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Abstract

In $\mathrm{t}\mathrm{h}_{1\mathrm{s}}^{-}$ paper, we introduce an affine scaling algorithm for semidefinite
programming, and give an example of a semidefinite program such that
the affine scaling algorithm converges to a non-optimal point. Both our
program and its dual have interior feasible solutions, and unique optimal
solutions which $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}\Psi$ strict complementarity, and they are nondegener-
ate everywhere.

1 Introduction
When both primal and dual problems have interior feasible solutions, semidefinite programming (SDP) has
remarkable resemblance with linear programming $(\mathrm{L}\mathrm{P})$ , e.g., both problems have optimal solutions and satisfy
strong duality. In this case, it is known that several interior point methods for LP and their polynomial
convergence analysis can be naturally extended to SDP (Alizadeh [1], Alizadeh, Haeberly and Overton [2],
Helmberg, Rendl, Vanderbei and Wolkowicz [9], Jarre [10], Kojima, Shindoh, and Hara [12], Kojima, Shida
and Shindoh [13], Lin and Saigal [14], Lou, Sturm and Zhang [15], Monteiro [16], Monteiro and Zhang [18],
Nesterov and Nemirovskii $[19, 20]$ , Nesterov and Todd $[21, 22]$ , Potra and Sheng [23], Sturm and Zhang [24],
Vandenberghe and Boyd [28], and Zhang [30] $)$ .
: The affine scaling algorithm for LP is originally proposed by Dikin [5], and rediscovered by Barnes [4], and

Vanderbei, Meketon and Freedman [29] after Karmarkar [11] proposed the first polynomial-time interior point
method . The affine scaling algorithm has been widely implemented and extensively studied, but unlike many
other interior point methods, the question of whether the affine scaling algorithm is polynomially convergent
is still an open problem. The strongest convergence result so far is due to $\mathrm{T}\dot{\mathrm{s}}$ uchiya and Muramatsu [27], who
establish global convergence of the affine scaling algorithm where the step is taken as a fixed fraction less
than 2/3 of the whole step to the boundary of the feasible region. Simpler proofs of this global convergence
results can also be found in Monteiro, Tsuchiya and Wang [17], and Saigal [25].

The affine scaling algorithm can also be naturally extended to SDP. Faybusovich [6] investigated the affine
scaling vector field for SDP, Faybusovich [7] proposed the discrete version of the affine sclaing algorithm,
and Goldfarb and Scheinberg [8] proved the global convergence of the associated continuous trajectories. So
far, there exists no convergence analysis for the discrete version of the affine scaling algorithm for SDP.

In this paper, we give an instance of SDP such that the affine scaling algorithm converges to a non-optimal
point. We prove that for both the short and the long step version of the affine scaling algorithm, there exists
a region of starting points such that the generated sequence converges to a non-optimal point. Our program
and its dual have interior feasible solutions, unique optimal solutions which satisfy strict complementarity,
and both programs are nondegenerate everywhere. (For degeneracy in SDP, see Alizadeh, Haeberly, and
Overton [3]. )

This paper is organized as follows. In Section 2, we introduce the affine scaling algorithm for SDP. In
Section 3, we give an instance of SDP and prove that the affine scaling algorithm converges to a non-optimal
point-In Section 4, we give some concluding remarks.

2 The Affine Scaling Algorithm for SDP
Let $S(n)$ denote the set of $n\cross n$ real symmetric matrices. Consider the SDP problem

$\min C\cdot X$ subject to $A_{i}\cdot X=b_{i}$ , $i=1,$ $\ldots,$
$m$ , $X\succeq \mathrm{O}$ , (1)
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where $C,$ $X,A_{i}\in S(n)$ , the operator $\bullet$ denotes the standard inner product in $S(n)$ , i.e., $C\cdot X=\triangle \mathrm{t}\mathrm{r}(Cx)=$

$\sum_{i},{}_{j}C_{ij}x_{ij}$ , and $X\succeq 0$ means that $X$ is positive semidefinite. The induced norm $||X||_{F}=\triangle\sqrt{X\cdot X}=$

$\sqrt{\mathrm{t}\mathrm{r}(X^{t}X)}$ is called the Frobenius norm. The dual of (1) is

$\max b^{t}u$ subject to $S+ \sum_{i=1}^{m}uiA_{i}=C$ , $S\succeq \mathrm{O}$ . (2)

We assume that an interior (i.e., positive definite) feasible point of the primal problem (1) exists,
$.\mathrm{a}$
nd the

matrices $A_{i},\dot{i}=1,$
$\ldots,$

$m$ are linearly independent.
There are several equivalent characterization of the affine scaling direction for $\mathrm{L}\mathrm{P}$. Similarly, we can define

the affine scaling direction for SDP in different ways. Following the original derivation proposed by Dikin
[5], here we define the affine scaling direction for SDP by first defining the associated dual estimate. For a
detailed motivation of the affine scaling algorithm for $\mathrm{L}\mathrm{P}$, we recommend the textbook by Saigal [26] which
deals with this algorithm extensively.

Given an interior feasible solution $X\succ \mathrm{O}$ , we define the dual estimate $(u(x), s(X))$ as the unique solution
of the following optimization problem:

$\min||X1/2Sx1/2||^{2}p$ subject to $S+ \sum_{i}u_{i}A_{i}=C$ . (3)

Solving the $\mathrm{K}\mathrm{a}\mathrm{r}\mathrm{u}\mathrm{s}\mathrm{h}- \mathrm{K}\mathrm{u}\mathrm{h}\mathrm{n}-\mathrm{T}\mathrm{u}\mathbb{C}\mathrm{k}\mathrm{e}\mathrm{r}$ condition, we have the explicit formula

$u(X)=c(X)-1(px)$ , $S(X)=C- \sum iu_{i}(X)Ai$ , (4)

where $G(X)\in S(m)$ and $p(X)\in R^{m}$ are such that $c_{ij(X)}=\mathrm{t}\mathrm{r}(A_{i}XAjX)$ and $p_{j}(X)=\mathrm{t}\mathrm{r}(A_{j}XCX)$ for all
$\dot{i},j=1,$

$\ldots,$
$m$ , respectively. Here, the linear independence of the $A_{j}’ \mathrm{s}$ ensures that $G(X)$ is invertible. In

fact, we have the following lemma.

Proposition 1 If $X\succ \mathrm{O}$ , then $G(X)\succ 0$ .

Proof : First, we note that for any matrices $M_{1},$ $M_{2},$ $M_{3}$ which have appropriate sizes, $\mathrm{t}\mathrm{r}(M_{1}M_{2}M_{3})=$

$\mathrm{t}\mathrm{r}(M_{2}M_{31}M)=\mathrm{t}\mathrm{r}(M_{\mathrm{s}^{M_{1}M)}}2$ holds.
For any $v\in R^{m}$ , we have

$v^{t}Gv$ $=$
$\sum_{i,j}G_{ij}v_{i}vj$

$=$
$\sum_{i,j}\mathrm{t}\mathrm{r}(A_{i}XAjX)v_{i}vj$

$=$
$\mathrm{t}\mathrm{r}((\sum_{:}viA_{i})x(\sum_{j}vjAj\rangle X)$

$=$
$\mathrm{t}\mathrm{r}(X1/2(\sum:v_{i}A_{i})x(\sum_{j}vjA_{j})X1/2)$

$=$
$||X1/2( \sum iviA_{i})x1/2||_{F}20\geq$ , (5)

in which the equality holds if and only if $\sum_{i}v_{i}A_{i}=0$ . The linear independence of $A_{i}’ \mathrm{s}$ implies $v=0$. $\square$

In (3), any decomposition of $X=RR^{t}$ can be used instead of $X^{1/2}$ , because $||R^{t}SR||_{F}^{2}=\mathrm{t}\mathrm{r}(sxSx)=$

$||x^{1/2}sx^{1}/2||_{F}2$ . Namely, the dual estimate is independent of the choice of decomposition. We. however use
$X^{1/2}$ for notational simplicity. .

The affine scaling direction $D(X)$ is defined as

$D(X)^{\triangle}=XS(X)x=X(o- \sum ui(xi)A_{i})X$ . (6)

The following proposition gives some properties of $D(X)$ .
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Proposition 2 We have
$A_{i}\cdot D(X)=0$ {7)

for all $\dot{i}=1,$
$\ldots,$ $m$ , and

$C\cdot D(X)=||x^{1/2}sX^{1}/2||2F$ . (8)

Proof: The first equation follows from

$A_{j} \cdot D(X)=\mathrm{t}\mathrm{r}(A_{j}X(C-\sum_{=i1}mu_{i}(X)Ai)X)=pj-\sum_{i=1}^{m}Gjiui(X)=0$. (9)

Hence,

$\mathrm{t}\mathrm{r}(.x^{1/2}(C-\sum:ui(x)A_{i})XAjX1/2)=0$ (10)

holds for all $j$ , and we have

$C\cdot D(X)$ $=$
$\mathrm{t}\mathrm{r}(CX(o-\sum_{i}uiAi)X)$

$=$
$\mathrm{t}\mathrm{r}(x^{1/}2(C-\sum u_{i}Ai)XCx^{1/2})i$

$=$
$\mathrm{t}\mathrm{r}(X1/2(c-\sum_{:}u_{i}Ai)X(C-\sum_{\check{J}}ujA_{j})x^{1}/2)$

$=$
$||x^{1/2}(C- \sum. u_{i}A_{i})x1/2||_{F}^{2}|$ . $\square$ (11)

For the affine scaling algorithm, there are two major strategies to define the stepsize: short step strategy
and long step strategy.

In the short step strategy, the stepsize parameter is determined with respect to the Dikin’s ellipsoid.
Specifically, the iteration of the short step affine scaling algorithm can be written as

$X_{k+1}=X_{k}- \lambda\frac{D(X_{k})}{||X_{kk}^{1//2}s2kX^{1}||F}=X_{k}-\lambda\frac{D(X_{k})}{\sqrt{C\cdot D(X_{k})}}$ (12)

where $\lambda\leq 1$ is a stepsize parameter. It is easily seen that the condition $\lambda\leq 1$ ensures that the next point
$X_{k+1}$ is feasible.

The long step strategy, which is widely used in practice, means that the next iterate is chosen by moving a
fixed ratio of the whole step to the boundary of the feasible region in the direction of affine scaling direction,
namely,

$X_{k+1}=X_{k}-\mu\rho(x_{k})D(X_{k})$ , (13)
where

$\rho(X)=\sup \mathrm{t}\rho>0|x-\rho D(X)\succ 0\}$ , (14)
and $\mu<1$ is the ratio.

In the following section, we give an instance of (1) for which both the long step and the short step affine
scaling algorithm fail to converge to an optimal solution.

3 An Example
Consider the following SDP problem,

$\min\cdot X$ subject to $\cdot X=2$ , $X\succeq 0$ , (15)
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and its dual
$\max 2u$ subject to $S+u=$ , $S\succeq 0$ , (16)

where $X,$ $S\in S(2)$ and $u\in R$ . We note that both the primal and dual have interior feasible solutions. By
defining

$X=$ , (17)

it is easy to see that the problem (15) is equivalent to

$\min x+y$ subject to $x\geq 0$ , $y\geq 0$ , $xy\geq 1$ , (18)

whose optimal solution is $(x, y)=(1,1)$ . Hence, it can also be easily verified that

$X^{*}=$ , and $(u^{*}, S^{*})=(1,$$)$ (19)

are the unique optimal solutions of the primal (15) and the dual (16), respectively, that the optimal values
coincide, and that $X^{*}$ and $(u^{*}, S^{*})$ satisfy strict complementarity, namely, we can decompose $X^{*}$ and $(u^{*}, S^{*})$

as
$X^{*}=QQ^{t}$ , and $S^{*}=QQ^{t}$ , (20)

where

$Q=($ $1/\sqrt{2}1/\sqrt{2}$ $-1/\sqrt{2}1/\sqrt{2}$ ) (21)

is the orthogonal matrix whose columns are the eigenvectors of $X^{*}$ and $S^{*}$ corresponding to each nonzero
eigenvalues.

We can calculate the dual estimates by (4) as follows.

$G(X)$ $=$ $2(xy+1)$ , (22)
$p(X)$ $=$ $2(x+y)$ , (23)

$u(.X)$ $=$ $G(X)^{-1}p(x)= \frac{x+y}{xy+1}$ , (24)

$S(X)$ $=$ $-u(X)=$. (25)

By a straightforward calculation, we have the affine scaling direction

$D(X)= \frac{xy-1}{xy+1}$ . (26)

Hence an iteration of the general affine scaling algorithm can be written as

for some scaler $\alpha^{k}>0$ . Thus we have

$x^{k+1}$ $=$ $x^{k}-\alpha^{k}((x^{k})2-1)$ , (28)
$y^{k+1}$ $=$ $y^{k}-\alpha^{k}((y^{k})2-1)$ , (29)

which is the expression of the affine scaling algorithm in the $(x,y)$-space. In other words, the sequence $\{X_{k}\}$

generated by the affine scaling algorithm for the SDP (15) corresponds to the sequence $\{(x^{kk}, y)\}$ generated
by (28) and (29).

Let us define $\mathcal{F}=\triangle\{(x, y)|xy>1, x<1, y>1\}$. We have the following proposition.
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Proposition 3 Assume that we do one iteration (28) and (29) of the affine scaling algorithm from $(x, y)\in \mathcal{F}$

to produce the next iterate $(x^{+},y^{+})$ . Then we have $x^{+}\geq x,$ $y^{+}\leq y$ , and $(x^{+},y^{+})\in \mathcal{F}$ .

Proof: The former relations are obvious from (28), (29)
,

$\mathrm{a}\mathrm{n}\mathrm{d}$ the definition of F. Lett.ing
$x(\alpha)$ $=$ $x-\alpha(x^{2}-1)$ , (30)
$y(\alpha)$ $=$ $y-\alpha(y^{2}-1)$ , (31)

below we prove the $1\mathrm{a}s\mathrm{t}$ one by showing that if $y(\alpha)=1$ then $x(\alpha)<1$ , which implies that $x(\alpha)<1$ at the
boundary.

From $y(\alpha)=1,$ $\alpha=1/(y+1)$ follows. Substituting this relation into (30), we have

$x( \alpha)-1=x-1-\frac{(x^{2}-1)}{y+1}$ , (32)

and

$\frac{1-x(\alpha)}{1-x}=1-\frac{(x+1)}{y+1}=\frac{y-x}{y+1}>0$ . (33)

Therefore, the proposition follows. $\square$

Corollary 4 If the initial point $(x^{0},y)0$ is contained in $F$, the sequence generated by affine scal.ing algo$7^{\cdot}ithm$

converges regardless of stepsize.

Proof: $\{x^{k}\}$ is monotonically increasing and bounded above by 1, thus has a limit point. Similarly, $\{y^{k}\}$

is monotonically decreasing and bounded below by 1. Thus $\{y^{k}\}$ also has a limit point, and $\{(x^{k}, y^{k})\}$

converges. $\square$

Proposition 5 Let $(x, y)\in F$ and $(x^{+}, y^{+})$ be the next iterate of the affine scaling algo$r\dot{\mathrm{u}}thm$ with $\alpha^{k}=\alpha$ .
Then we have

$\frac{x^{+}y^{+}-1}{xy-1}=1-\alpha(x+y)-\alpha\frac{(1-X^{2})(y2-1)}{xy-1}2<1$ . (34)

This relation follows from (28) and (29) by a straightforward calculation, thus we omit the proof.
Now we consider the long step affine scaling algorithm. Note that if the left hand side of (34) is $0$ , then

$(x^{+},y^{+})$ is on the boundary of the feasible region. Let $\sigma(x,y)$ be the positive solution of

$1- \sigma(_{X}+y)-\sigma^{2}\frac{(1-X^{2})(y2-1)}{xy-1}=0$. (35)

Noting that

$\sigma(x, y)$ (36)

is the whole step of the way to the boundary of the feasible region in the $(x,y)$-space, we see that the iteration
of the long step affine scaling algorithm can be written as follows:

$x^{k+1}-$ $=$ $x^{k}-\mu\sigma(x, ykk)((x)k2-1)$ , (37)
$y^{k+1}$ $=$ $y^{k}-\mu\sigma(x^{kk},y)((y^{k})^{2}-1)$ , (38)

where $\mu<1$ is a stepsize parameter. We denote $\sigma(x^{k}, y^{k})$ by $\sigma^{k}$ in what follows.

Theorem 6 Assume that we use the long step affine scaling $algo\dot{\eta}thm$ with stepsize $\mu<1$ for (15). Fix any
positive number $\epsilon$ , and choose the initial point $(x^{0},y)0\in \mathcal{F}$ to satisfy

$\sqrt{x^{0}y^{0_{-}}1}<\frac{\mu}{2}\sqrt{\frac{1-(x0)^{2}}{(y^{0})^{2}-1}}(y^{0}-1-\epsilon)$ . (39)

Then the sequence $\{(x^{k},y^{k})\}$ converges to a non-optimal point.
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Note that the inequality (39) is always possible since for fixed $\epsilon,$ $\mu$ , and $y^{0}$ , the left hand side goes to $0$ as
$x\downarrow 1/y^{0}$ , while the right hand side remains positive.

Proof: Assume by contradiction that $(x^{k},y^{k})arrow(1,1)$ , which is the optimal solution. Then $y^{k}<1+\epsilon$ for
sufficiently large $k$ . Let $L$ be the iteration number such that $y^{L}\geq 1+\epsilon$ and $y^{L+1}<1+\epsilon$. Since $y^{k}$ is
monotonically decreasing, such $L$ is unique.

In view of (34) with $\alpha=\mu\sigma^{k}$ , and (35), we have

$\frac{x^{k1}y^{k}++1-1}{x^{k}y^{k}-1}$ $=$ $1-\mu\sigma^{k}(x+ykk)-\mu 2(\sigma^{k})^{2_{\frac{(1-(_{X^{k}})2)((y^{k})^{2}-1)}{x^{k}y^{k}-1}}}$

$=$ $1-\mu\sigma^{k}(Xk+yk)-\mu^{2}(1-(_{X^{k}}+y^{k})\sigma^{k})$

$=$ $1-\mu^{2}-(_{X}k+yk)\mu\sigma(k1-\mu)$

$<$ $1-\mu^{2}$ . (40)

Furthermore from (35), it follows that

$( \sigma^{k})^{2}=\frac{x^{k}y^{k}-1}{(1-(_{X^{k}})2)((y^{k})^{2}-1)}(1-(x^{kk}+y)\sigma^{k})\leq\frac{x^{k}y^{k}-1}{(1-(_{X^{k}})2)((y^{k})2-1)}$ , (41)

and

$\sigma^{k}\leq\sqrt\frac{x^{k}y^{k}-1}{(1-(_{X^{k}})2)((y^{k})^{2}-1)}$ . (42)

Now we have

$y^{0}-yL+1$ $=$ $\sum_{k=0}^{L}(y-ky)k+1$

$=$ $\mu\sum_{k=0}^{L}\sigma^{k}((y^{k})2-1)$

$\leq$ $\mu\sum_{k=0}\sqrt{\frac{(x^{k}y^{k}-1)((y^{k})^{2}-1)}{1-(x^{k})^{2}}}L$

$\leq$ $\mu\sqrt{\frac{(y^{0})^{2}-1}{1-(x0)^{2}}}\sum_{k=0}^{L}\sqrt{x^{k}y^{k}-1}$

$\leq$ $\mu\sqrt{\frac{((y^{0})2-1)(_{X}0_{y^{0_{-}})}1}{1-(x^{0})2}}\sum_{k=0}^{L}\sqrt{(1-\mu^{2})}^{k}$

$\leq$ $\mu\sqrt{\frac{((y^{0})2-1)(_{X}0_{y^{0_{-}})}1}{1-(X^{0})2}}\sum_{k=0}^{L}(1-\frac{\mu^{2}}{2})^{k}$

$\leq$ $\frac{2}{\mu}\sqrt\frac{((y^{0})2-1)(_{X}0_{y^{0_{-}})}1}{1-(x^{0})2}$ . (43)

Due to the choice (39) of the initial point, we have

$y^{0}-yL+1\leq y^{0}-1-\epsilon$, (44)

which contradicts the relation that $y^{0}-y^{L}+1>y^{0_{-1-}}\epsilon$ . Therefore, the limit point is not optimal. $\square$

Next we turn to the short step affine scaling algorithm. From (12) and (26), the iteration of the short
step affine scaling algorithm can be written as follows:

$x^{k+1}$ $=$ $x-k\lambda\theta(Xk, y)k((Xk)2-1)$ , (45)
$y^{k+1}$ $=$ $y^{kkk}-\lambda\theta(x, y)((y^{k})^{2}-1)$ , (46)
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$.\mathrm{w}$here

$\theta(x, y)=\sqrt\frac{xy-1}{(xy+1)(X^{2}+y-22)}$ . (47)

We denote $\theta(x^{k}, y^{k})$ by $\theta^{k}$ in what follows.

Theorem 7 Assume that we use the short step affine scaling $algo\dot{\mathcal{H}}thm$ with stepsize $\lambda\leq 1$ for (15). Let for
$\eta>4$,

$\mathcal{G}\langle\eta)^{\triangle}=\{(_{X}, y.)\in \mathcal{F}|xy\leq 2, \eta\geq y\geq 4\}$ . (48)

Choose the initial point $(x^{0}, y)0\in \mathcal{G}(\eta)$ to satisfy

$\sqrt{x^{0}y^{0_{-}}1}<\frac{15\sqrt{7}\lambda}{4\eta^{4}}(y^{0_{-}}4)$ . (49)

Then the sequence $\{(x^{k}, y^{k})\}$ converges to a non-optimal point.

Note that the inequality (49) is always possible since for fixed $\eta,$
$\lambda$ , and $y^{0}$ , we can arbitrarily reduce the left

hand side by choosing appropriate $x^{0}$ .

Proof: Assume by contradiction that $(x^{k}, y^{k})arrow(1,1)$ , which is the optimal solution. Then by Propositions

3 and 5, the sequence must be in $\mathcal{H}=\triangle\{(x, y)\in \mathcal{F}|xy\leq 2, y<4\}$ in finite number of iterations. Let $L$ be
the iteration number such that $(x^{L}, y^{L})\in \mathcal{G}(\eta)$ and $(x^{L+1L+1},y)\in \mathcal{H}$ . Since $y^{k}$ is monotonically decreasing,
and $\mathcal{G}(\eta)$ and $\mathcal{H}$ are disjoint, such $L$ is unique.

From Proposition 5, substituting $\alpha=\lambda\theta^{k}$ , we have

$\frac{x^{k1}y^{k}++1-1}{x^{k}y^{k}-1}$ $=$ $1- \lambda\theta^{k}(X^{k}+yk)-\lambda^{2}(\theta k)^{2}\frac{(1-(_{X^{k}})2)((y^{k})^{2}-1)}{x^{k}y^{k}-1}$

$\leq$ $1- \lambda^{2}\frac{(1-(_{X^{k}})2)((y^{k})^{2}-1)}{(x^{k}y^{k}+1)((X)k2+(y^{k})2-2)}$. (50)

When $(x^{k}, y^{k})\in \mathcal{G}(\eta)$ , we see that

$(y^{k})^{2}-1\geq 15$ , $1-(x^{k})^{2}\geq 3/4$ ,
$x^{k}y^{k}+1\leq 3$ , $(x^{k})^{2}+(y^{k})^{2}-2\leq\eta^{2}-1\leq\eta^{2}$ . (51)

Substituting these relations into (50), we have for $k\leq L$ ,

$\frac{x^{k+1}y^{k1}-+1}{x^{k}y^{k}-1}\leq 1-\lambda^{2}\frac{45/4}{3\eta^{2}}=1-\frac{15\lambda^{2}}{4\eta^{2}}$. (52)

Now we have

$y^{0}-y^{L+}1$ $=$ $\sum_{k=0}^{L}(y-ky)k+1$

$=$ $\lambda\sum_{0k=}^{L}\sqrt\frac{x^{k}y^{k}-1}{(x^{k}y^{k}+1)((X)k2+(y^{k})2-2)}((y)k2-1)$

$\leq$ $\lambda\sum_{k=0}^{L}\frac{\sqrt{x^{k}y^{k}-1}}{\sqrt{28}}\eta 2$ (Because $(x^{k},$ $y^{k})\in \mathcal{G}(\eta)\subset F.$ )

$\leq$
$\frac{\lambda\eta^{2}\sqrt{x^{0}y^{0}-1}}{2\sqrt{7}}\sum_{k=0}^{L}(\sqrt{1-\frac{15\lambda^{2}}{4\eta^{2}}})^{k}$ (Use (52))

$\leq$ $\frac{\lambda\eta^{2}\sqrt{x^{0}y^{0_{-}}1}}{2\sqrt{7}}\sum_{k=0}^{L}(1-\frac{15\lambda^{2}}{8\eta^{2}})^{k}$
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$\leq$ $\frac{\lambda\eta^{2}\sqrt{x^{0}y^{0_{-}}1}}{2\sqrt{7}}\frac{8\eta^{2}}{15\lambda^{2}}$

$=$ $\frac{4\eta^{4}\sqrt{x^{0}y^{0_{-}}1}}{15\sqrt{7}\lambda}$ . (53)

Due to the choice (49) of the initial point, we have

$y^{0}-yL+1<y^{0}-4$, (54)

which contradicts the relation that $y^{0}-yL+1\geq y^{0}-4$ because $y^{L+1}\in \mathcal{H}$ . Therefore, the limit point is not
optimal. $\square$

4 Concluding Remarks
In our example, the dual estimates also converge to an infeasible point. In fact, we have from (24),

$\lim_{karrow\infty}u(x^{kk},y)=\lim_{karrow\infty}\frac{x^{k}+y^{k}}{x^{k}y^{k}+1}=\frac{x^{\infty}+y^{\infty}}{x^{\infty}y^{\infty}+1}$ , (55)

and by noting that $x^{\infty}y^{\infty}=1$ , we have

$\frac{x^{\infty}+y^{\infty}}{x^{\infty}y^{\infty}+1}=\frac{x^{\infty}+1/x\infty}{2}>1$, (56)

where the $1\mathrm{a}s\mathrm{t}$ inequality follows from $x^{\infty}<1$ . Hence, we have $u(x^{\infty}, y^{\infty})>1$ , which implies that the limit
of the dual estimates is infeasible. Note that the dual estimate is continuous everywhere on the feasible
region. In $\mathrm{L}\mathrm{P}$, nondegeneracy assumption implies this condition, which produces a much simpler proof of
the global convergence of the affine scaling algorithm. Our example however, shows that this condition is
not effective in proving the global convergence of the affine scaling algorithm for SDP.

By choosing an initial point to satisfy (39) of Theorem 6 in the long step strategy or (49) of Theorem
7 in the short step strategy, we can easily do a numerical experience such that the sequences of the affine
scaling algorithm converge to a non-optimal point. For example, in the short step affine scaling algorithm
with stepsize $\lambda=0.5$ , the sequence generated from $(x^{00}, y)=$ (0.20001, 5.0) converges to approximately
(0.2078065619, 4.8121675791), a non-optimal point.

Even though our example shows that the global convergence from arbitrary starting point is impossible,
it may still be possible to prove global convergence from well-chosen starting points, or by allowing variable
stepsizes.
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