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Note on Long-Step Predictor-Corrector Interior-Point Algorlthm
with Montelro-Zhang Umﬁed Search Directions

‘Masayuki SHIDA ~ (EAEZ)
Kanagawa University (FZ&/IIK%)

Abstract

We present a long-step predictor-corrector interior-point algorithm for the mono-
tone semidefinite linear complementarity problems using the Monteiro-Zhang unified
search directions. Our algorithm is based on the long-step predictor-corrector interior-
point algorithm proposed by Kojima, Shida and Shindoh using the Alizadeh-Haeberly-
Overton search direction, although the AHO search direction does not belong to the
MZ unified search directions in general.

1 Introduction

Recently, many authors have discussed generalization of interior-point algorithms for linear
programming (LP) and monotone linear complementarity problems (LCPs) to the con-
text of semidefinite programming (SDP) and monotone semidefinite linear complementarity
problems (SDLCPs), see the list of references.

Let M, S, S, and S, be the class of n x n matrices, n x n-symmetric matrices,
positive semidefinite matrices in S and positive definite matrices in S. For any two.p X ¢-
matrices A; and As, we denote Tr AlTAQ by A; e A, as an inner product. Let F be an
n(n + 1)/2-dimensional affine subspace of S x S, and

Fi={(X,Y)eF:X=0,Y = O}.
We are concerned with the Semidefinite Linear Complementarity Problem (SDLCP):
Find an (X,Y) € F, suchthat Xe¥Y =0. ()

We call an (X,Y) € F, a feasible solution of the SDLCP (1). Throughout the paper, we
assume the monotonicity of the affine subspace F, i.e.,

(U' -U)e (V' =V) 20 forevery (U,V),(U, V') e F.

The monotone SDLCP was introduced in the paper [6] by Kojima, Shindoh and Hara as
an extension of the monotone LCP, and discussed in [3, 5, 6, 15]. For positive semidefinite
matrices X and Y, the complementarity condition X ¢ Y = 0 is equivalent to the condition
XY =0. Therefore to solve the monotone SDLCP (1), we numerlcally trace the perturbed
system central trajectory”;

as g — 0. Since our variables X and Y are elements of the linear space of the symmetric
matrices, we must choose a symmetric linearization for the asymmetric equation XY = ul.
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To overcome the difficulty to choose a symmetric search direction, several ways are proposed
by Alizadeh-Haeberly-Overton [1] and Kojima-Shindoh-Hara [6] (which include the search
directions which are proposed by Helmberg-Rendl-Vanderbei-Wolkowicz [2] and Monteiro [7]
and Nesterov-Todd [10]). As a generalization of Monteiro’s approach, Zhang [16] introduced
a general scheme, the so-called similar-symmetrization operator. Given a nonsingular n x n-
matrix P, this operator is defined by

Hp(M) = %[PMP‘I + (PMP™)T] for VM € M. )

The operator Hp(M) is a projection from M to the subspace S. Zhang [16] showed that
Hp(M) = puI & M = ul, for any nonsingular matrix P, any matrix M with real
- spectrum, and any g4 € R. A perturbed Newton system using the operator leads to the
following linear system;

(3)

where 3 € [0,1] is the centenng parameter and = u(X,Y) = (X o Y)/n. The choices of |

P=X"%and P =Y7 lead to the same formulas for two search directions proposed by
Monteiro [7}, which belong to the class of Kojima-Shindoh-Hara search directions proposed
in a dlfferent formulation. The second search direction was also proposed in [2]. The choice

of P = W T, where

(X +dX,Y +dY)eF,
Hp(dXY + XdY) = ful — Hp(X,Y),

Wyr =Y (YIXYH) 1Y = X (XY X)X 3,

leads to the Nesterov-Todd search direction [10], see also Sturm-Zhang [14] (the search
direction also belongs to the class of KSH search directions, see [4]).

Recently, Monteiro-Zhang [9] proposed the class of nonsingular matrices

P(X,Y) = {P:P"P=W €S, such that WXY =YXW} (4)
; = {P: P is nonsingular and PXYP ' €S}

and established the long-step interior-point algorithm using the search direction (3) cor-
responding to the class P(X,Y). We note that their search directions only depends on
W not on P, ie., if W = P] P, = P, P, then both corresponding systems have the
same solution (Monteiro and Zhang [9] restrict P to a symmetric root of the matrlx W,

for the simplicity of the argument). For (X,Y) € S;4 X S44, X~ 2 ,Y? and WNT are in
P(X,Y). Alizadeh-Haeberly-Overton direction [1] can be descrlbed by P = I in (3), but
in general, I does not belong to P(X,Y’). For more details of the set P(X,Y), see [9].

In this paper, we present a long-step predictor-corrector interior-point algorithm for the
monotone Semidefinite Linear Complementarity Problems (SDLCPs) using the Monteiro-
Zhang unified search directions. Nevertheless the Alizadeh-Haeberly-Overton search di-
rection does not belong to the Monteiro-Zhang unified search directions in general, our
algorithm is based on the paper [5] in which they use the AHO search direction.

In section 2, we present a long-step polynomial-time convergent predictor-corrector
interior-point-algorithm for the monotone SDLCP. Local convergence of our algorithm is
discussed in Section 3.
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For the simplicity, we use the following notations;

X=PXP", Y=P YP
dX = PdXP", {Y = P~ TdY P!,
=;(Y®I+I®Y), F={(XeI+I&X).

2 Predictor-Corrector Interior-Point Algorithm

In this section, we present a long-step predictor-corrector interior-point algorithm for the
monotone SDLCP (1) using the Monteiro-Zhang unified search directions.

It is easy to see that the linear system (3) gives well-defined search directions if we choose
Pc P(X Y);

Lemma 2.1. For any (X,Y) € S14 x Sy and P € P(X,Y), the system (3) has a
unique solution.

Proof: Since the first (feasibility) equation in (3) defines a maximal monotone affine
subspace, we have only to show the strictly and maximal ant1tomc1ty of the second hnear
equation, which can be rewritten as follows

vec[dX]+(P®P)“1E F(P‘T®P‘ )vec[dY] = (P®P)‘1E_lvec[ﬂu1—PXYP‘I]

By Proposmon 3.2 of [9], we have that EF is a symmetric positive deﬁnlte matrix, thus
so is E'F. Smce P is nonsingular, we have that (P @ P)"'E~ F(P‘ P ) =

(P® P)'E~ F(P ® P)~T is positive definite. Therefore we conclude that the second
equation defines a stnctly and maximal antitone affine subspace.

Throughout the paper, we use the following notation:

p :  constant not less than 1/n,

Fo = {(U., VY- (U,V):(U,V),(U, V) e .7-"} (linearity space of F),
o ' ‘ C Amin(XY) > (1= 9)7,

NW(77T) - {(X,Y)€S++XS++' X'Y/’I'I,S(l'FP’)’)T }

for each v € [0,1] and each 7 > 0.’

Note that, for every P € P(X,Y),

Amin(XY) = Auin(PXYP™') = Apin(Hp(XY)).

By the definition, we see that

1-7)7<XeY/n if (X,Y)eNw(v,7), ’}'E[Ol]and7'>0
Nw(0,7) CNw(7,7) CNw(y,7) if0<y<9 <1landT>0. ’

Note that Nw(0,7) = {(X,Y) € S4+ XS4y : XY =7I}. Let 0 <y < 1. Then the set
{(X,Y) € Nw(v,7) : 7 > 0} forms a (wide) neighborhood of the central surface {(X,Y) €
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Sty XS4y 1 XY = 71 for some 7 > 0}. These sets serve as the admissible region in
which we confine iterates (X*,Y*)(k = 0,1,2,---) of Algorithm 2.3 described below. More
precisely, starting from a feasible point (X°,Y?,6°,4°%) € [F(1)N(S++ X S4+4)] x {1} x [0, 1),
Algorithm 2.3 generates a sequence such that for every k = 1,2,---,

1265 >0,9>7 20, (5)

| 1=6°> 6" > ¢**, (6)

(X*, Y5 € Nw (%, 856 0 [F+ 65 (X0, Y0 — (X, 7))], (7)
(XYY e Nw(r, 00 N [F 6 (X0, Y0) - (X,Y)]. (8)

Here (X,Y) denotes an arbitrary pair of matrices in F; in particular, we can take any
feasible point of the SDLCP (1) for (X,Y’) when the SDLCP (1) has a feasible point. Note
that
F+0((X°,Y") - (X, 7))
=F+0((X°,Y°) - (X,Y))
for any (X', ¥"),(X,Y) € F and 4 € [0,1].

Among the iterates (X*, Y* X* Y* 6% +*), the triplet (X*, Y*,6%) is updated to (XF Y* gkt1)
by the Predictor Step (Step 2), while the triplet (X*, Y*, 4%) to (X*H, Y+ 4*+1) by the
Corrector Step (Step 4). 8*! serves as a measure of both feasibility and optlmahty Given

an € > 0, the algorithm stops (at Step 3), when 6**! gets equal to or smaller than e. In this
case, we have an approximate solution (X*, Y*) of the SDLCP (1) such that

€ > g%+l >0, ’
X - 0,Y" - 0,X"e Yk/n < (L+ py)@5 10, : (9)
(X’“ Y’“) € F + gk ((X",YO) (X,Y)).

We call € an accuracy parameter.

Before we run Algorithm 2.3, we build up the hypothesis below. When the .a,lg(')rithm
detects (at Step 1 or Step 3) that the hypothesis is false, it stops.

Hypothesis 2.2. Let w* > 1. There ezists a solution (X*,Y ") of the SDLCP (1) such
that : S o
WwX> X* and w'Y? > Y. (10)

Algorithm 2.3. [Long-Step Predictor-Corrector Interior-Point Algorithm]

Step 0: Choose an accuracy parameter ¢ > 0, neighborhood parameter 4% € [0,1) and
an initial point (X°,Y?) € Nw (7% u®) N F, (we may choose any point (X,Y) €
Si+4+ X Sy as an initial point, and let u* = X° ¢ Y°/n and choose 7° so that
(1 =7 < Amin[ X°Y?)).
(If (X0 Y? € F, the SDLCP has a SOlllthll Hence we may skip checking (12) in
Step 1 and (14) in Step 3, since the SDLCP has a solution). Choose a nelghborhood
- parameter vy € [y°,1). Let ° =1, 0 =2w*/(1 —y)+1and k=0.
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Step 1: If the inequality
(X eY*+ X*eY") <0X*eY* (11)
~does not hold then stop. - |

Step 2: (Predictor Step) Choose a matrix P e P(X*, Yk), and compute a solution
(dX},dY}) of the following equations;

(X*+dXE Yr+avh) e F,
k vk kv kyk (12)
Hpe(X*dY* + dX*Y*) = —Hpu (X*YF)
Let - | | | |
—_k o~k o )
> o e | | |
» Ok ’ :
. 2
a, = = T ) ;
\/1+46p/(7—7 )+1
ko ooxk vk vk (1 — \gk 1,0 .
& = max{d €[0,1]: (X. +adX,, ¥ -|’-a_de) € Nw(r, (1= e)f*u?) |
P for every a € [0,0/] - )
. , o (13)
Choose a step length af € [af, &:] (in Lemma 2.4, we will show & < 5/;).
N k vk _
Let (X5, YH =(X ,Y< )+ a’;(pr,de}) gnd g+l = (1 — ak)p*,
Step 3: If F+! < ¢ then stop. If the inequality
P X e Yr L Xt e YY) <oX*eY? (14)

does not hold then stop.

Step 4: (Corrector Step) Choose a matrix P¥ € P(X* Y*), and compute a solution
- (dX 'j, dY*) of the solution of equations; v.

(X%, dY%er, - R (15)
Hp (XEdY{ +dX[YY) = 04T — Hpu(XEY'F)
Let |
<k, =k \

c - Gk+140 ) .
& [ v/@28F) if y <28,
% T 11 if v > 26, | |
il _ ) (1 —y/(46F)) if v < 26k, ’
TUOT e Cify >k, — .
skl , ] (chc + adX?, YF+ ain‘)E Nw(?, ngMO)
v = mm{’Y € [0,1] .‘ aE[O,l]A AEER |

(16)
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Choose a step length of € [0,1] and v**! such that

2k+1 . . : - o
3 < ,Yk+1 < ,yk+1 . } (17)
(X% + akdXE, Y + a2dY") € Ny (7441, 05+110),

(it will be shown in Lemma 2.4 that the pair of af = &* and ¥**1 = 5¥t1 satisfies the
relations above). Let (X**1, Y**1) = (X* Y*) + of(dX*,dY?F). '

Step 5: Replace k by k + 1. Go to Step 1.

. Although the Alizadeh- Haeberly-Overton search direction does not belong to the Monteiro-
Zhang unified search directions, Algorithm 2.3 is based on the paper [5], in which they use
the AHO direction, with the different neighborhood Ny (v, 7), where

Nw ={(X,Y) €54y xSty 1 (XY + YX)/2> (1 =)7L, X o ¥ Jn < (1 + py)r}.
Let |

~

1t

k
P

. : ~ k -~k -~k —k —
max {a, c0,1: X +edX, Y +ad¥,) € Nu(y,(1 - a)t*s0) }
for every a € [O o]

= min {7'e[0,1] (X. [+ oz]ch,Y +ad¥,) € Nn(7, 05y 0)}
U aeo,1

as in [5]. The following lemma gives a validity of Algorithm 2.3.

Lemma 2.4. We have

dnd :

D>

< AR < gRHL

Proof: By Lemma 3.3 of [16], for any (X,Y) € S;4 x Sy, any nonsingular matrix
P € P(X,Y) and any nonsmgula,r matrix Q € M, we have

Amin[Ho (X Y)] < AminlX Y] = Amin Hp(XY)].
Therefore, we conclude

(X+a(7)\(,}"’+acﬁ7) € Nw(v,71) =>(X+adX,Y+a_dY) € Nw(v,7),

x~

this implies that ik < &, and 4 < 4*+1. By the analysis in the paper [5], we have 6} < &

and 451 < $FH

"d

The Monteiro-Zhang uniﬁed search direction can be rewritten by

(X+dX ¥ +dY) € c ¥,
XdY +dXV + VdX +dV X = pul - (XY + VY X),
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where F = {(X,Y) : (X,Y) € F}. Hence, we may interpret the Monteiroéz_ha,ng search
directions as “the symmetric linear transformation” + “the AHO search direction”, see also

[4].

Algorithm using MZ Algorithm 2.3 [3]
(X, Y)eNw(1,1) - (X,Y)eNw(r,7)  (X,Y)eNw(y,7)
! l

(XT, YT e Nw(v,7) «~ (X7, Y e /wa('y’,T') (X*,Y*) e Nw(y, 7).
Therefore, by Sections 3 and 4 of [5], it is easy to see the global convergence of the Algorithm
2.3; : '

Theorem 2.5. (Global Convergence Theorem):

(i) Algorithm 2.3 consistently generates a sequence {(X k,Yk,Xﬁ,Yf,Ok,fyk)} satisfying
the relations (5)-(8).

(ii) If Algorithm 2.3 stops at Step 1 violatiﬁg the inequality (11 ), then there is no solution
of the SDLCP (1) satisfying (9).

(iii) If Algorithm 2.3 stops at Step 3 with 0%+! < €, then (X*,Y*) gives an approzimate
solution of the SDLCP (1) satisfying (9).

(iv) In Algorithm 2.3 stops at Step 3 violating the inequality (14), then there is no solution
of the SDLCP 1 satisfying (10). :

(v) If e > 0, Algorithm 2.3 stops in a finite number of iterations at either Step 1 or Step

3. ' ]

Remark 2.6. For the short-step algorithm, we only replace the neighborhood Ny (7, 7)
- with ' :

XY XY - 1I||p < 7,
Ntn) = {(X’Y) € St X S IJX:Y/n < +”577rw } !

and let
— ——k——k
5k = |dX ,dY | §F = ”prdYP"F
P Bkuo ’ c Gk+1,,0 ’
& = max{o’ €[0,1] (X* + adX}, Y* + adY*®) € Ny (y,(1 — a)*u0)
P 17 foreverya €[0,0] ’
5! = min {7 el0.1]: (X*+adXt, Y* + adY®) € Ny(v, 604+10) },

in Algorithm 2.3. The validity of the short-step algorithm is easily derived by the same
argument. ' - ]
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In the rest of the section, we assume that the initial point (X°, Y?) is a strictly feasible
‘point of the SDLCP (1), to show the polynomial complexity of Algorithm 2.3. ‘We first
show the boundedness of numbers &% and §*. We give a bound by using the notation of the

spectral condition number k(G) = Aaz[G]/ Anin[G] of G = E~ 'Fasin [9]. Let
dmasl(B)F)
Aminl(E")1E)

Koo = Sup, k(G*) = sup (18)

Note that n
< S if P* = (x’f)-a or (Y*)7 for Vk
Koo
=1 if P = WNT for Vk,

(Theorem 6.2 of [9]). Recently Sheng, Potra and Ji [13] proposed a polynomial-time short-
step primal-dual predictor-corrector infeasible-interior-point algorithm for the SDP with the
additional assumption.

Lemma 2.7. We have

6 < Y2=(1+py)n and & < —*Vgc’°'1‘z'—7(~1 + p7)n.

Proof: By Lemma 6.2 of [9], we have

X1 e < D iy yr VD)

(1+ py)6*u’n
and

VH(G) k(@)
X )Y 2| < Y xrkgyr < VIG) 7

k+1, 0

Therefore we have

6k < ;‘ﬁm(l -Fp’y)n and & < —”C(G)

Y
—A1
thus we have the assertion. §

Next show the lower-bound of y — #*.

Lemma 2.8. For every k= 1,2,---,
O S (¢ )

—F > 0).
TV 2 v en
Proof: By Lemma 2.7, we have
; 1-7)
—_ A2 5 7( )
112 46k) T/ N (B

Show the lower bound of the d’;.



161

1

L 2.9, 6= ————.
emma N )

Proof: By Lemma 2.8,

485 41+ py)2Ken®
P> (1 + p7)°Feont® _ O(ken?).
7= (1 =7)
Therefore, we conclude ,
. 2 1
Q. =

Theorem 2.10. If we start at strictly feasible point (X° Y?) € Nyw (7%, u®)NF, Algorithm
2.8 terminates in at most O( /Keon log(1/e)).

Proof: By Lemma 2.9, we have that c”n’; = m Therefore we may assume that
~k > C _H ) ‘
N ence
c k-1
0% = 6°TI5Z1 (1 — od) < 6° (1 — mﬂ) for eyery k=1,2,---. (19)

Therefore, we can conclude the assertion from the standard argument. y

3 Local Convergence.

In this section, we briefly discuss the superlinear convergence of Algorithm 2.3. We assume
that there exists a solution of the monotone SDLCP (1) such that Hypothesis 2.2 holds.

Theorem 3.1. If 6& = o(6*%) (or O((6%)") for some v > 1), then the complementarity gap
converges to zero superlinearly (or Q-order at least v).

Proof: 'We have

Pl =(1-0af) < 1-

- 2
= off*)  (or O((6")")

and this implies the complementarity gap converges to zero superlinearly (or order v). g
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Suppose that (X*,Y™) is a solution of the monotone SDLCP (1). Since X~ and Y™
commute, there exists an orthogonal matrix @ such that

Tw*rn — AB o Tyv* OO0
Q XQ—(O 0)Q@YQ=(g 4 )
where Ap and Ay are diagonal matrices. For (X,Y) € S x S, define

Q'XQ = (§¥ i’v),QTYQ=x=(-§f i’v) | (20)

Define an affine subspace which contains the solution set of the monotone SDLCP;

E{(X,Y)efﬂ(SxS):l’:(ZB 8)1:('8&)}'

Let (X k, Yk) be the solution of the following minimization problem;
min{||[P*(X* — X")(Y* - Y')(P))r: (X", Y') € F,wX’ = X', wY' = Y'}. (21)

| Every accumulation point of the sequénce {(X ’“, Y* )} belongs to the feasible set of the above

minimization problem (21) and the feasible set of (21) is bounded. Therefore (X k, f’k) exists
for each k. Let

% = |PEX*(P*)T|p, 78 = [[(P*)"TY*(P*) ||,
& = IP(X* = XNPHT e, k= (P*)T(Y* - Y5)P*) I, (22)
m = | PHX* - X5V - Y(P*) Y p

Theorem 3.2. Suppose that 77t = O(6*%), n%¢E = O(6%), nh¢k = O(8%) and (¢t =
o(8%) (or ¥ = o(8%) for the short-step algorithm) Then the complementarity gap X*eY* /n
of generating sequence by Algorithm 2.3 converges to zero superlinearly. Moreover, if there
ezists a v > 1 such that C%¢E = O((6%)*) (or n*¥ = O((0%)") for the short-step algorithm),
then the convergence has Q-order at least v in the sense that 65+ = O(6").

Proof: Let AX = dX,+ (X — X),AY = dY, + (Y — Y) It is easy to see that
(AX,AY) is the solutmn of

(AX,AY) € Fo,
Hp(AXY + XAY)=Hp((X - X)(Y = Y))
P(AXY + XAY)P'+ P T(AYX + YAX)PT
( =PX-X)Y-Y)P'+P (Y -Y)X-X)P"

By Lemma 3.1 of [5], we have

IPXPT|r|Hp((X — X)(Y —Y))lr

IPAXPT||F < T
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and .

o IPTY PR HA((X ~ X)(Y )llr

IP~TAY PY|p < B g -
Since : 3 . S

IHp(X — X)(Y = V)| < ||IP(X = X)(¥Y - V)P |r =1,
we have
IPAXPT||r < ”P XP |r|P (g — gg(Y ¥)P Iz _ O(7xn/6) = O(7x(xCyr /6)
and ‘
IPTAY P < ”P _YP ”""”P((IX_ ;);( X =Y)PHE _ o(yn/6) = O(ry Cxcy /6).

Therefore we have -

ldX||ldY |r = ||PdXPT|p|P~"dY P ||r

IP(AX - (X -~ X))PT|[F|IP~T(AY = (Y = Y))P7}||r

= (——WXHCY + 1) (WYGCX + 1) CxCy
O(¢x¢y) |

o

o0)  (or O(6)),

(or for the short-step algorlthm we have

ldXdY|lr = HP(AX (X - X)) AY — (Y — Y))P ]"F
< |PAXAYP7!|p+ |PAX(Y - Y)P7||r
+|P(X - X)AYP | p + ||P(X - X)(Y ~ Y)P_IHF
7Tx7ry772/92+7Tx?7CY/9+C‘(7FY?7/9+77

O(n) .
o(6) (or O(6%)) ).

1 IA

By Theorem 3.5, we conclude the assertion. g

Remark 3.3. Potra and Sheng [12] prove the superlinear convergence of the short-step
- predictor-corrector infeasible-interior-point algorithm proposed by [3, 11] using the search
direction given by P* = (X k)‘§ for every k, under conditions;

(i) the SDP problem has a strictly complementary solution
(ii) the size of the central path neighborhood approaches zero.

In their analysis [11, (3.9),(4.11) and (4.12)], they showed with the choice P* = (X*)2,
that

Tx = O(l), Ty = 0(0),

(x =0(1), & =0(0).
by the strict complementanty condition (i). n = o(f) by condition (ii). By their argument in
[12], we can conclude the superlinear convergence of the short- -step version of our a.lgorlthm
(Wlth P* = (X*)~7 under the same conditions), though our algorithm (using P* = (X K-
for every k) is slightly different from theirs. ]
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We need some prehmmanes for further a,nalys1s of the superlinear convergence of Algo-
rithm 2.3; ; :

Lemma 3.4. (Propos:tlon 3.4 of [9] For any P € P(X,Y), there ezists an orthog-
onal matriz Qp such that o :

X =QpAX)QF, Y =QpAY)IQF, XY (=YX)= Qp[A(XY)]Qp,

where A(X) denotes a diagonal matriz wz'th the eigenvalues of X on their dzagonal elements.
]

Monteiro and Zhang characterize the class of permissible matrices. -

Lemma 3.5. (Theorem 3.1 of [9]): Let(X,Y) € S; XS4 and a fized P € P(X,Y)
be given. Then any matric W € S, satisfying the equatzon WX Y = YX W has the
following representation in terms of P;

W= W (P, T) P'Q,TQLP
where Q p is an orthogonal matrixz given in Proposition 3.4,

T = diag(T(l),- .. ,T(P)),T(i) €S% i=1,---,p.

’

Moreover, the set {W € }S++ : WX Y=YX W} is a convez cone. !

Here we assume that the condmon number x(T*) of T* is bounded; K = sup x(T*) =
Ama:l:(:rk)

m‘m(Tk)
of [9], koo < ﬁlczo Then if Ko < 00 then ko < 00. We use the following notations;

sup < 00, where T* is given in Theorem 3.5 with P = (X '“)“5. By Theorem 6.3

Tx = ||13X}3 le, 7y = |(P)y"TY(P) F;
i =IP(X - X)P"|lp, &=|(P)" T(Y Y)(P)~ 1”F,
n= HP(X X)(Y —Y)(P)YF.

Corollary 3 6. Suppose that there ezists a strzctly complementary solutzon (X™, Y*) of the
monotone SDLCP (1) and the condition number K(T*) of T* is bounded; K = sup s(T*) <
0o, where T* is given in Theorem 3.5 with P = (X*)-2. Assume that CXCY = o) (or

1 = o(0) for the short-step algorithm ) Then the complementarzty gap XFeY*/n converges
to zero superlinearly.

Remark 3.7. The condition f = 0(0) for the short- -step algorithm holds if the sequence
{ (X k Y")} generated by Algorithm 2.3 is tangentially convergent to the central trajectory;
||X 'Y X1 — 1] Il < o(7) [12]. Sheng, Potra and Ji [13] showed the superlinear convergence
of the;r short-step algorithm with the narrow neighborhood under the conditions (i) and
(ii) using the same idea as follows. o , ; )
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Proof of Corollary 3.6: From the definition, we have
HPXP Ilf = [Illr = O1),
1P 'YPp = | XY X ||p = O(8).

By the same argument of [11, (3.9), (4.11) and (4.12)], the existence of strictly comple-
mentary solution implies

& = IP(X - X)P||r = 0(1),

& = 1PV -Y)P e =00),
for every (X,Y) € Nw(7,7). (Note that these estimations are valid for the wide neigh-
borhood Ny (7,7).) Since P is described by TZQ 5P, we have

Tx = IIPXPTIIF<HT’HIIQPIIIIPXP IFlQANIT? |
177|127 < |IT5|20(1),

Tx

Ty

v = |[PTTYPT< IIT"fIIIIQPIIIIP'lYP"lIlFIIIIQpllllT"fII
= 1T 2|7y <||T~ 2I!20(9)
x = |[PX-X)P'|lp< IT2IQEIIP(X — X)PT||r||Qp T
| = |IT?|%x <||T?|20(),
& = IPTI(Y-Y)Pr< IT-HIQENE (Y - ¥)P el QT H|
= T2y < K0(0),
x¢x = |IP(X = X)PT||P~T(Y - ¥)P'|p < T2 |21 T~2)|2Cc by
= |IT3PIT 2|2y < IITZIIZIIT’fII?‘O((?)
(n = IPX-X)(Y-Y)P|p< IT*IQENIP(X - X)(Y V)P rl|QplIT 5|

I

IT= T3 < | THIT2)0(6), ).
Hence we have

T2 |2 T3 |20()

TxTy < < KO(8),
txly < |TEPITZPOGB) < KuO(8),
tvix < |IT2PITEPOB) < KuwO(8),
Gy = ITZ|PIT2Po(8) < Keoo(8),
(= HT%IIIIT‘%IIO(O) < VKwo(8).)
Therefore, by Theorem 3.2, we conclude the assertion. Here we use |[Qp]l = ||QF) =1

and

Lneyp-12 — -1y _ Amaz(T) <
IT2F)T~=||° = | TINT~) = N (T) = Koo
1

Remark 3.8. If one can show the superlinear convergence of long-step path-following al-
gorithm using one specific choice of a sequence {P € P(X*,Y*)} of matrices by showing

TxTy = O(1), {xTy = O(1), Ty(x = O(7), x& = o(7),

then, using the same idea as in Corollary 3.6, we can conclude the superlinear convergence of
long-step path-following algorlthm using more general sequence {P* e P(X*,Y*)} under
same boundedness condition of T*. 1
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4 Concluding Remarks

In this paper, we present a long-step predictbr -corrector path- -following interior-point algo-
rithm for monotone semidefinite linear complementanty problems usmg the Mont eiro-Zhang
unified search direction. -

If we choose the strictly feasible initial point, the complementarity gap polynomially con-
verges to zero by Theorem 2.10 using the (wide) neighborhood. Conversely, Kojima,Shida
and Shindoh [5] proposed the long-step predictor-corrector (infeasible)-interior-point algo-
rithm using AHO direction, which generates the sequence such that the complementarity
- gap quadratically converges to zero under the strict complementarity condition. Here, we
consider to apply our algorithm to the monotone diagonal SDLCP (which is equivalent to
the monotone LCP). Since each Monteiro-Zhang unified search direction is equal to the
AHO direction in this case, we can conclude that Algorithm 2.3 is the long-step globally
polynomial-time, locally quadratically convergent predictor-corrector (but feasible) interior-
point algorithm, without any additional estimation for the diagonal SDLCPs.

Recently Monteiro [8] present the polynomial time convergence (independent of the
condition number k(G)) of the short-step interior-point algorithm (for the SDP) using
more general class of search directions (3), which includes the AHO search direction and
the MZ unified search directions.
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