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\S 1. Introduction
Real algebraic curves on a hyperboloid (i.e., $RP^{1}\cross RP^{1}$ ) or an $\mathrm{e}\dot{1}1\mathrm{i}_{\mathrm{P}^{\mathrm{S}\mathrm{o}}}\mathrm{i}\mathrm{d}$ have been stud-

ied by several people, D. A. Gudkov ([5]), V. I. Zvonilov $(1^{23}],[24],125],[26])$ , P. Gilmer ([4]),

G. Mikhalkin $([14],[16],[15])$ , the author $([12],[11],[10],[1\mathrm{s}],[21])$ and others. The author has
been studying especially curves of bidegree $(4,4)$ on a hyperboloid. The classification of $‘(\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{l}$

schemes” (i.e., isotopic classification on $RP^{1}\cross RP^{1}$ ) of nonsingular real algebraic curves of
bidegree $(4,4)$ on a hyperboloid was completed by Zvonilov ([25]) and the author ([13]) inde-

pendently.
In the same paper [25], Zvonilov also judged the “dividingness” (see \S 6) of each real scheme

and the “complex orientation” of each dividing curve. He did this work by using ‘(Rokhlin type
formula” obtained by himself ([23]) and Gilmer’s results on the $\mathrm{r}\mathrm{o}\dot{\mathrm{t}}$ ation numbers of dividing

curves ([4]).
In the meanwhile, after her work of the isotopic classification, the author started to apply

Nikulin’s theory of “involutions of lattices with conditions” (see [19]) to curves of bidegree $(4,4)$

on a hyperboloid. I. Itenberg $([6],[8],[7],[9])$ and A. Degtyarev $([2],[3])$ also have done similar

approaches for singular curves of degree 6 in $RP^{2}$ or singular surfaces of degree 4 in $RP^{3}$ . In

1995, the author finished enumerating up all the $‘(\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}$

” of our $\zeta(\mathrm{i}\mathrm{n}\mathrm{V}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ of lattices with

our condition”, i.e., the 2-dimensional cohomology groups of the double coverings of $P^{1}\cross P^{1}$

branched along nonsingular real algebraic curves of bidegree $(4,4)$ . The result of that work was
first appeared in [21]. But “the table of all the genera” in [21] has some mistypes, duplications
and a wrong topological interpretation. So the author distributed a revised table to some peo-

ple. (The present article also includes the revised table in \S 5.)
Anyway, since then, the author has been investigating the topological properties of curves

which realize each genus, where ‘topological properties’ mean real schemes, dividingness, com-
plex orientations, e.t.c. In this article, the author will collect and arrange the processes and
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results of her investigation stated above, and prove some known or unknown facts by using ‘the

table of genera’. Finally, she will indicate some summarized questions.
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\S 2. Our situation (I)
Let $A$ be a nonsingular real algebraic curve of bidegree$(4,4)$ in $P^{1}\cross P^{1}$ and $Y$ be the

double covering of $P^{1}\cross P^{1}$ branched along $A$ . Then the complex conjugation of $P^{1}\mathrm{x}P^{1}$ is

lifted into two anti-holomorphic involutions of $Y$ , which are denoted by $T^{+}$ and $T^{-}$ (For the

details, see $[12],[11],[13].)$

We set $L=H^{2}(Y;^{z)}\cdot$ Since the bidegree is $(4,4)$ , $Y$ is a $K3$ surface. And so $L$ is an even

unimodular lattice of signature $(3,19)$ . We set $e_{1}=\pi^{*}([\infty\cross P^{1}])$ and $e_{2}=\pi^{*}([P^{1}\cross\infty])$ , where

$\pi$ : $Yarrow P^{1}\cross P^{1}$ is the covering map. Then we see $e_{1}\cdot e_{1}=e_{2}\cdot e_{2}=0$ and $e_{1}\cdot e_{2}=2$ . Let $T$

be $T^{+}$ or $T^{-}$ . Then we see $T^{*}(e_{i})=-e_{i}(i=1,2)$ . Let $S$ be the subgroup of $L$ generated by

$e_{1}$ and $e_{2}$ . Then $S$ is a primitive subgroup of $L$ . We set $\varphi=T^{*}$ and $\theta=\varphi|s$ .

We now obtain two “lattices with involutions” $(L, \varphi)$ and $(S, \theta)$ . Let $i$ denote the inclusion

map : $Sarrow L$ , and we set $G=$ {id $s$}. Then

$(L, \varphi, i)$

is an involution of a lattice with condition $(S, \theta, G)$ in the sense of Nikulin [19]. We will give

precise definitions in the next section.

\S 3. Definitions
By a lattice we mean a nondegenerate symmetric bilinear form over $Z$ . By a homomo$7phiSm$

of lattices we mean a group homomorphism preserving the bilinear form.

By a condition (on an involution of a lattice) we mean a triple $(S, \theta, G)$ , where $S$ is a

nondegenerate lattice, $\theta$ is an involution of $S$ , and $G$ is a distinguished subgroup of $O(S, \theta)$ ,

where we set $o(S, \theta)=$ { $f$ : automorphism $\mathrm{o}\mathrm{f}S|f\circ\theta=\theta\circ f$}. In [19] $S$ is assumed to be

possibly degenerate, but in this article we assume that it is nondegenerate.

By an involution (of a lattice) with condition $(S, \theta, G)$ we mean a triple $(L, \varphi, i),$ $L$ is a

lattice, $\varphi$ is an involution of $L$ and $i$ : $S\subset L$ is a primitive embedding of lattices which satisfies

$\varphi\circ i=i\circ\theta$ . Two involutions $(L, \varphi, i)$ and $(L’, \varphi’, i’)$ with condition $(S, \theta,G)$ are called isomorphic
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if there is an isomorphism $u:Larrow L’$ of lattices with involutions (that is, $\varphi’\circ u=u\circ\varphi$ ) such
that $u$ preserves the condition $(S, \theta, G)$ (that is, $u\circ i=i’\circ g$ for some $g\in G$). Moreover, we
introduce a weaker equivalence relation. We say two involutions $(L, \varphi, i)$ and ($L’,$ $\varphi’,$ il) with
condition $(S, \theta, G)$ belong to a same genvs if for every prime $p$ ($=2,3,5,7,$ $\cdots$ , and $\infty$), there
exists an $Z_{p}$-isomorphism $u:L\otimes_{z^{Z_{p}}}arrow L’\otimes_{Z^{Z_{p}}}$ of induced lattices with induced involutions
(that is, $\overline{\varphi’}\circ u=u\circ\overline{\varphi}$ ) such that $u$ preserves the condition $(S, \theta, G)$ (that is, $u\mathrm{o}i=i’\mathrm{o}g$

for some $g\in G$). (We are refered to, for example, p.43 of [17] for the definition of ‘genus’.
The author could not find the clear definition of the genus of an involution of a lattice with a
condition in [19].)

In this article, as in [19], we treat only even lattices. If $M$ is a (nondegenarate) lattice, we
set $A_{M}=M^{*}/M$ , which is called the discriminant group $0,\mathrm{f}M$ , and $q_{M}\mathrm{d}.$enOt.e$\mathrm{s}$ the discriminant
(quadratic) form of M. (For the details, see p.109 of [18].)

For an involution of a lattice $(L, \varphi, i)$ with condition
$(S, \theta, G.)_{\mathrm{S}}.\mathrm{t}.\mathrm{a}\mathrm{t}.\mathrm{e}\mathrm{d}.\mathrm{a}\mathrm{b}\mathrm{o}\mathrm{V}\vee \mathrm{e}$ , we consider the

restricted lattices:
$L_{\pm}=\{X\in L|\varphi(X)=\pm x\}$

and
$S_{\pm}=\{_{X\in}s|\theta(_{X)\pm x\}}=$ .

Since we see that the discriminant group $A_{L}+=L_{+}^{*}/L_{+}$ is isomorphic to the direct sum of some
$Z/2’ \mathrm{s}$ . Let $a$ denote the number of those $Z/2’ \mathrm{s}$ . And let $(t_{(+)}, \iota_{(}-))$ denotes the signature of
$L_{+}$ .

We define the invariants $\delta_{\varphi}$ and $\delta_{\varphi S}$ as follows.

$\delta_{\varphi}=\{$

$0$ if $x\cdot\varphi(x)\equiv 0$ (mod2) $\forall x\in L$

1 otherwise

$\delta_{\varphi S}=\{$

$0$ if $x\cdot\varphi(x)\equiv x\cdot s_{\varphi}$ (mod2) $\forall x\in L$

for some $s_{\varphi}$ in $S$

1 otherwise

Then $(L, \varphi, i)$ is of one of the following 3 types:

Type $0$ : $\delta_{\varphi}=0$ (then, $\delta_{\varphi S}=0$ )
Type Ia: $\delta_{\varphi}=1$ and $\delta_{\varphi S}=0$

Type Ib: $\delta_{\varphi S}=1$

For the elemen.ts $x_{\pm}\in S_{\pm}$ , we define the invariant..
$\delta_{x}\pm=\{$

$0$ if $x_{\pm}\cdot L_{\pm}\equiv 0$ (mod2)
1 otherwise

Then we get two functions $\delta_{\pm}:$ $x_{\pm}\mapsto\delta_{x}\pm$
’ and we define

$H_{\pm}= \frac{1}{2}\delta_{\pm}^{-1}(\mathrm{o})/S_{\pm}$.
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We see they are contained in $( \frac{1}{2}S_{\pm}\cap S_{\pm}^{*})/S_{\pm}$ . An another equivalent definition of $H_{\pm}$ is given

in p.105 of [19]. We use the above definition because of the importance of topological interpre-

tations (see for example, [10] and Lemma 4 in \S 6) of the invariants $\delta_{x}\pm\cdot$

Finally, we define the group $H_{+}\oplus_{\gamma}H_{-}$ and the embedding $\gamma_{r}$ : $H_{+}\oplus_{\gamma-}Harrow A_{L}\mathrm{a}\mathrm{s}+$ in p.105

of [19]. And we set $q_{r}=\gamma_{r}^{*}q_{L}+$
’ where $q_{L}+\mathrm{i}\mathrm{s}$ the discriminant form of $L_{+}$ . Then $q_{r}$ is a ‘finite

quadratic form’ (see p.108 of [18] for the definition). And note that the form $q_{r}$ is possibly
degenerate. See also p.108 of [18] for the definition of degeneracy of finite quadratic forms.

We put $q=q_{L}+\mathrm{a}\mathrm{n}\mathrm{d}$ let $v_{q}(\in A_{L})+$ denote the characteristic element($\mathrm{s}\mathrm{e}\mathrm{e}$ p.108 of [19]) of
$q$ . We see the following:

$\delta_{\varphi}=0$ if and only if $v_{q}=0$

$\delta_{\varphi S}=0$ if and only if $v_{q}$ is contained in $\gamma_{r}(H_{+}\oplus_{\gamma}H_{-})$

Thus, for Type Ia, we denote by $v$ the element of $H_{+}\oplus_{\gamma}H$-such that $\gamma_{r}(v)=vq$ . We call

it the characteristic element of the embedding $\gamma_{r}$ .

\S 4. Our situation (II)
We return to our situation stated in \S 2. We first remark that $t_{(+)}=1$ in our case. (For the

reason, see p.156 of [18].) Next, it is obvious that $S_{+}=\{0\}$ and $S_{-}=S$ because $\theta=-1$ . We
see the discriminant group (recall \S 3) As- $=S_{-}^{*}/S_{-}=S^{*}/S$ is generated by $[e_{1}^{*}](=[ \frac{1}{2}e_{2}])$ and
$[e_{2}^{*}](=[ \frac{1}{2}e_{1}])$ , and hence it is isomorphic to $Z/2\oplus Z/2$ , where $e_{i}^{*}(i=1,2)$ is the dual element
of $e_{i}$ . While $As_{+}=H_{+}=\{0\},$ $H_{-}$ is a subgroup of $(S_{-}^{*} \cap(\frac{1}{2}S_{-}))/S-=A_{S_{-}}$ , namely, one of

the following 5 subgroups:

$\{0\},$ $<[ \frac{1}{2}e_{1}]>,$ $<[ \frac{1}{2}e_{2}]>,$ $<[ \frac{1}{2}h]>$ and $A_{S_{-}}$ ,

where we set $h=e_{1}+e_{2}$ .

\S 5. Applications of Nikulin’s results to our situation

We now fix our condition $(S, \theta, G)$ , namely, $S$ is the lattice represented by $,$ $\theta=-1$

and $G=\{\mathrm{i}\mathrm{d}_{S}\}$ . And we restrict ourselves to involutions of lattices $(L, \varphi, i)$ with the condition
$(S, \theta, G)$ , where $L$ is the even unimodular lattice of signature $(3,19)$ (so-called the $K3$ lattice)

and $t_{(+)}=1$ .
In our case, since $H_{+}=0$ , we have $q_{r}=(-qs_{-)|H}-(\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{l}1 \S 3)$ , and hence, it is just de-

termined by $H_{-}$ . For the embedding $\gamma_{r}$ : $q_{r}arrow q$ , we have $\gamma_{r}=\gamma_{H_{-}}=\gamma_{LS}+-(s\mathrm{e}\mathrm{e}$ p.105 of
[19] $)$ . And, in the case of TypeIa, the characteristic element $v$ of the embedding $\gamma_{r}$ (recalI \S 3)
is contained in $H_{-}$ .

We now apply the results of Theorem 1.6.3 and Theorem 1.8.3 of [19] to our situation. We
get the following conclusions:
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(1) The genus of $(L, \varphi, i)$ is uniquely determined by the ‘type’ (Type $0$ , Type Ia or Type Ib),

the invariants $a,$ $t_{(-)},$ $H_{-}$ , and in the case of TypeIa, the characteristic element $v(\in H_{-})$ of
the embedding $\gamma_{r}$ .
(2) Two lists $H_{-}$ and $H_{-}’$ (with identical ‘type’ and invariants $a,$ $t_{(-)}$ ), and in the case of

Type Ia, $v(\in H_{-})$ and $v’(\in H_{-}’)$ give identical genera if and only if $H_{-}=H_{-}’$ , and $v=v’\mathrm{f}\mathrm{o}\Gamma$

Type Ia.
(3) There exists an involution of a lattice $(L, \varphi,.i)$ with the condition $(S, \theta, G)$ (fixed as above)

with $L$ even unimodular of signature $(3,19)$ , $\mathrm{t}(+)=1$ , an designated ‘type’ (Type $0$ , Type Ia or
Type Ib), invariants $a,$ $t_{(-)},$ $H_{-}$ , and, for Type Ia, the characteristic element of the embedding
$\gamma_{r}$ being $v(\in H_{-})$ if and only if the ‘type’ and these invariants $a,$ $t_{(-)},$ $H_{-}$ , and $v(\in H_{-})$ (for

Type Ia) satisfy the Conditions 1.8.1 and 1.8.2 of [19].

Then let us enumerate up all the data of the invariants:

‘type’ (Type $0$ , Type Ia or Type Ib), $a,$ $t_{(-)},$ $H_{-}$ ,

(and in the case of Type Ia, the characteristic element $v(\in H$-))

which satisfy the Conditions 1.8.1 and 1.8.2 of [19]. Actually, this is a hard and tedious task.

The results are written in Tables 1-3 below.
Notation: In Tables 1-3, the symbols a, $\mathrm{t}(-)$ and H- mean $a,$ $t_{(-)}$ and $H$-respectively.

And the symbols $0,$ $\mathrm{e}1,$ $\mathrm{e}2,$
$\mathrm{h}$ and S- stand for the data of $H_{-}$ , namely, the subgroups $\{0\}$ ,

$<[ \frac{1}{2}e_{1}]>,$ $<[ \frac{1}{2}e_{2}]>,$ $<[ \frac{1}{2}h]>\mathrm{a}\mathrm{n}\mathrm{d}$ $A_{S_{-}}$ (recall \S 4) respectively.

We remark that in our case, every $H_{-}$ in Type Ia is generated by a unique nonzero element,

and hence it is nothing but the characteristic element. Hence, we don’t need to designate the

characteristic elements in Type Ia, either.
In each ‘type’ (Type $0$ , Type Ia or Type Ib), the data $(a, t_{(-)}, H_{-})$ are in bijective corre-

spondence with the genera because of the conclusions (1),(2) above and the fact that $a$ and
$t_{(-)}$ are genus invariants (see p.137 of [18]). Thus we see that there are 51 genera of Type $0,34$

genera of Type Ia and 174 genera of Type Ib in our situation.
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Table 1: TypeO

Table 2: TypeIa
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Table 3: TypeIb
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\S 6. Topological interpretations of each genus
In this section, for each our genus, we investigate the topological properties of nonsingular

real algebraic curves of bidegree $(4,4)$ on $RP^{1}\cross RP^{1}$ which realize that genus. We recall our

situation stated in \S 2.
Let $RA$ be the real part of $A$ , i.e., $A\cap RP^{1}\cross RP^{1}$ . See the section 2 of [13] for the

definit.ions of the following notions concerning $RA$ :
the notion of $(M-i)$-curves of bidegree $(4,4)$ ,
the torsion $(s, \mathrm{t})(\in Z\mathrm{x}Z)$ of each connected component of $RA$ ,
oval, non-oval, odd branch, even branch

We can set $B^{+}(B^{-})=\{F\geq 0\}(\{F\leq 0\})(\subset RP^{1}\cross RP^{1})$ , where we fix a defining (real)

polynomial $F$ of $A$ . We recall the two anti-holomorphic involutions $T^{+}$ and $T^{-}$ of $Y$ , and let
$RY^{\pm}$ denote the fixed point sets of $T^{\pm}$ . Then, since our bidegree is $(4,4)$ , we can regard $RY^{\pm}$

as the doubles of $B^{\pm}$ respectively (see Remark 3.2 of [12] for the reason) replacing $F\mathrm{b}\mathrm{y}-F$ if

necessary.
We call $RA$ a dividing curve (or curve of type I ([25])) if $A\backslash RA$ is disconnected, and non-

dividin.g curve (or curve of type II) if otherwise. Moreover, following [20], we call a real scheme

is of type I if all the curves with this scheme are of type I, of type II if they all are of type II,

and of indeterminate type if some are of type I and others are of type II.

Lemma 1 ([12]) For a nonsingular real algebraic curve $RA$ of bidegree $(4, 4)$ on $RP^{1}\cross RP^{1}$ ,

we have the following:
(1) $[RY^{+}]=[RY^{-}]$ in $H_{2}(Y;^{z}/2)$

(2) $IfRA$ is dividing, then

$[RY^{\pm}]=$

’

$0$ (if $RA$ has only ovals)
$(le_{1})_{\mathrm{m}\mathrm{o}\mathrm{d}}\wedge 2$ (if $RA$ has odd branches with odd $s$ )
$(le_{2})_{\mathrm{m}\mathrm{o}}\wedge \mathrm{d}2$ (if $RA$ has odd branches with odd $t$ )

$(lh)_{\mathrm{m}}\wedge \mathrm{o}\mathrm{d}2$ (if $RA$ has even branches with $(|s|,$ $|t|)=(1,1)$ )

in $H_{2}(Y;Z/2)$ , where $l\wedge$ is the integer defined in [12], and we use the same notations for the
Poincar\’e $duds$ of the cohomology classes $e_{i}(i=1,2)$ defined in \S 2.

We next quote the following collection of useful results. See [18] for the terminology.

Theorem 2 ([18], Theorems 3.10.5 and 3.10.6) If $Y$ belongs to a coarse projective equiv-

alence class of real $K3$ surfaces corresponding to an isomorphism class ofpolarlized integral in-

volutions $(L, \varphi, h)$ of the even unimodular lattice of signature $(3, 19)$ with $h^{2}=n$ (: a designated

even positive integer), $t_{(+)}=1$ , and the invariants $t_{(-)},$ $a,$ $\delta_{h},$ $\delta_{\varphi}$ and $\delta_{\varphi,h}$ ,
then we have the following:
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(1) The real part $RY$ of $Y$ is an orientable dosed surface which is homeomo$7phic$ to

$\{$

$\emptyset$ if $\delta_{\varphi}=0,$ $(a, t_{()}-)=(10,9)$

$T^{2}$ II $T^{2}$ if $\delta_{\varphi}=0,$ $(a, t_{(-)})=(8,9)$

$\Sigma_{g}$ II $k(S^{2})$ in the remaining cases,

where we set $g= \frac{21-a-t(-)}{2}$ and $k= \frac{1-a+t_{(-)}}{2},$ $\Sigma_{g}$ denotes the orientable closed surface of genus
$g$ , and $k(S^{2})$ means the disjoint union of $k$ copies of $S^{2}$ .

(2) When $RY\neq\emptyset$ ,
$\delta_{h}=0\Leftrightarrow$ the linear system $|h|_{R}$ cuts out on $RY$ a cycle

homologous to $\mathit{0}$ in $H_{1}(RY;Z/2)$ .
(3) $\delta_{\varphi}=0\Leftrightarrow[RY]=0$ in $H_{2}(Y;^{z}/2)$ .
(4) $\delta_{\varphi,h}=0\Leftrightarrow[RY]=h_{\mathrm{m}\mathrm{o}\mathrm{d} 2}$ in $H_{2}(Y;^{z}/2)$ .

Let us return to the situation in \S 2 again. We set $T=T^{+}$ or $T^{-}$ and $\varphi=\tau*$ . Let $RY$

be the fixed point set of $T$ . We set $h=e_{1}+e_{2}$ in \S 4. Then $(L, \varphi, h)$ is a ‘polarized integral
involution’ ([18]) with $h^{2}=4$ . Hence, by Lemma 1 and Theorem 2, we have the following:

Lemma 3 Let $RA$ be a nonsingular real algebraic curve of bidegree $(4, 4)$ on $RP^{1}\cross RP^{1}$ .

Then we have the following:
(1) $\delta_{\varphi}=0\Leftrightarrow[RY]=0$ in $H_{2}(Y;^{z}/2)$ .

(2) $\delta_{\varphi,h}=0\Leftrightarrow[RY]=h_{\mathrm{m}\mathrm{o}\mathrm{d} 2}$ in $H_{2}(Y;^{z}/2)$ .
Moreover, suppose that $RA$ is dividing. Then we have the following:
(3) $[RY]=0$ in $H_{2}(Y;Z/2)\Leftrightarrow RAha\mathit{8}$ only ovals, or it has non-ovals with $l\wedge$ even.
(4) $[RY]=h_{\mathrm{m}\mathrm{o}\mathrm{d} 2}$ in $H_{2}(Y;Z/2)\Leftrightarrow RA$ has non-ovals with $(|s|, |t|)=(1,1)$ and $l\wedge$ odd.

When $RA$ has only ovals, $B^{+}$ or $B^{-}$ contains ‘the outermost component’ (cf. [12]). As
stated above, $RY^{\pm}$ are the doubles of $B^{\pm}$ respectively. Thus we can divide the situations of
$(Y, T)$ into the following 4 cases:

$\mathrm{A}$ : $RA$ has only ovals and $RY$ contains the double of the outermost component.
$\mathrm{A}’$ : $RA$ has only ovals and $RY$ does not contain the double of the outermost component.
$\mathrm{B}$ : $RA$ has odd branches.
$\mathrm{C}$ : $RA$ has even branches.

We now recall all the real schemes (i.e., isotopy types) of curves of bidegree $(4,4)$ on a hy-
perboloid, which are given in \S 3.11 of [25] or at the end of [13]. We also give the correspondence
between the notations for real schemes used in [25] and [13]. See the following table:
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It is easily seen that the real scheme of a curve determines the topological types of $RY^{\pm}$ as
in the following table:

Now the subgroup $H_{-}$ is defined by the invariants $\delta_{e_{1}},$ $\delta_{e_{2}}$ and $\delta_{h}$ . Recall the definitions of
$\delta_{x}\pm \mathrm{i}\mathrm{n}$ \S 3.
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Lemma 4 ([13], Lemma 2) Let $RA$ be a nonsingular real algebraic curve of bidegree $(4, 4)$

on $RP^{1}\cross RP^{1}$ . If $RA$ has odd branches with odd $s$ (resp. t), then we have $\delta_{e_{1}}=0$ (resp.
$\delta_{e_{2}}=0)$ .

The following lemma can be proved in the similar way to Lemma 4 above:

Lemma 5 Let $RA$ be a nonsingular real algebraic curve of bidegree $(4,4)$ on $RP^{1}\cross RP^{1}$ .
Then we have the following:
(1) $If(Y, T)$ is in A $f$ case and $RY\neq\emptyset_{2}$ then $\delta_{e_{1}}=\delta_{e_{2}}=\delta_{h}=0$ , namely, $H_{-}=A_{S_{-}}$ .

(2) $If$ we are in $C$ case, then $\delta_{h}=0$ .

For only $h$ , we can prove $‘\zeta \mathrm{t}\mathrm{h}\mathrm{e}$ inverse assertion” by Theorem 2, (2) above, and we get the
following:

Lemma 6 Let $RA$ be a nonsingular real algebraic curve of bidegree $(4, 4)$ on $RP^{1}\cross RP^{1}$ . If
$RY\neq\emptyset$ and $\delta_{h}=0$ for $(Y, T)$ , then we are in $A$ ’ case or $C$ case.

Lemma 7 Let $RA$ be a nonsingular real algebraic curve of bidegree $(4, 4)$ on $RP^{1}\cross RP^{1}$ .

Then, for $(Y, T)_{\rangle}$ we have

$x\cdot T_{*}(x)\equiv x\cdot[RY]$ (mod 2) $\forall x\in H_{2}(Y;^{z})$

Proof. $T:Yarrow Y$ is an orientation preserving involution, and its fixed point set $RY$ is an ori-
entable closed surface (Theorem 2, (1)). Hence, by Lemma 3 of [1], we get the required results. $\square$

Remark 8 By the above lemma, we see

$v_{q}=[ \frac{1}{2}[RY]]$ $\in L_{+}^{*}/L_{+}=A_{L}+$ ’

where $v_{q}$ is the $charaCteri_{\mathit{8}}ti_{C}$ element (recall \S 3) of $q$ .

Proposition 9 Let $RA$ be a nonsingular real algebraic curve of bidegree $(4, 4)$ on $RP^{1}\cross RP^{1}$ .

If $RA$ is dividing, then $(L, \varphi, i)$ is of Type $\mathit{0}$ or Type $Ia$ .

Proof. If $RA$ is dividing, by (2) of Lemma 1, we have $[RY]\equiv s_{\varphi}$ (mod $2L$) for some $s_{\varphi}\in S$ .
By Lemma 7, we have $\delta_{\varphi S}=0.\coprod$

Our aim is to restrict the real schemes of the curves which realize each genus enumerated
in Tables 1-3.

We first present ‘candidates’ of the real schemes of the curves which realize each genus by
using the above results. See Tables 4-6 below.

Then we get some further results from Tables 4-6:
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Proposition 10 In Type $Ia,$ A cases are impossible.
(Namely, every real scheme with the superscript 1) in Table 5 can be removed.)

Proof. In Table 5 (i.e., TypeIa), the real schemes 8, $\frac{4}{1}3,$ $\frac{1}{1}4,$ $\frac{3}{1}2,$ $\frac{5}{1},4,$ $\frac{2}{1}1,$ $\frac{1}{1}$ are presented as

candidates in the columun A. Suppose that there exists a curve $RA$ such that its real scheme is

8, $(Y,T^{-})$ is in A case, $(L, \varphi, i)$ is of Type Ia, and $H_{-}=<[ \frac{1}{2}e_{1}]>$ . Since $(L, \varphi, i)$ is of Type Ia

and $H_{-}=<[ \frac{1}{2}e_{1}]>$ , we see $v=[ \frac{1}{2}e_{1}]$ . By Remark 8, we have $v_{q}=1 \frac{1}{2}1^{R}Y^{-}$ ]] $\in A_{L}+\cdot$ Hence,
$\gamma_{r}([\frac{1}{2}e_{1}])=1\frac{1}{2}1^{R}Y^{-}]]$ , where $\gamma_{r}=\gamma_{L}+^{S}-(\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{l}1 \S 5)$ . This means $\frac{1}{2}e_{1}+\frac{1}{2}[RY-]\in L$. In the

meanwhile, by Lemma 1, $[RY^{+}]\equiv[RY^{-}]$ (mod $2L$). Hence, we also get $e_{1}\equiv[RY^{+}]$ (mod
$2L)$ . Hence, for the same curve $RA$ with the different involution $T^{+}$ , the associated involution
of our lattice $(L, \varphi’, i/)$ with our condition is of TypeIa, too. It is obvious that $(Y, T^{+})$ is in
$\mathrm{A}$

’ case. So $RY^{+}$ is homeomorphic to $8S^{2}$ . Then, by Theorem 2 (1), we see $(a, t_{(-)})=(4,17)$ .
But this pair of $(a, \mathrm{t}_{(-)})$ does not appear in Type Ia. This is a contradiction. For the remaining

real schemes, we can also prove the same assertion in the same way. $\square$

Proposition 11 In Type $\mathit{0}_{j}$ the real schemes $\frac{5}{1},$ $\frac{2}{1}1and/4/0$ are impossible.
(Namely, every real scheme with the superscript 2) in Table 4 can be removed.)

Proof. We consider a curve $RA$ such that its real scheme is $\frac{5}{1}$ and $(Y, T^{-})$ is in A case.
Then, for the same curve $RA$ with the different involution $T^{+},$ $(Y,T^{+})$ is in $\mathrm{A}$

’ case, and $RY^{+}$

is homeomorphic to $\Sigma_{5}$ . By Theorem 2 (1), we see $(a, t_{(-)})=(6,5)$ . By Lemma 5, we have
$H_{-}=A_{S_{-}}$ . Since $(a,t_{(-)}, H_{-})=(6,5, A_{S}-)$ appears only in Type Ib, we see $\delta_{\varphi}=1$ . Hence,
$[RY^{+}]\neq 0(\in H_{2}(Y;Z/2))$ because of Remark 8 and the end of \S 3, or Theorem 2 (3). Then
we also get $[RY^{-}]\neq 0(\in H_{2}(Y;^{z}/2))$ . Hence we have $\delta_{\varphi}=1$ also for $T^{-}$ This means $\frac{5}{1}$ does
not appear in Type $0$ .

We next consider a curve $RA$ such that its real scheme is $\frac{2}{1}1$ and $(Y, T^{-})$ is in A case. Then,

for the same curve $RA$ with the different involution $T^{+},$ $RY^{+}$ is homeomorphic to $\Sigma_{2}\mathrm{I}\mathrm{I}1S^{2}$ . By
Theorem 2 (1), we see $(a, t_{(-)})=(8,9)$ . If moreover $\delta_{\varphi}=0$ , then the real part is homeomorphic
to $\mathcal{I}^{Q}$ II $T^{2}$ by the same theorem. Hence we have $\delta_{\varphi}=1$ . Then we can prove that $\frac{2}{1}1$ does not
appear in Type $0$ in the same way as $\frac{5}{1}$ .

We last consider a curve $RA$ such that its real scheme is /4/0. Then $RY^{+}$ or $RY^{-}$ is
homeomorphic to $\Sigma_{5}$ . Hence, we have $(a, t_{(-)})=(6,5)$ , and $[ \frac{1}{2}h]\in H_{-}$ by Lemma 5. Since such
genera appear only in Type Ib, we get $\delta_{\varphi}=1$ . Thus we can prove $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}/4/0$ does not appear
in Type $0$ in the same way as above. $\square$
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$’\perp.\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}4$
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$\perp \mathrm{a}\mathrm{D}\mathrm{l}\mathrm{e}0$
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3 2 $<[ \frac{1}{2}h]>$ /0/7
3 2 $A_{S_{-}}$ $\frac{8}{1}$ /0/74)
3 4 $\{0\}$ $\frac{1}{1}5$

3 4 $<[ \frac{1}{2}h]>$ /1/6
3 6 $\{0\}$ $\frac{2}{1}4$ :
3 6 $<[ \frac{1}{2}h]>$ /2/5
3 8 $\{0\}$ $\frac{3}{1}3$

3 8 $<[ \frac{1}{2}e_{1}]>$ $\frac{3}{1}3^{4)}$

$|4 \frac{3|}{\underline 3}$

3 8 $<[ \frac{1}{2}e_{2}]>$ $\frac{3}{1}3^{4)}$

3 8 $<[ \frac{1}{2}h]>$ /3/4
3 8 $A_{S_{-}}$ $\frac{5}{1}3$ /3/44)
3 10. $-\{0\}$ $\frac{4}{1}2$

3 10 $<[ \frac{1}{2}e_{1}]>$ $\frac{4}{1}2^{4)}$

$|3 \frac{4|}{\underline 4}$

3 10 $<[ \frac{1}{2}e_{2}]>$ $\frac{4}{1}2^{4)}$

3 10 $<[ \frac{1}{2}h]>$ /4/3
3 10 $A_{S-}$ $\frac{4}{1}4$ /4/34)

omitted (similar to the above)

4 13 $\{0\}$ $\frac{5}{1}$

4 13 $<[ \frac{1}{2}h]>$ /5/1

omitted (similar to the above)

6 5 $\{0\}$ 4
6 5 $<[ \frac{1}{2}e_{1}]>$ 44)

$|4 \frac{0|}{\underline 0}$

6 5 $<[ \frac{1}{2}e_{2}]>$ 44)

6 5 $<[ \frac{1}{2}h]>$ /0/4
6 5 $A_{S_{-}}$ $\frac{5}{1}$ /0/44)

omitted (similar to the above)

6 9 $\{0\}$ $\frac{2}{1}1$

6 9 $<[ \frac{1}{2}e_{1}]>$ $\frac{2}{1}1^{4)}$

$|\underline{\frac{2|2}{2}}$

6 9 $<[ \frac{1}{2}e_{2}]>$ $\frac{2}{1}1^{4)}$

6 9 $<[ \frac{1}{2}h]>$ /2/2
6 9 $A_{S_{-}}$ $\frac{3}{1}2$ /2/24)
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Table 6

We next consider the dividingness of nonsingular real algebraic curves of bidegree $(4, 4)$ on
a hyperboloid. We first quote the following known result:

Proposition 12 ([12]) For the dividingness of nonsingular real algebraic curves $RA$ of bide-

gree $(4, 4)$ on a hyperboloid, we have the following:
(1) $M$ -curves are dividing.
(2) The number of the connected components of a dividing curve $RAi\mathit{8}$ even.
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(3) The real schemes $\frac{2}{1}5$ and $\frac{6}{1}1$ are of type I.
(4) The real schemes $\frac{1}{1}6,$ $\frac{3}{1}4,$ $\frac{5}{1}2,$ $\frac{7}{1},6,$ $\frac{2}{1}3,$ $\frac{4}{1}1,$ $\frac{1}{1}2,$ $\frac{3}{1}$ and 2 are of type II (by the Arnol $\prime d_{\mathit{8}}$

) type
congruence.)
(5) The real schemes $|\lambda_{1}|\lambda_{2}or/\lambda_{1}/\lambda_{2}$ with $\lambda_{1}-\lambda_{2}$ odd are of type II.
(6) The real schemes $\frac{1}{1}\frac{1}{1},4(1,0)$ and $4(1,1)$ are of type I.

By Proposition 9, we immediately get the following:

Proposition 13 (1)Curves in Type $Ib$ are not dividing. (2) The real schemes which appear
only in Type $n$ are of type II.

By (2) above, we get different proofs of the following results:

Corollary 14 (Zvonilov $[25],3.11$ ) We have the following:
(1) The real schemes $\frac{5}{1}\rangle$ $4,$ $\frac{2}{1}1$ and $\frac{1}{1}$ are of type II.
(2) The real schemes $|6|0,$ $|4|2,$ $|3|1and|2|0$ are of type II.
(3) The real $schemeS/4/0,$ $/1/1and/\mathrm{O}/\mathrm{O}$ are of type II.

Remark:
(1) Zvonilov proved the above assertions using his results in [23].
(2) Gilmer’s result ([4]) on the rotation numbers of dividing curves can also contribute to the

above assertion.
(3) We can prove the non-dividingness of 4 by Gilmer’s Theorem 2 (b) in [4].

However, at present, it seems that we cannot prove the following assertions by means of our
Tables 4-6.

Proposition 15 (Zvonilov $[25],3.11$ ) We have the following:
(1) The real scheme $|0|0$ is of type II.
(2) The real scheme8 $|5|1$ and $2(1,2)$ are of type I.

Remark:
By the above result, we can remove $2(1,2)$ from Table 6 (i.e.,Type Ib).

\S 7. Some questions
In \S 6, we tried to restrict the real schemes of the curves which realize each genus enumerated

in Tables 1-3. In this section, we give some questions.

Question 1 In the situation of\S 2, we set $K=RY\cap\pi-1(\infty\cross P^{1})$ (resp. $RY\cap\pi^{-1}(P^{1}\cross\infty)$ ),

where $RY$ denotes the fixed point set of T. We suppose that $RY\neq\emptyset$ . Then, is the following
assertion true? $‘ {}^{t}If\delta_{e_{1}}$ (resp. $\delta_{e_{2}}$ ) $=0$ , then $[K]=0(\in H_{1}(RY;Z/2)).$ ”
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If the above assertion is true, then we can remove the real schemes with the superscript 4)

from Tables 4-6.

Question 2 In the case of Type $Ia$, is $(a,t_{(}-),$ $H-)=(10,9, e_{1})$ (resp. (10, 9, $e_{2})$) realized by
both a curve with its real scheme $|0|0$ (resp. $\overline{\frac{0}{0}}$ ) and a curve with its real scheme $2(1,2)$ (resp.
$2(2,1))$ ?

Question 3 In each case of Type $\mathit{0}$ and Type $Ia$, is it possible that some dividing curves and
some non-dividing curves realze an identical value of $(a, t_{(-)}, H_{-})$ ($i.e.$ , a genus)?

Question 4 In the case of Type $\mathit{0}$, the 4 genera with $(a, \mathrm{t}_{(-)})=(10,9)$ are all realized by any
curves (with their real parts empty)?
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