) are strongly equivalent.

Since (Q) is a semidefinite programming problem as in [3], we can find an approximate op-
timal solution (Y#, z#) within a small constant error € in polynomial time. For convemence
- we call it an optimal solution to (Q) (and (T)). An optlma.l solution v# = (v} of . c,vH)
can be obtained by Cholesky decomposmon of Y# = (ymz) Thus,

wWhCH = T w(@)crt) = ¥ wE)orH)
Ceci2 CeC12

and ‘
WECH = 3 ws(Cy)Y.
Cject
Since C(Y#) < 1 for C € C}, and zff < 1 for C; € Cx with k > 3, W (Cy) < Wy, =
_c;ec;, w(Cj). By an argument similar to one in Section 4, we have lemma 8 using z# = (.’1:2‘ie )
~ with (UZ# =11+ yf)l’:) instead of z*. Note that z;#' < Z :I:Z9E + Z (1- :c;#) for each
) :ciGX + :l:,;GXj_

Cj €Cp with k>3 and 2z <min{l, ¥, cx+ af + 3, ex:(1=2f)}.

To achieve the bound 0.767, we consider Algorithm ‘B consisting of the following four
algorithms:

(1) set each variable z; true independently with probability 53

(2) set z; true independently with probability p; = iéyQL using the optlmal solution

(Y™, 2%) to (5);
(3) take a random (n + 1)-dimensional unit vector r and set z; true if and only if sgn(@? -

r)=sgn(¥ - r) using the optimal solution (Y*,2*) to (S) and (R') (3* = (8§,%,...,%) is
obtained by Cholesky decomposition of Y* = (g, \i,) and m = v}, - v},)
~ (4) set each varlable z; in R3, Q3U (R2 — R3) or Z3 = X — (R U @3) true mdependently

with probability 3 D 5 or ;, respectwely based on the reﬁnement algorithm in Section 3.

Suppose we use algorithm (z) with probability p;, where p; +ps + p3 +psy = 1. If we set
p1 =p2. =p = 0.269184528, p3 = 0.133774497 and ps = 1 — 2p — p3 = 0.327856447, then

WB> Z(2ﬂkp + aogps + 5kp4)Wk
- k>1

26 =1- —k— +1— (1= })¥). Thus, we obtaln Algorlthm B is a 0.767198- approx1mat10n
algorithm, Wthh can be verified by checking

2ﬂkp + aagps + 6xps > 0 767198

for k <8 and notlcmg that Zﬁkp +aogps +6kp4 decreases as k increases, and that for k 0,
Br=1- E’ ar = 0 and 6 = 1 and 28p+ aagps +6xps = 0.269184528(2 — %) +1 > 0.767198.

Thus, if we choose the best solution among the solutions obtained by Algorithms (1) — (4)
then its value is at least 0.767198 times the value of an optimal solution, and we have the
following theorem.
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Theorem 1 A 0.767198-approzimation algorithm can be obtained based on the refinement of
Yannakakis’s algorithm in Section 3. :

6 Concluding Remarks.

We have presented a refinement of Yannakakis’s algorithm and a 0.767198-approximation
algorithm. We believe this approach can be used to further improve the performance guar-
antee for MAX SAT. For example, if the refinement of Yannakakis’s algorithm in this paper
is combined with the 0.931-approximation algorithm for MAX 2SAT proposed recently by
Feige and Goemans [2], it will lead to a 0.768844-approximation algorithm.
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