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Two-dimensional Toda cellular automaton
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Introduction

The direct connections between soliton equations and soliton cellular automata(SCA’s)
was found recently [1, 2, 3]. This finding resulted from investigation of the Toda cellular
automaton [4, 5] and will offer new fields both in the study of cellular automata (CA’s)
and in that of integrable systems with infinite degrees of freedom. The SCA’s are inte-
grable in the sense that they have N-soliton solutions (N>>2) and infinitely many conserved
quantities. In order to obtain SCA’s from integrable partial differntial equations, we need
two steps of discretization: discretization of independent variables and that of dependent
variables (ultra-discretization). As for the former step, Hirota proposed a unified difference
equation named Discrete Analog of Generalized Toda Equation (DAGTE), from which a
number of important integrable difference and/or differential equations are obtained by
reduction and variable transformations [6, 7). The relation of DAGTE to the 7 function
of KP hierarchy was clarified by Miwa, and an. algebraic approach to integrable partial
diffrence equations with fermion field operators was established by Date, Jimbo and Mi-
wa (8, 9]. In the present paper, we show a general formalism to construct SCA’s based
on this algebraic approach. As a consequence, a 2+1 dimensional SCA (2D Toda cellular
automaton) is obtained from ultara-discretization of DAGTE [10]. We also show the SCA
analog of Backlund transformation and Lax representations [7, 11].

SCA construction in terms of fermion operators

In early 80’s, Sato established a unified theory of solitons [12]. He showed that any
integrable differential equation can be regarded as a dynamical system on a universal
Grassmann manifold (UGM). A solution to the nonlinear equation corresponds to a point
of UGM. 1t is called the 7 function. Using the Pliicker relation of UGM, we obtain Hirota’s
bilinear identity for the 7 function. Date, Jimbo, Kashiwara and Miwa developed the Sato
theory giving its link with infinite dimensional Lie algebras by the method of field theory
and vertex operators [13]. Then the 7 function is expressed as a vacuum expectation value
of a fermion field operator. ‘

In terms of usual fermion creation and annihilation operators, which satisfy

[i 7] = i} + 3ehi = 65
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and 5
[¢w¢]]+ [17/)1’17[) } 7 (7'7.7 € Z + 1/2)7

the N-soliton solution is expressed as [9]

N .
7(t) = (vac| [T (1 + e (pi, )9 (g, 1)) |vac)

=1
where » . v -
P(p,t) = EEDP(p), ¥r(g,t) = TN (g),
P(p) = Y vip TV W)= S i
J€Z+1/2 JEZ+1/2

The operator product is a radically ordered product as usual, ¢; is an arbitrary constant, t
denotes the time variables and a function £(t, p) is arbitrary in principle, though we need
a careful choice in order to get a significant differential or difference equation. Then the
Hirota’s bilinear identity is a consequnce of an elementary complex analysis:

3" Res [(vaclpy (=, t)gn (8)|vac){vaclp_1/29" (=, )gN< "vae)] =0, (1)

all

where
N

gn(t) =TT (1 4 e (pi, t)9" (g, t)) -

1=1

In order to construct integrable CA’s, we should put t = {t,j1,72, -+, jm} and impose
the condition: ef(tP)=¢(ta) = e(-witkiiit-+kmim)/c wwhere two of the w and k;’s are arbitrary
integers. This condition gives the dispersion relation w = w(ky,- -+, ky, : €) for we have only
two free parameters p and ¢. At the same time, p and ¢ have asymptotic forms: p = ef/¢
+ ---and ¢ = €?/¢ 4 .... Thus putting p(t) = lim., 1o €log[r(t)] with some careful choice
of coefficients of the bilinear identity, p(t) satisfies an equation similar to Hirota’s bilinear
identity, from which we obtain an m dimensional CA and its N-soliton solutions. Since the
CA is thus constructed, it naturally inherits the geometrical and algebraic nature of the 7
function.

Backlund transformation of difference-difference equations and its CA analog

Backlund transformations are classified into two types: transformation of an N-soliton

solution to an N-soliton solution with different phases and that to an (N+1)-soliton solution.
We define gn(t), fn(t) and gny1(t) as
N

gn(t) = TTQ+c(pi, t)p*(a:t))

fu(®) = blowen, hn(t) |
gv+1(t) = (14 ¥(pnvy1, t)(gn+r, t))gn(t).
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The N-soliton solution, N-soliton solution with different phase and (N+1)-soliton solutions
are respectively given as i '

~(t) = (vacgn(t)|vac),
on(t) = (vadfn(t)vac),
n41(t) = (vaclgnii(t)[vac).

Both types of Backlund transformations can be obtained by the bilinear identity
5™ Res [(vaclst (2, tlgu(t)vac) fvacly” (=, ) fu(t)pad)] =0, (2)

all

and the identity [1 4+ ¥ (pn41,t)™(gnt1,t)] fn(t) = fn(t). It should be noted that the
Backlund transformation is essentially equal to the Lax representation of the difference-
difference equation. Extension to multi-components systems can be done by fermion op-
erators with colors. The CA analog of the Backlund transformation is straightforwardly
obtained by ultra-discretization in the same manner as described in the previous section.

2D Toda cellulér automaton :
Let t = (I,m,n) and e~¢(®%) = k!(1 — ak)™(1 — bk~1)". Then the bilinear identity (1)
turns into :

r(l,m,n + 1)7(l,m +1,n) o —abr(l=1,m+ L,n)7(l4+1,m,n+1)
—(1—ab)r(l,m+1,n+ 1)r(l,m,n) = 0. (3)

By variable transformation
x(t,z,y) =x(I+m—n,l,m+n~-1)=7(,m,n) and §? = ab, we have

x(t=Lz,yx(t+1Lz,y) —&x(t,z—1y)x(tz+1,y)
' » _(1 —-52)X(t,x,y+1)x(t,w,y—1) =0. (4’)

This is the DAGTE proposed by Hirota. The equation (3) or (4) reduces to a discrete
analogue of the 2 dimensional Toda equation [14],

V(l,m,n+1) =V(l,m,n) = I(l,m+1,n)V({,mn+1)—I(+1,mn)V(l,m,n),

I(l,m+1,n) = I(l,m+1,n) = V(I-1,m,n+1)-V(,m,n).

where

I+1,mn+1)7(l-1,m+ 1,n)
(I,m +1,n)7(l,m,n)

1 (l,m,n + 1)7(l — 1,m,n)
I(l ==4(1 -6 L 21,
(A,m,n) § {( . )T(l,m,n)'r(l—l,m,n—l—l) 1

V(l,m,n) = (
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- Let us derive an ultra-discrete version of eq. Eq. (4). The dependent variable transfor-
mation,

(. 2.) = exp[S(t,2,1)] )
yields
exp[AfS(t, z, y)] — 8 eXp[AZ‘S(t) z, y)] - (1 _,62) pr[AzS(t, Z, y)] =0, (6)

or equivalently,

Cexpl(Ay — A)S(t,z,y)] = (1~ 6%) (1 +1 f =5 exp|(A] — A2)S(t, m,y)]). (7)

Each operator A;, A, and A, represents central difference operator defined, for example,
by ' v :
' AIS(t,z,y) = S(t+1,z,y) —25(t,z,y) + S(t — 1,2,y).

Taking a logarithm of Eq. (7) and operating (A2 — A2), we have

2 » '
(8 = At ) = (82 = A3 og (14 o expltt ] ®)
where »
u(t,z,y) = (A7 — A))S(t, 2,y). (9
We finally take an ultra-discrete limit of eq. Eq. (8). Putting
ve(t, 7, y) 8 _f
u(t7;p’y):—6——-—’ T 52 =€ ¢, . (10)

and taking the small limit of ¢, we obtain the following equation,

(Atz - Az)v(tax’y) = (Az‘ - Ai)F(’U(t,.T, y) - 00)7 (11)
F(X) = max[0,X]. : (12)

We have rewritten lirEO ve(t,z,y) as v(t,z,y) in Eq. (11). We call the ultra-discrete system

satisfying the above Eq. (11) the 2D Toda cellular automaton.
It should be noted that the N-soliton solution can also be found through the same limiting
procedure. This is given by '

’U(t, x’ y) =

max Lzllg%[ui(ﬁi + Pi)], maxpip; 0]
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“4+'max | max [m(Ki—Pi‘)]>maxlﬂiﬂj9ij]]
N 1<

I-L:Dyl \.i=1121"'7

— lrg%,)% _iz%?:??,N[ﬂi(]Xi + Qi)l, I??JX[/MM O ]]

p=0,1 |i=1
K, =Pz + Qiy + ‘Qit, '
19| = max[| P, |Q:] + 6o] — max[0, fo).

— max _=I{12?¥,N[Mi([‘i — Qi) rglgx[umj@u]] ;

Each phase shift term 91‘1'(1,3 i < j < N) satisfies the relation,

max [0;; + max[0, o] + [©; + Q;|, max[0, 6] + | — ;]
=max [0 + |P; + P;|, 0:;; + 0o + |Qi + Q;,.|P — P;l,00 + |Qi — Q5]
Finally we briefly show an SCA analog of Backlund transformation for 2D Toda cellular

automaton. Putting t = (I 4+ 1,m + 1,n) and t' = (I,m,n) in Eq (2), we obtain the
Backlund transformation for Eq. (3) as : S

ma(l,m,n)on(I+1,m+1,n+1)=my(l,m+1,n)on(l+1,m,n)
+ary(l+ 1, m,n)on(l;m+1,n), where M =N or N 41,

or by the variable transformation

ft=129)ft+Lzy+1)=ftzy+ Df G+ 1Ly) +ef(bz+ Ly)f ey +1).

The ultra-discrete limit of the above bilinear identity is an SCA aﬁalog of Backlund trans-
formation and written as

P(t - 1,1‘,y) —l—p,(t-}- any"l— 1) =
max[p(t,z,y + 1) + p'(t,2 + 1,9), p(t, 2 + 1,y) + p'(t;2 + 1,y) — bo].
If we put t = (I,m+ 1,n+1) or ({ +1,m,n + 1), another Backlund transformation
is obtained. We can deduce Lax representation of DAGTE and its conserved quantities

from the set of bilinear identities. Ultra-discrete limit of them are an SCA analog of Lax
represetation and conserved quantities of 2D Toda cellular automaton.
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