Classification of involutions of lattices with conditions and real algebraic curves on a hyperboloid *

(条件付き対合付き格子の分類と hyperboloid 上の実代数曲線)

Sachiko Saito[†] (齋藤幸子)

§1. Introduction

Real algebraic curves on a hyperboloid (i.e., $\mathbf{R}P^1 \times \mathbf{R}P^1$) or an ellipsoid have been studied by several people, D. A. Gudkov ([5]), V. I. Zvonilov ([23],[24],[25],[26]), P. Gilmer ([4]), G. Mikhalkin ([14],[16],[15]), the author ([12],[11],[10],[13],[21]) and others. The author has been studying especially curves of bidegree (4,4) on a hyperboloid. The classification of "real schemes" (i.e., isotopic classification on $\mathbf{R}P^1 \times \mathbf{R}P^1$) of nonsingular real algebraic curves of bidegree (4,4) on a hyperboloid was completed by Zvonilov ([25]) and the author ([13]) independently.

In the same paper [25], Zvonilov also judged the "dividingness" (see §6) of each real scheme and the "complex orientation" of each dividing curve. He did this work by using "Rokhlin type formula" obtained by himself ([23]) and Gilmer's results on the rotation numbers of dividing curves ([4]).

In the meanwhile, after her work of the isotopic classification, the author started to apply Nikulin's theory of "involutions of lattices with conditions" (see [19]) to curves of bidegree (4,4) on a hyperboloid. I. Itenberg ([6],[8],[7],[9]) and A. Degtyarev ([2],[3]) also have done similar approaches for singular curves of degree 6 in $\mathbb{R}P^2$ or singular surfaces of degree 4 in $\mathbb{R}P^3$. In 1995, the author finished enumerating up all the "genera" of our "involutions of lattices with our condition", i.e., the 2-dimensional cohomology groups of the double coverings of $\mathbb{P}^1 \times \mathbb{P}^1$ branched along nonsingular real algebraic curves of bidegree (4,4). The result of that work was first appeared in [21]. But "the table of all the genera" in [21] has some mistypes, duplications and a wrong topological interpretation. So the author distributed a revised table to some people. (The present article also includes the revised table in §5.)

Anyway, since then, the author has been investigating the topological properties of curves which realize each genus, where 'topological properties' mean real schemes, dividingness, complex orientations, e.t.c. In this article, the author will collect and arrange the processes and

^{*}This research is partially supported by Grant-in-Aid for Scientific Research (No.08740043), Ministry of Education, Science and Culture, Japan.

[†]Formerly, Sachiko Matsuoka

results of her investigation stated above, and prove some known or unknown facts by using 'the table of genera'. Finally, she will indicate some summarized questions.

Acknowledgment

The contents of this article were first announced orally at the Workshop on Topology of Real Algebraic Varieties held at the Fields Institute, Toronto, Jan. 6 - 10, '97. After her talk, some participants, especially Professors O. Viro, S. Finashin and P. Gilmer, gave her kindly comments. At the reception, Professors F. Mangolte and J. van Hamel, who work for real Enriques surfaces, gave her warm advice and encouragement. And besides, she could listen to some stimulating talk about real algebraic varieties. She would like to thank the organizing committee, who invited her to that workshop.

\S 2. Our situation (I)

Let A be a nonsingular real algebraic curve of bidegree(4,4) in $\mathbf{P}^1 \times \mathbf{P}^1$ and Y be the double covering of $\mathbf{P}^1 \times \mathbf{P}^1$ branched along A. Then the complex conjugation of $\mathbf{P}^1 \times \mathbf{P}^1$ is lifted into two anti-holomorphic involutions of Y, which are denoted by T^+ and T^- . (For the details, see [12],[11],[13].)

We set $L = H^2(Y; \mathbb{Z})$. Since the bidegree is (4,4), Y is a K3 surface. And so L is an even unimodular lattice of signature (3,19). We set $e_1 = \pi^*([\infty \times \mathbf{P}^1])$ and $e_2 = \pi^*([\mathbf{P}^1 \times \infty])$, where $\pi: Y \to \mathbf{P}^1 \times \mathbf{P}^1$ is the covering map. Then we see $e_1 \cdot e_1 = e_2 \cdot e_2 = 0$ and $e_1 \cdot e_2 = 2$. Let T be T^+ or T^- . Then we see $T^*(e_i) = -e_i$ (i = 1, 2). Let S be the subgroup of L generated by e_1 and e_2 . Then S is a primitive subgroup of L. We set $\varphi = T^*$ and $\theta = \varphi|_S$.

We now obtain two "lattices with involutions" (L, φ) and (S, θ) . Let i denote the inclusion map : $S \to L$, and we set $G = {id_S}$. Then

 (L, φ, i)

is an involution of a lattice with condition (S, θ, G) in the sense of Nikulin [19]. We will give precise definitions in the next section.

\S **3. Definitions**

By a *lattice* we mean a nondegenerate symmetric bilinear form over Z. By a *homomorphism* of lattices we mean a group homomorphism preserving the bilinear form.

By a condition (on an involution of a lattice) we mean a triple (S, θ, G) , where S is a nondegenerate lattice, θ is an involution of S, and G is a distinguished subgroup of $O(S, \theta)$, where we set $O(S, \theta) = \{f : \text{automorphism of } S | f \circ \theta = \theta \circ f\}$. In [19] S is assumed to be possibly degenerate, but in this article we assume that it is nondegenerate.

By an involution (of a lattice) with condition (S, θ, G) we mean a triple (L, φ, i) , L is a lattice, φ is an involution of L and $i: S \subset L$ is a primitive embedding of lattices which satisfies $\varphi \circ i = i \circ \theta$. Two involutions (L, φ, i) and (L', φ', i') with condition (S, θ, G) are called *isomorphic* if there is an isomorphism $u: L \to L'$ of lattices with involutions (that is, $\varphi' \circ u = u \circ \varphi$) such that u preserves the condition (S, θ, G) (that is, $u \circ i = i' \circ g$ for some $g \in G$). Moreover, we introduce a weaker equivalence relation. We say two involutions (L, φ, i) and (L', φ', i') with condition (S, θ, G) belong to a same genus if for every prime p (= 2, 3, 5, 7, \cdots , and ∞), there exists an \mathbb{Z}_p -isomorphism $u: L \otimes_{\mathbb{Z}} \mathbb{Z}_p \to L' \otimes_{\mathbb{Z}} \mathbb{Z}_p$ of induced lattices with induced involutions (that is, $\overline{\varphi'} \circ u = u \circ \overline{\varphi}$) such that u preserves the condition (S, θ, G) (that is, $u \circ i = i' \circ g$ for some $g \in G$). (We are referred to, for example, p.43 of [17] for the definition of 'genus'. The author could not find the clear definition of the genus of an involution of a lattice with a condition in [19].)

In this article, as in [19], we treat only even lattices. If M is a (nondegenarate) lattice, we set $A_M = M^*/M$, which is called the *discriminant group* of M, and q_M denotes the *discriminant (quadratic) form* of M. (For the details, see p.109 of [18].)

For an involution of a lattice (L, φ, i) with condition (S, θ, G) stated above, we consider the restricted lattices:

$$L_{\pm} = \{x \in L | arphi(x) = \pm x\}$$

and

$$S_{\pm} = \{ x \in S | \theta(x) = \pm x \}.$$

Since we see that the discriminant group $A_{L_+} = L_+^*/L_+$ is isomorphic to the direct sum of some $\mathbb{Z}/2$'s. Let a denote the number of those $\mathbb{Z}/2$'s. And let $(t_{(+)}, t_{(-)})$ denotes the signature of L_+ .

We define the invariants δ_{φ} and $\delta_{\varphi S}$ as follows.

$$\delta_{arphi} = \left\{egin{array}{ll} 0 & ext{if } x \cdot arphi(x) \equiv 0 \pmod{2} \ orall x \in L \ 1 & ext{otherwise} \end{array}
ight.$$
 $\delta_{arphi S} = \left\{egin{array}{ll} 0 & ext{if } x \cdot arphi(x) \equiv x \cdot s_{arphi} \pmod{2} \ orall x \in L \ & ext{for some } s_{arphi} \ ext{ in } S \ 1 & ext{otherwise} \end{array}
ight.$

Then (L, φ, i) is of one of the following 3 types:

Type 0: $\delta_{\varphi} = 0$ (then, $\delta_{\varphi S} = 0$) Type Ia: $\delta_{\varphi} = 1$ and $\delta_{\varphi S} = 0$ Type Ib: $\delta_{\varphi S} = 1$

For the elements $x_{\pm} \in S_{\pm}$, we define the invariant

$$\delta_{\boldsymbol{x}_{\pm}} = \begin{cases} 0 & \text{if } \boldsymbol{x}_{\pm} \cdot \boldsymbol{L}_{\pm} \equiv 0 \pmod{2} \\ 1 & \text{otherwise} \end{cases}$$

Then we get two functions $\delta_{\pm}: x_{\pm} \mapsto \delta_{x_{\pm}}$, and we define

$$H_{\pm} = \frac{1}{2} \delta_{\pm}^{-1}(0) / S_{\pm}.$$

We see they are contained in $(\frac{1}{2}S_{\pm} \cap S_{\pm}^*)/S_{\pm}$. An another equivalent definition of H_{\pm} is given in p.105 of [19]. We use the above definition because of the importance of topological interpretations (see for example, [10] and Lemma 4 in §6) of the invariants $\delta_{x_{\pm}}$.

Finally, we define the group $H_+ \oplus_{\gamma} H_-$ and the embedding $\gamma_r : H_+ \oplus_{\gamma} H_- \to A_{L_+}$ as in p.105 of [19]. And we set $q_r = \gamma_r^* q_{L_+}$, where q_{L_+} is the discriminant form of L_+ . Then q_r is a 'finite quadratic form' (see p.108 of [18] for the definition). And note that the form q_r is **possibly degenerate**. See also p.108 of [18] for the definition of degeneracy of finite quadratic forms.

We put $q = q_{L_+}$ and let $v_q \ (\in A_{L_+})$ denote the characteristic element (see p.108 of [19]) of q. We see the following:

 $\delta_{\varphi} = 0$ if and only if $v_q = 0$

 $\delta_{arphi S} = 0 \;\; ext{if and only if } \; v_q \; ext{is contained in } \gamma_r (H_+ \oplus_\gamma H_-)$

Thus, for Type Ia, we denote by v the element of $H_+ \oplus_{\gamma} H_-$ such that $\gamma_r(v) = v_q$. We call it the characteristic element of the embedding γ_r .

$\S4.$ Our situation (II)

We return to our situation stated in §2. We first remark that $t_{(+)} = 1$ in our case. (For the reason, see p.156 of [18].) Next, it is obvious that $S_+ = \{0\}$ and $S_- = S$ because $\theta = -1$. We see the discriminant group (recall §3) $A_{S_-} = S^*/S_- = S^*/S$ is generated by $[e_1^*]$ (= $[\frac{1}{2}e_2]$) and $[e_2^*]$ (= $[\frac{1}{2}e_1]$), and hence it is isomorphic to $\mathbb{Z}/2 \oplus \mathbb{Z}/2$, where e_i^* (i = 1, 2) is the dual element of e_i . While $A_{S_+} = H_+ = \{0\}$, H_- is a subgroup of $(S^*_- \cap (\frac{1}{2}S_-))/S_- = A_{S_-}$, namely, one of the following 5 subgroups:

$$\{0\}, < [\frac{1}{2}e_1] >, < [\frac{1}{2}e_2] >, < [\frac{1}{2}h] > \text{ and } A_{S_-},$$

where we set $h = e_1 + e_2$.

§5. Applications of Nikulin's results to our situation

We now fix our condition (S, θ, G) , namely, S is the lattice represented by $\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$, $\theta = -1$ and $G = \{ id_S \}$. And we restrict ourselves to involutions of lattices (L, φ, i) with the condition (S, θ, G) , where L is the even unimodular lattice of signature (3,19) (so-called the K3 lattice) and $t_{(+)} = 1$.

In our case, since $H_+ = 0$, we have $q_r = (-q_{S_-})|H_-$ (recall §3), and hence, it is just determined by H_- . For the embedding $\gamma_r : q_r \to q$, we have $\gamma_r = \gamma_{H_-} = \gamma_{L_+S_-}$ (see p.105 of [19]). And, in the case of TypeIa, the characteristic element v of the embedding γ_r (recall §3) is contained in H_- .

We now apply the results of Theorem 1.6.3 and Theorem 1.8.3 of [19] to our situation. We get the following conclusions:

(1) The genus of (L, φ, i) is uniquely determined by the 'type' (Type 0, Type Ia or Type Ib), the invariants $a, t_{(-)}, H_{-}$, and in the case of Type Ia, the characteristic element $v \ (\in H_{-})$ of the embedding γ_r .

(2) Two lists H_- and H'_- (with identical 'type' and invariants $a, t_{(-)}$), and in the case of TypeIa, $v \in H_-$) and $v' \in H'_-$) give identical genera if and only if $H_- = H'_-$, and v = v' for TypeIa.

(3) There exists an involution of a lattice (L, φ, i) with the condition (S, θ, G) (fixed as above) with L even unimodular of signature (3,19), $t_{(+)} = 1$, an designated 'type' (Type 0, Type Ia or Type Ib), invariants $a, t_{(-)}, H_{-}$, and, for Type Ia, the characteristic element of the embedding γ_r being $v \ (\in H_-)$ if and only if the 'type' and these invariants $a, t_{(-)}, H_{-}$, and $v \ (\in H_-)$ (for Type Ia) satisfy the **Conditions 1.8.1** and **1.8.2** of [19].

Then let us enumerate up all the data of the invariants:

'type' (Type0, TypeIa or TypeIb), $a, t_{(-)}, H_{-},$

(and in the case of Type Ia, the characteristic element $v \in (H_{-})$)

which satisfy the Conditions 1.8.1 and 1.8.2 of [19]. Actually, this is a hard and tedious task. The results are written in Tables 1–3 below.

<u>Notation</u>: In Tables 1–3, the symbols a, t(-) and H- mean a, $t_{(-)}$ and H_{-} respectively. And the symbols 0, e1, e2, h and S- stand for the data of H_{-} , namely, the subgroups $\{0\}$, $< [\frac{1}{2}e_1] >, < [\frac{1}{2}e_2] >, < [\frac{1}{2}h] >$ and A_{S_-} (recall §4) respectively.

We remark that in our case, every H_{-} in Type Ia is generated by a unique nonzero element, and hence it is nothing but the characteristic element. Hence, we don't need to designate the characteristic elements in Type Ia, either.

In each 'type' (Type0, TypeIa or TypeIb), the data $(a, t_{(-)}, H_{-})$ are in bijective correspondence with the genera because of the conclusions (1),(2) above and the fact that a and $t_{(-)}$ are genus invariants (see p.137 of [18]). Thus we see that there are 51 genera of Type0, 34 genera of TypeIa and 174 genera of TypeIb in our situation.

a	t (-)	H-
0	1	0
0	9	Ò
0	17	0
2	1	0
2	1	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ e1\\ e2 \end{array}$
2	. 1	e2
2	1	h
2	1	<u>S-</u> 0
2	5	0
2	5	h
2	9	0
2	9.	e1
$ \begin{array}{c} 0 \\ 0 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$ \begin{array}{c} 1\\ 9\\ 17\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 5\\ 5\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 13\\ 13\\ 13\\ \end{array} $	0 0
2	9	h
2	9	S-
2	13	<u>S-</u> 0
2	13	, h

· .		
2	17	e1
2	17	e2
2	17	h
2	17	S-
4	5	S- 0 e1
4	5	e1
4	5	e2
4	5	h
4	5	S- 0
4	9	0
4	9	e1
4	9	e2
4	9	h h
4	9	S-
4	13	e1
4	13	${ m e2}$
4	13	h
4	13	S-
	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 4 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	,	
4	17	S-
4 6	9	0
6	9	e1
6	9	e2
- 6	9 9 9	h
6	9	S-
6	13	S- S- 0
8		0
8	9 9 9	e1
8	9	e2
8	9	h
8	9	S-
10	. 9	e1
10	9 9 9	e2
10		h
10	9	S-

Table 1: Type0

		*								4
Туре	Ia									
	1		· · · ·		2 ¹		an an an		•	
a	t (-)	H–		4	5	e1		6	9	e1
2	1	e1		4	5	e2		6	9	e2
2	1	e2		4	7	h	· · · ·	6	11	h
2	3	h		4	9	e1		6	13	e1
2	7	h		4	9	e2		6	13	e2
2	9	e1		4	11	h		8	7	h
2	9	e2		4	13	eĺ		8	9	e1
2	11	h		4	13	e2		8	9	e2
2	15	h		4	15	h		8	11	h
2	17	e1		6	5	e1		10	9	e1
2	17	e2		6	5	e2		10	9	e2
4	3	h		6	7	h				

Table 2: TypeIa

TypeIb

Type	10								····							
			1	1	1			`.	I	e en el componente de la c En componente de la compone	ан сайна 1 — 1	f i s		1	1	
a	t (-)	H-		4	3	S-	1		5	10	S-			. 7	8	h
	0	0	* 1 [*]	4	5	0	1	· • •	5	12	0			7	8	S-
1	2	0		4	5	ł	4		5	12	e1			7	10	0
1	8	0		4	7	0	l · -		5	12	e2			7	10	e1
1	10	0		4	7	el	1		5	12	h		• 1.5	7	10	e2
1	16	0	÷	4	7	eź			5	12	S-			7	10	h
2	1	0		4	7	ł			5	14	e1			7	10	S-
2	3	0		4	7	S-			5	14	e2			7	12	e1
2	7	0		4	9	0			5	14	h			7	12	e2
2	9	0	an the second	4	9	el	1		5	14	S-			7	12	h
2	11	0		4	9	e2	1		5	16	S-			7	12	S-
2	15	0		4	9	l ł			6	5	0			7	14	S-
3	2	· 0 ·	1999 - A.	4	9	S-			6	5	e1			8	7	0
3	2	e1		4	11	0	1		6	5	e2			8	7	e1
3	2	e2		4	11	e1			6	5	h			8	7	e2
3	2	h	4	4	11	e2	1		6	5	S-			8	7	h
3	2	S-	4	4	11	h			6	7	0			8	7	S-
3	4	0		4	11	S-			6	• 7	e1			8	9	0
3	4	h		4	13	0			6	7	e2			8	9	e1
3	6	0	-	4	13	h			6	7	h			8	9	e2
3	6	h		4	15	el			6	. 7	S-			8	9	h
3	8	0		4	15	e2			6	9	0			8	9	S-
3	8	e1		4	15	h			6	9	e1			8	. 11	e1
3	8	e2		4	15	S-			6	9	e2	<u>.</u>		8	11	e2
3	8	h		4	17	S-			6	9	h		•	8	11	h
3	8	S-		5	4	0			6	- 9	S-			8	11	<u> </u>
3	10	0		5	4	el			6	11	0			8	13	<u>S-</u>
3	10	e1		5	4	e2	1 M.		6	11	el	•		9	8	0
	10	e2		5	4	h			6	11	e2			<u>9</u> .	8	e1
$\frac{3}{3}$	10	h S-		5	4	S-	N 1		6	11	h			9	8	e2
$\frac{3}{3}$	10	0		5	6	0			6	11	S-			9	8	h
$\frac{3}{3}$	$\frac{12}{12}$				6	e1			6	13	e1			9	8	<u>S-</u>
$\frac{3}{3}$		h 0		5	6	e2		. ·	6	13	e2			9	10	e1
$\frac{3}{3}$	<u>14</u> 14	0		5	6	h S-			6	13	h			9	10	e2
3	14		, ¹ .	5	8	0			6	13	S-			9	10	h
3	16	e1		5	8					15	S-			9	10	<u>S-</u>
3		e2	$\Sigma_{i,j} \in \{i,j\}$	5	8	el	alta a	i teri	7	6	0,	1.1	t a	9	12	<u>S-</u>
3	16 16	h S-	s ^N e - L	5	8	e2		e de la composición d	7	<u>6</u>	<u>e1</u>			10	9	<u>e1</u>
3	18	S		5	8	h S−		· · ·	$\frac{7}{7}$	6	e2 h	s Zu		10 10	9 9	e2
$\frac{3}{4}$	3	0	÷ 1		0 10	0	• · · .	1 > 1	7	6	S-	5		10	9	<u>h</u> S-
4	3	0 01		5	10	0 01			7	8	0			10	<u> </u>	
4	3	e1 e2		5	10	e1 e2			7	<u> </u>				10	10	
4	3	e2 h		5	10	ez h			7	<u> </u>	<u>e1</u> e2			11	10	<u> </u>
	0	14			10	11				U	ez					

Table 3: TypeIb

$\S 6.$ Topological interpretations of each genus

In this section, for each our genus, we investigate the topological properties of nonsingular real algebraic curves of bidegree (4,4) on $\mathbf{R}P^1 \times \mathbf{R}P^1$ which realize that genus. We recall our situation stated in §2.

Let $\mathbf{R}A$ be the real part of A, i.e., $A \cap \mathbf{R}P^1 \times \mathbf{R}P^1$. See the section 2 of [13] for the definitions of the following notions concerning $\mathbf{R}A$:

the notion of (M-i)-curves of bidegree (4,4),

the torsion $(s,t) \ (\in \mathbb{Z} \times \mathbb{Z})$ of each connected component of $\mathbb{R}A$,

oval, non-oval, odd branch, even branch

We can set $B^+(B^-) = \{F \ge 0\}$ ($\{F \le 0\}$) ($\subset \mathbb{R}P^1 \times \mathbb{R}P^1$), where we fix a defining (real) polynomial F of A. We recall the two anti-holomorphic involutions T^+ and T^- of Y, and let $\mathbb{R}Y^{\pm}$ denote the fixed point sets of T^{\pm} . Then, since our bidegree is (4,4), we can regard $\mathbb{R}Y^{\pm}$ as the doubles of B^{\pm} respectively (see Remark 3.2 of [12] for the reason) replacing F by -F if necessary.

We call $\mathbf{R}A$ a dividing curve (or curve of type I ([25])) if $A \setminus \mathbf{R}A$ is disconnected, and nondividing curve (or curve of type II) if otherwise. Moreover, following [20], we call a real scheme is of type I if all the curves with this scheme are of type I, of type II if they all are of type II, and of indeterminate type if some are of type I and others are of type II.

Lemma 1 ([12]) For a nonsingular real algebraic curve $\mathbf{R}A$ of bidegree (4,4) on $\mathbf{R}P^1 \times \mathbf{R}P^1$, we have the following:

(1) $[RY^+] = [RY^-]$ in $H_2(Y; Z/2)$ (2) If RA is dividing, then

 $[\mathbf{R}Y^{\pm}] = \begin{cases} 0 & (if \ \mathbf{R}A \ has \ only \ ovals) \\ (\hat{l} \ e_1)_{\text{mod} \ 2} & (if \ \mathbf{R}A \ has \ odd \ branches \ with \ odd \ s) \\ (\hat{l} \ e_2)_{\text{mod} \ 2} & (if \ \mathbf{R}A \ has \ odd \ branches \ with \ odd \ t) \\ (\hat{l} \ h)_{\text{mod} \ 2} & (if \ \mathbf{R}A \ has \ even \ branches \ with \ (|s|, |t|) = (1, 1)) \end{cases}$

in $H_2(Y; \mathbb{Z}/2)$, where \hat{l} is the integer defined in [12], and we use the same notations for the Poincaré duals of the cohomology classes e_i (i = 1, 2) defined in §2.

We next quote the following collection of useful results. See [18] for the terminology.

Theorem 2 ([18], Theorems 3.10.5 and 3.10.6) If Y belongs to a coarse projective equivalence class of real K3 surfaces corresponding to an isomorphism class of polarlized integral involutions (L, φ, h) of the even unimodular lattice of signature (3, 19) with $h^2 = n$ (: a designated even positive integer), $t_{(+)} = 1$, and the invariants $t_{(-)}$, a, δ_h , δ_{φ} and $\delta_{\varphi,h}$, then we have the following: (1) The real part $\mathbf{R}Y$ of Y is an orientable closed surface which is homeomorphic to

$$\left\{egin{array}{ll} \emptyset & if \; \delta_{arphi} = 0, \; (a,t_{(-)}) = (10,9) \ T^2 \amalg T^2 & if \; \delta_{arphi} = 0, \; (a,t_{(-)}) = (8,9) \ \Sigma_g \amalg k(S^2) & in \; the \; remaining \; cases, \end{array}
ight.$$

where we set $g = \frac{21-a-t_{(-)}}{2}$ and $k = \frac{1-a+t_{(-)}}{2}$, Σ_g denotes the orientable closed surface of genus g, and $k(S^2)$ means the disjoint union of k copies of S^2 . (2) When $\mathbf{R}Y \neq \emptyset$,

 $\delta_h = 0 \iff$ the linear system $|h|_{\mathbf{R}}$ cuts out on $\mathbf{R}Y$ a cycle homologous to 0 in $H_1(\mathbf{R}Y; \mathbf{Z}/2)$.

(3) $\delta_{\varphi} = 0 \iff [\mathbf{R}Y] = 0 \text{ in } H_2(Y; \mathbf{Z}/2).$ (4) $\delta_{\varphi,h} = 0 \iff [\mathbf{R}Y] = h_{\text{mod } 2} \text{ in } H_2(Y; \mathbf{Z}/2).$

Let us return to the situation in §2 again. We set $T = T^+$ or T^- and $\varphi = T^*$. Let $\mathbf{R}Y$ be the fixed point set of T. We set $h = e_1 + e_2$ in §4. Then (L, φ, h) is a 'polarized integral involution' ([18]) with $h^2 = 4$. Hence, by Lemma 1 and Theorem 2, we have the following:

Lemma 3 Let $\mathbf{R}A$ be a nonsingular real algebraic curve of bidegree (4,4) on $\mathbf{R}P^1 \times \mathbf{R}P^1$. Then we have the following:

(1) $\delta_{\boldsymbol{\varphi}} = 0 \iff [\boldsymbol{R}Y] = 0 \text{ in } H_2(Y; \boldsymbol{Z}/2).$

(2) $\delta_{\varphi,h} = 0 \iff [\mathbf{R}Y] = h_{\text{mod }2} \text{ in } H_2(Y; \mathbf{Z}/2).$

Moreover, suppose that $\mathbf{R}A$ is dividing. Then we have the following:

(3) $[\mathbf{R}Y] = 0$ in $H_2(Y; \mathbb{Z}/2) \iff \mathbf{R}A$ has only ovals, or it has non-ovals with \hat{l} even.

(4) $[\mathbf{R}Y] = h_{\text{mod }2}$ in $H_2(Y; \mathbb{Z}/2) \iff \mathbf{R}A$ has non-ovals with (|s|, |t|) = (1, 1) and \hat{l} odd.

When $\mathbf{R}A$ has only ovals, B^+ or B^- contains 'the outermost component' (cf. [12]). As stated above, $\mathbf{R}Y^{\pm}$ are the doubles of B^{\pm} respectively. Thus we can divide the situations of (Y, T) into the following 4 cases:

A: $\mathbf{R}A$ has only ovals and $\mathbf{R}Y$ contains the double of the outermost component.

A': RA has only ovals and RY does not contain the double of the outermost component.

- B: $\mathbf{R}A$ has odd branches.
- C: $\mathbf{R}A$ has even branches.

We now recall all the real schemes (i.e., isotopy types) of curves of bidegree (4,4) on a hyperboloid, which are given in §3.11 of [25] or at the end of [13]. We also give the correspondence between the notations for real schemes used in [25] and [13]. See the following table:

Notation in [25] (also in [22])	Notation in [13]
$ \langle \lambda_1 \amalg 1 \langle \lambda_2 \rangle \rangle $	$\left \frac{\lambda_2}{1}\lambda_1\right $
(where $(\lambda_1, \lambda_2) = (0, 9), (4, 5), (8, 1),$	$\gamma \rightarrow 0$
(0,8), (3,5), (4,4), (7,1))	
$<\lambda_1 \amalg 1 < 0 >>$	$\lambda_1 + 1$
(where $0 \le \lambda_1 \le 8$)	
$<\lambda_1 \amalg 1 < \lambda_2 >>$	$\frac{\lambda_2}{1}\lambda_1$
(where $\lambda_1 \ge 0$, $\lambda_2 \ge 1$ and $\lambda_1 + \lambda_2 \le 7$)	
< 2 < 1 >>	$\frac{1}{1}\frac{1}{1}$
< 0 >	Ø
$ \langle e_1, \ \lambda_1, \ e_1, \lambda_2 angle$	$ \lambda_1 \lambda_2 \left(\text{or } \frac{\overline{\lambda_1}}{\lambda_2} \right)$
(where $(\lambda_1, \lambda_2) = (8, 0), (4, 4), (7, 0), (4, 3);$	
or $\lambda_1 \ge \lambda_2 \ge 0$ and $\lambda_1 + \lambda_2 \le 6$)	
$< 2(e_1 + 2e_2) >$	2(1,2)
$< 4(e_1) >$	4(1,0)
$< e_1 + e_2, \ \lambda_1, \ e_1 + e_2, \lambda_2 >$	$/\lambda_1/\lambda_2$
(where $\lambda_1 \ge \lambda_2 \ge 0$ and $\lambda_1 + \lambda_2 \le 8$)	
$< 4(e_1 + e_2) >$	4(1,1)

It is easily seen that the real scheme of a curve determines the topological types of RY^{\pm} as in the following table:

Real scheme	\Rightarrow The topological types of .	RY^{\pm}	
$\frac{\lambda_2}{1}\lambda_1$	$\Sigma_{\lambda_1+2} \amalg \lambda_2 S^2$ (A case) and Σ	$\Sigma_{\lambda_2} \amalg \lambda_1 S^2$	(A' case)
$\lambda_1 + 1$	Σ_{λ_1+2} (A case) and ((A' case)
$\frac{1}{1}\frac{1}{1}$	$\Sigma_3 \amalg 2 S^2$ (A case) and	$T^2 \amalg T^2$	(A' case)
Ø	$T^2 \amalg T^2$ (A case) and	Ø	(A' case)
$ \lambda_1 \lambda_2$	$\Sigma_{\lambda_1+1} \amalg \lambda_2 S^2$ and $\Sigma_{\lambda_2+1} \amalg \lambda_1 S^2$		
2(1,2)	T^2 (both)		· · · · ·
4(1,0)	$T^2 \amalg T^2$ (both)		
λ_1/λ_2	$\Sigma_{\lambda_1+1} \amalg \lambda_2 S^2$ and $\Sigma_{\lambda_2+1} \amalg \lambda_1 S^2$		
4(1,1)	$T^2 \amalg T^2$ (both)		

Now the subgroup H_{-} is defined by the invariants δ_{e_1} , δ_{e_2} and δ_h . Recall the definitions of $\delta_{x_{\pm}}$ in §3.

Lemma 4 ([13], Lemma 2) Let $\mathbf{R}A$ be a nonsingular real algebraic curve of bidegree (4,4) on $\mathbf{R}P^1 \times \mathbf{R}P^1$. If $\mathbf{R}A$ has odd branches with odd s (resp. t), then we have $\delta_{e_1} = 0$ (resp. $\delta_{e_2} = 0$).

The following lemma can be proved in the similar way to Lemma 4 above:

Lemma 5 Let $\mathbf{R}A$ be a nonsingular real algebraic curve of bidegree (4,4) on $\mathbf{R}P^1 \times \mathbf{R}P^1$. Then we have the following:

(1) If (Y,T) is in A' case and $\mathbf{R}Y \neq \emptyset$, then $\delta_{e_1} = \delta_{e_2} = \delta_h = 0$, namely, $H_- = A_{S_-}$. (2) If we are in C case, then $\delta_h = 0$.

For only h, we can prove "the inverse assertion" by Theorem 2, (2) above, and we get the following:

Lemma 6 Let $\mathbf{R}A$ be a nonsingular real algebraic curve of bidegree (4,4) on $\mathbf{R}P^1 \times \mathbf{R}P^1$. If $\mathbf{R}Y \neq \emptyset$ and $\delta_h = 0$ for (Y,T), then we are in A' case or C case.

Lemma 7 Let $\mathbf{R}A$ be a nonsingular real algebraic curve of bidegree (4,4) on $\mathbf{R}P^1 \times \mathbf{R}P^1$. Then, for (Y,T), we have

$$x \cdot T_*(x) \equiv x \cdot [\mathbf{R}Y] \pmod{2} \quad \forall x \in H_2(Y; \mathbf{Z})$$

Proof. $T: Y \to Y$ is an orientation preserving involution, and its fixed point set $\mathbb{R}Y$ is an orientable closed surface (Theorem 2, (1)). Hence, by Lemma 3 of [1], we get the required results.

Remark 8 By the above lemma, we see

$$v_q = [\frac{1}{2}[\mathbf{R}Y]] \in L_+^*/L_+ = A_{L_+},$$

where v_q is the characteristic element (recall §3) of q.

Proposition 9 Let $\mathbf{R}A$ be a nonsingular real algebraic curve of bidegree (4,4) on $\mathbf{R}P^1 \times \mathbf{R}P^1$. If $\mathbf{R}A$ is dividing, then (L, φ, i) is of Type 0 or Type Ia.

Proof. If $\mathbf{R}A$ is dividing, by (2) of Lemma 1, we have $[\mathbf{R}Y] \equiv s_{\varphi} \pmod{2L}$ for some $s_{\varphi} \in S$. By Lemma 7, we have $\delta_{\varphi S} = 0.\Box$

Our aim is to restrict the real schemes of the curves which realize each genus enumerated in Tables 1–3.

We first present 'candidates' of the real schemes of the curves which realize each genus by using the above results. See **Tables 4–6** below.

Then we get some further results from Tables 4–6:

Proposition 10 In Type Ia, A cases are impossible.

(Namely, every real scheme with the superscript ¹) in Table 5 can be removed.)

Proof. In Table 5 (i.e., Type Ia), the real schemes 8, $\frac{4}{1}3$, $\frac{1}{1}4$, $\frac{3}{1}2$, $\frac{5}{1}$, 4, $\frac{2}{1}1$, $\frac{1}{1}$ are presented as candidates in the columun A. Suppose that there exists a curve $\mathbf{R}A$ such that its real scheme is 8, (Y, T^-) is in A case, (L, φ, i) is of Type Ia, and $H_- = \langle [\frac{1}{2}e_1] \rangle$. Since (L, φ, i) is of Type Ia and $H_- = \langle [\frac{1}{2}e_1] \rangle$, we see $v = [\frac{1}{2}e_1]$. By Remark 8, we have $v_q = [\frac{1}{2}[\mathbf{R}Y^-]] \in A_{L_+}$. Hence, $\gamma_r([\frac{1}{2}e_1]) = [\frac{1}{2}[\mathbf{R}Y^-]]$, where $\gamma_r = \gamma_{L+S_-}$ (recall §5). This means $\frac{1}{2}e_1 + \frac{1}{2}[\mathbf{R}Y^-] \in L$. In the meanwhile, by Lemma 1, $[\mathbf{R}Y^+] \equiv [\mathbf{R}Y^-]$ (mod 2L). Hence, we also get $e_1 \equiv [\mathbf{R}Y^+]$ (mod 2L). Hence, for the same curve $\mathbf{R}A$ with the different involution T^+ , the associated involution of our lattice (L, φ', i') with our condition is of Type Ia, too. It is obvious that (Y, T^+) is in A' case. So $\mathbf{R}Y^+$ is homeomorphic to $8S^2$. Then, by Theorem 2 (1), we see $(a, t_{(-)}) = (4, 17)$. But this pair of $(a, t_{(-)})$ does not appear in Type Ia. This is a contradiction. For the remaining real schemes, we can also prove the same assertion in the same way. \Box

Proposition 11 In Type 0, the real schemes $\frac{5}{1}$, $\frac{2}{1}$ 1 and /4/0 are impossible. (Namely, every real scheme with the superscript ²) in Table 4 can be removed.)

Proof. We consider a curve $\mathbf{R}A$ such that its real scheme is $\frac{5}{1}$ and (Y, T^-) is in A case. Then, for the same curve $\mathbf{R}A$ with the different involution T^+ , (Y, T^+) is in A' case, and $\mathbf{R}Y^+$ is homeomorphic to Σ_5 . By Theorem 2 (1), we see $(a, t_{(-)}) = (6, 5)$. By Lemma 5, we have $H_- = A_{S_-}$. Since $(a, t_{(-)}, H_-) = (6, 5, A_{S_-})$ appears only in Type Ib, we see $\delta_{\varphi} = 1$. Hence, $[\mathbf{R}Y^+] \neq 0 \ (\in H_2(Y; \mathbf{Z}/2))$ because of Remark 8 and the end of §3, or Theorem 2 (3). Then we also get $[\mathbf{R}Y^-] \neq 0 \ (\in H_2(Y; \mathbf{Z}/2))$. Hence we have $\delta_{\varphi} = 1$ also for T^- . This means $\frac{5}{1}$ does not appear in Type 0.

We next consider a curve $\mathbf{R}A$ such that its real scheme is $\frac{2}{1}1$ and (Y, T^-) is in A case. Then, for the same curve $\mathbf{R}A$ with the different involution T^+ , $\mathbf{R}Y^+$ is homeomorphic to $\Sigma_2 \amalg 1S^2$. By Theorem 2 (1), we see $(a, t_{(-)}) = (8, 9)$. If moreover $\delta_{\varphi} = 0$, then the real part is homeomorphic to $T^2 \amalg T^2$ by the same theorem. Hence we have $\delta_{\varphi} = 1$. Then we can prove that $\frac{2}{1}1$ does not appear in Type 0 in the same way as $\frac{5}{1}$.

We last consider a curve $\mathbf{R}A$ such that its real scheme is /4/0. Then $\mathbf{R}Y^+$ or $\mathbf{R}Y^-$ is homeomorphic to Σ_5 . Hence, we have $(a, t_{(-)}) = (6, 5)$, and $[\frac{1}{2}h] \in H_-$ by Lemma 5. Since such genera appear only in Type Ib, we get $\delta_{\varphi} = 1$. Thus we can prove that /4/0 does not appear in Type 0 in the same way as above.

Ту	vpe0	$(\delta_{oldsymbol{arphi}}=0)$			á	
a	$t_{(-)}$	H_	A	A'	В	C
0	1	{0}	$\frac{1}{1}8$			
0	9	{0}	$\frac{5}{1}4$			
0	17	{0} {0}	$ \frac{\frac{1}{1}8}{\frac{5}{1}4} \frac{\frac{9}{1}}{1} $			
2	1	{0}	8	·		
2	<u> </u>	$< \left[\frac{1}{2}e_1\right] >$	8 ⁴⁾		0 8	
2	1	$< \left[rac{1}{2} e_2 ight] >$	8 ⁴⁾		$\frac{\overline{0}}{8}$	
2	1	$ $ $<$ $[rac{1}{2}h]$ $>$				/0/8
2	1	$A_{S_{-}}$		$\frac{9}{1}$		/0/8 /0/8 ⁴⁾
2	5	{0}	$\frac{2}{1}5$			
2	5	$<[\frac{1}{2}h]>$ {0}				/2/6
2	9	{0}	$\frac{4}{1}3$			
2	9	$< \left[\frac{1}{2}e_1\right] >$	$\frac{\frac{4}{1}3}{\frac{4}{1}3}$		4 4	
2	9	$< [\frac{1}{2}e_1] > < [\frac{1}{2}e_2] >$	$\frac{4}{1}3^{4}$		$\frac{\overline{4}}{4}$	
2	9	$<[rac{1}{2}h]>$				/4/4
2	9	$A_{S_{-}}$		$\frac{5}{1}4$		/4/4 /4/4 ⁴⁾
2	13	{0}	$\frac{6}{1}1$			
2	13	$< [rac{1}{2}h] > \ < [rac{1}{2}e_1] >$				/6/2
2	17	$< \left[\frac{1}{2}e_1\right] >$			8 0	
2	17	$< \left[\frac{1}{2}e_2\right] >$			$\frac{\overline{8}}{0}$	
2	17	$<[rac{1}{2}h]>$				/8/0
2	17	$A_{S_{-}}$		$\frac{1}{1}8$		/8/0 /8/0 ⁻⁴⁾
4	5	{0}	$\frac{1}{1}4$			
4	5	$< \left[\frac{1}{2}e_1\right] >$	$\frac{1}{1}4^{4}$		1 5	
4	5	$< \left[\frac{1}{2}e_2\right] >$	$\frac{1}{1}4^{4}$		$\frac{1}{5}$	
. 4	5	$<[rac{1}{2}h]>$				/1/5
4	5	$A_{S_{-}}$		$\frac{6}{1}1$		/1/5 4)
4	9	{0}	$\frac{3}{1}2$			
4	9	$< \left[\frac{1}{2}e_1\right] >$	$\frac{3}{1}2^{4}$		3 3	
4	9	$ \frac{A_{S_{-}}}{\{0\}} \\ < [\frac{1}{2}e_1] > \\ < [\frac{1}{2}e_2] > $	$\frac{\frac{3}{1}2}{\frac{3}{1}2} \frac{4}{1}$ $\frac{3}{1}2 \frac{4}{1}$		$\frac{\overline{3}}{3}$	
4	9	$< [rac{1}{2}h] >$:	••	/3/3
4	9	$A_{S_{-}}$		$\frac{4}{1}3$		/3/3 /3/3 ⁴⁾
4	13	$< \left[\frac{1}{2}e_1\right] >$	$\frac{5}{1}$ 2)		5 1	
4	13	$< \left[\frac{1}{2}e_2\right] >$	$\frac{5}{1}$ 2) $\frac{5}{1}$ 2) $\frac{5}{1}$ 2)		<u>5</u> .	
4	13	$< \left[\frac{1}{2}h\right] >$			A	/5/1
4	13	$ \begin{array}{c} [1]{} 2 \\ [1]{} 2 $		$\frac{2}{1}5$		/5/1 /5/1 ⁴⁾

4	17	$A_{S_{-}}$		8		
6	9	{0}	$\frac{2}{1}1^{2}, \frac{1}{1}\frac{1}{1}$			
6	9	$< \left[\frac{1}{2}e_1\right] >$	$\frac{2}{1}1^{2}$, $\frac{1}{1}\frac{1}{1}^{4}$		2 2	
6	9	$< [\frac{1}{2}e_1] > < [\frac{1}{2}e_2] >$	$\frac{\frac{2}{1}1}{\frac{1}{1}2}, \frac{1}{1}\frac{1}{1}4)$ $\frac{\frac{2}{1}1}{\frac{1}{1}2}, \frac{1}{1}\frac{1}{1}4)$		$\frac{ 2 2}{\frac{2}{2}}$	
6	9	$<[\frac{1}{2}h]>$				/2/2
6	9	$\overline{A_{S_{-}}}$		$\frac{3}{1}2$		$/2/2^{4}$
6	13	$A_{S_{-}}$		$\frac{1}{1}4$		
8	9	{0}	Ø			
8	9	$< \left[\frac{1}{2}e_1\right] >$	Ø		4(1,0)	
8	9	$\frac{ 1_2 1_1 }{ 1_2 2_1 2_1 2_1 2_1 2_1 2_1 2_$	Ø		4(0,1)	
8	9	$<[rac{1}{2}h]>$				4(1,1)
8	9	$A_{S_{-}}$		$\frac{1}{1}\frac{1}{1}$		$4(1,1)^{4}$
10	9	$< \left[\frac{1}{2}e_{1}\right] >$		Ø		
10	9	$< \left[\frac{1}{2}e_{2}\right] >$		Ø		
10	9	$< [\frac{1}{2}h] >$		Ø		
10	9	$\bar{A}_{S_{-}}$		Ø		

Table 4

Ту	/peIa	$(\delta_{oldsymbol{arphi}}=1$ a	and <i>del</i>	$ta_{arphi S}$ =	= 0)	
a	$t_{(-)}$	H_{-}	A	A'	В	C
2	1	$< \left[\frac{1}{2}e_1\right] >$	8 ¹⁾		0 8	
2	1	$< \left[\frac{1}{2}e_2\right] >$	8 ¹⁾		$\frac{\overline{0}}{8}$	
2	3	$<[rac{1}{2}h]>$				/1/7
2	7	$<[rac{1}{2}h]>$				/3/5
2	9	$< \left[\frac{1}{2}e_1\right] >$	$\frac{4}{1}3^{1}$	-	4 4	
2	9	$< \left[\frac{1}{2}e_2\right] >$	$\frac{4}{1}3^{1}$		$\frac{4}{4}$	
2	11	$<[rac{1}{2}h]>$				/5/3
2	15	$< [rac{1}{2}h] >$				/7/1
2	17	$< \left[\frac{1}{2}e_1\right] >$			8 0	
2	17	$< \left[\frac{1}{2}e_2\right] >$			8	
4	3	$<[rac{1}{2}h]>$		÷.,		/0/6
4	5	$< \left[\frac{1}{2}e_1\right] >$	$\frac{1}{1}4^{1}$		1 5	
4	5	$< \left[\frac{1}{2}e_2\right] >$	$\frac{1}{1}4^{1}$		$\frac{1}{5}$	
4	7	$<[rac{1}{2}h]>$				/2/4
4	9	$< \left[\frac{1}{2}e_1\right] >$	$\frac{3}{1}2^{(1)}$		3 3	
4	9	$< \left[\frac{1}{2}e_2\right] >$	$\frac{\bar{3}}{1}2^{(1)}$		33	

4	11	$<[rac{1}{2}h]>$				/4/2
4	13	$< \left[\frac{1}{2}e_1\right] >$	$\frac{5}{1}$ 1)		5 1	
4	13	$< \left[\frac{1}{2}e_2\right] >$	$\frac{5}{1}$ 1)		5	· · · · · ·
4	15	$<[rac{1}{2}h]>$				/6/0
6	5	$< \left[\frac{1}{2}e_1\right] >$			0 4	
6	5	$< \left[\frac{1}{2}e_2\right] >$	4 ¹⁾		$\frac{\overline{0}}{4}$	
6	7	$<[rac{1}{2}h]>$		·		/1/3
6	9	$< \left[\frac{1}{2}e_1\right] >$	$\frac{2}{1}1^{1}$		2 2	
6	9	$< \left[\frac{1}{2}e_2\right] >$	$\frac{2}{1}1^{1}$		$\frac{\overline{2}}{2}$	
6	11	$< [rac{1}{2}h] >$				/3/1
6	13	$< \left[\frac{1}{2}e_1\right] >$			4 0	
6	13	$< \left[\frac{1}{2}e_2\right] >$			$\frac{\overline{4}}{0}$	
8	7	$< [rac{1}{2}h] >$				/0/2
8	9		$\frac{1}{1}$ 1)		1 1	
8	9	$< \left[\frac{1}{2}e_2\right] >$	$\frac{1}{1}$ 1)		$\frac{\overline{1}}{1}$	
8	11	$<[rac{1}{2}h]>$				/2/0
10	9	$< \left[\frac{1}{2}e_1\right] >$			0 0, 2(1,2)	
10	9	$< \left[\frac{1}{2}e_2\right] >$			$\frac{\overline{0}}{0}, 2(2,1)$	
	4 4 6 6 6 6 6 6 6 6 6 8 8 8 8 8 8 8 8 10	4 13 4 13 4 15 6 5 6 5 6 7 6 9 6 11 6 13 6 13 6 13 8 7 8 9 8 11 10 9	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table	5
-------	---

<u> </u>		()					
Ту	Type Ib $(\delta_{\varphi} = 1 \text{ and } \delta_{\varphi S} = 1)$						
a	$t_{(-)}$	H_{-}	А	A'	В	С	
1	0	{0}	9				
1	2	{0}	$\frac{1}{1}7$				
1	8	{0}	$\frac{\frac{4}{1}4}{\frac{5}{1}3}$				
1	10	{0}	$\frac{5}{1}3$				
1	16	{0}	$\frac{8}{1}$				
2	1	{0}	8				
2	3	{0}	$\frac{1}{1}6$				
2	7	{0}	$\frac{3}{1}4$				
2	9	{0}	$ \frac{\frac{1}{1}6}{\frac{3}{1}4} \frac{\frac{4}{1}3}{\frac{5}{1}2} $	-	x		
2	11	{0}	$\frac{5}{1}2$	-			
2	15	{0}	$\frac{7}{1}$				
3	2	{0}	7				
3	2	$< \left[\frac{1}{2}e_1\right] >$	7 ⁴⁾		0 7		
3	2	$< \left[\frac{1}{2}e_2\right] >$	74)		$\frac{\overline{0}}{7}$		

3	2	$< [rac{1}{2}h] >$				/0/7
3	2	$A_{S_{-}}$		$\frac{8}{1}$		$/0/7^{4}$
3	4	{0}	$\frac{1}{1}5$			
3	4	$< [rac{1}{2}h] >$		• •	1. A. A. A.	/1/6
3	6	{0}	$\frac{2}{1}4$			×
3	6	$< [rac{1}{2}h] >$				/2/5
3	8	{0}	$\frac{3}{1}3$			
3	8	$< \left[\frac{1}{2}e_1\right] >$	$\frac{3}{1}3^{(4)}$ $\frac{3}{1}3^{(4)}$		3 4	
3	8	$< \left[\frac{1}{2}e_2\right] >$	$\frac{3}{1}3^{4}$		$\frac{\overline{3}}{4}$	
3	8	$<[rac{1}{2}h]>$				/3/4 /3/4 ⁴⁾
3	8	$A_{S_{-}}$		$\frac{5}{1}3$		$/3/4^{4}$
3	10	{0}	$\frac{4}{1}2$			
• 3	10	$< \left[\frac{1}{2}e_1\right] >$	$\frac{4}{1}2^{4}$		4 3	
3	10	$< \left[\frac{1}{2}e_2\right] >$	$\frac{4}{1}2^{4}$		$\frac{\overline{4}}{3}$	
3	10	$< [rac{1}{2}h] >$				/4/3
3	10	$A_{S_{-}}$		$\frac{4}{1}4$		/4/3 4)

omitted (similar to the above)

4	13	{0}	$\frac{5}{1}$,	
4	13	$<[rac{1}{2}h]>$			/5/1

omitted (similar to the above) {0} 6 54 $\frac{<[\frac{1}{2}e_1]>}{<[\frac{1}{2}e_2]>}$ 4⁴⁾ 5 6 |0|4 5 4 ⁴⁾ $\frac{\overline{0}}{4}$ 6 /0/4 5 $<[\frac{1}{2}h]>$ 6 /0/4 4) 5 $\frac{5}{1}$ $A_{S_{-}}$ 6

omitted (similar to the above) $\frac{2}{1}1$ 6 9 {0} $\frac{\frac{2}{1}1}{\frac{2}{1}1}$ 4) $\frac{\frac{2}{1}1}{\frac{2}{1}1}$ 4) $< \left[\frac{1}{2}e_1\right] >$ |2|29 6 $< \left[\frac{1}{2}e_2\right] >$ $\frac{\overline{2}}{2}$ 9 6 6 $< \left[\frac{1}{2}h\right] >$ /2/29 $\frac{3}{1}2$ $/2/2^{4)}$ 6 9 $A_{S_{-}}$

16

omitted (similar to the above)									
8	9	{0}	$\frac{1}{1}$	х.					
8	9	$< \left[\frac{1}{2}e_1\right] >$	$\frac{1}{1}$ 4)		1 1				
8	9	$< \left[\frac{1}{2}e_2\right] >$	$ \frac{1}{1} $		$\frac{1}{1}$				
8	9	$<[rac{1}{2}h]>$				/1/1			
8	9	$A_{S_{-}}$		$\frac{2}{1}1$		/1/1 4)			
8	11	$< \left[\frac{1}{2}e_1\right] >$			2 0				
8	11	$< \left[\frac{1}{2}e_2\right] >$			$\frac{\overline{2}}{0}$				
8	11	$< [rac{1}{2}h] >$				/2/0 $/2/0^{-4)}$			
8	11	$A_{S_{-}}$		$\frac{1}{1}2$		$/2/0^{4}$			
8	13	$A_{S_{-}}$		4					
			· · · ·						
	omitted (similar to the above)								
9	10	$< [\frac{1}{2}e_1] >$			1 0				
9	10	$< \left[\frac{1}{2}e_2\right] >$			$\frac{1}{0}$				
9	10	$<[rac{1}{2}h]>$		2	· · ·	/1/0			
9	10	$\overline{A_{S_{-}}}$		$\frac{1}{1}1$		/1/0 4)			
9	12	$A_{S_{-}}$		3					
10	9	$< \left[\frac{1}{2}e_1\right] >$			$\frac{ 0 0, \ 2(1,2)^{3}}{\frac{0}{0}, \ 2(2,1)^{3}}$				
10	9	$< \left[\frac{1}{2}e_2\right] >$			$\frac{\overline{0}}{0}, 2(2,1)^{3}$				
10	9	$<[rac{1}{2}h]>$				/0/0			
10	9	$A_{S_{-}}$		$\frac{1}{1}$		/0/0 4)			
10	11	$A_{S_{-}}$		2					
11	10	$A_{S_{-}}$		1					

We next consider the dividingness of nonsingular real algebraic curves of bidegree (4, 4) on a hyperboloid. We first quote the following known result:

Proposition 12 ([12]) For the dividingness of nonsingular real algebraic curves $\mathbf{R}A$ of bidegree (4,4) on a hyperboloid, we have the following:

(1)M-curves are dividing.

(2) The number of the connected components of a dividing curve $\mathbf{R}A$ is even.

(3) The real schemes $\frac{2}{1}5$ and $\frac{6}{1}1$ are of type I.

(4) The real schemes $\frac{1}{1}6$, $\frac{3}{1}4$, $\frac{5}{1}2$, $\frac{7}{1}$, 6, $\frac{2}{1}3$, $\frac{4}{1}1$, $\frac{1}{1}2$, $\frac{3}{1}$ and 2 are of type II (by the Arnol'd's type congruence.)

(5) The real schemes $|\lambda_1|\lambda_2$ or $|\lambda_1|\lambda_2$ with $\lambda_1 - \lambda_2$ odd are of type II.

(6) The real schemes $\frac{1}{1}\frac{1}{1}$, 4(1,0) and 4(1,1) are of type I.

By Proposition 9, we immediately get the following:

Proposition 13 (1) Curves in Type Ib are not dividing. (2) The real schemes which appear only in Type Ib are of type II.

By (2) above, we get different proofs of the following results:

Corollary 14 (Zvonilov [25], 3.11) We have the following:

(1) The real schemes $\frac{5}{1}$, 4, $\frac{2}{1}$ 1 and $\frac{1}{1}$ are of type II.

(2) The real schemes |6|0, |4|2, |3|1 and |2|0 are of type II.

(3) The real schemes $\frac{4}{0}$, $\frac{1}{1}$ and $\frac{0}{0}$ are of type II.

Remark:

(1) Zvonilov proved the above assertions using his results in [23].

(2) Gilmer's result ([4]) on the rotation numbers of dividing curves can also contribute to the above assertion.

(3) We can prove the non-dividingness of 4 by Gilmer's Theorem 2 (b) in [4].

However, at present, it seems that we cannot prove the following assertions by means of our Tables 4–6.

Proposition 15 (Zvonilov [25],3.11) We have the following:

(1) The real scheme |0|0 is of type II.

(2) The real schemes |5|1 and 2(1,2) are of type I.

Remark:

By the above result, we can remove 2(1,2) from Table 6 (i.e., Type Ib).

$\S7.$ Some questions

In $\S6$, we tried to restrict the real schemes of the curves which realize each genus enumerated in Tables 1–3. In this section, we give some questions.

Question 1 In the situation of §2, we set $K = \mathbf{R}Y \cap \pi^{-1}(\infty \times \mathbf{P}^1)$ (resp. $\mathbf{R}Y \cap \pi^{-1}(\mathbf{P}^1 \times \infty)$), where $\mathbf{R}Y$ denotes the fixed point set of T. We suppose that $\mathbf{R}Y \neq \emptyset$. Then, is the following assertion true? "If δ_{e_1} (resp. δ_{e_2}) = 0, then [K] = 0 ($\in H_1(\mathbf{R}Y; \mathbf{Z}/2)$)." If the above assertion is true, then we can remove the real schemes with the superscript $^{4)}$ from Tables 4–6.

Question 2 In the case of Type Ia, is $(a, t_{(-)}, H_{-}) = (10, 9, e_1)$ (resp. $(10, 9, e_2)$) realized by both a curve with its real scheme |0|0 (resp. $\frac{0}{0}$) and a curve with its real scheme 2(1, 2) (resp. 2(2, 1))?

Question 3 In each case of Type 0 and Type Ia, is it possible that some dividing curves and some non-dividing curves realze an identical value of $(a, t_{(-)}, H_{-})$ (i.e., a genus)?

Question 4 In the case of Type 0, the 4 genera with $(a, t_{(-)}) = (10, 9)$ are all realized by any curves (with their real parts empty)?

参考文献

- V.I. Arnol'd. Distribution of ovals of the real plane algebraic curves, involutions of four-dimensional smooth manifolds, and the arithmetic integer-valued quadratic forms. *Funct. Anal. Appl.*, Vol. 5, pp. 169–176, 1971.
- [2] A.I. Degtyarev. Classification of surfaces of degree four having a nonsimple singular point. Math. USSR-Izv., Vol. 35, No. 3, pp. 607-627, 1990.
- [3] A.I. Degtyarev. Classification of quartics having a nonsimple singular point. ii. Topology of Manifolds and Varieties, Advances in Soviet Math., Vol. 18, pp. 23–54, 1994.
- [4] P. Gilmer. Algebraic curves in $\mathbb{R}P(1) \times \mathbb{R}P(1)$. Proc. Amer. Math. Soc., Vol. 113, No. 1, pp. 47–52, 1991.
- [5] D.A. Gudkov. On the topology of algebraic curves on a hyperboloid. *Russian Math.* Surveys, Vol. 34, No. 6, pp. 27–35, 1979.
- [6] I.V. Itenberg. Curves of degree 6 with one non-degenerate double point and groups of monodromy of non-singular curves. *Real Algebraic Geometry, Proceedings, Rennes 1991, Lecture Notes in Math.*, Vol. 1524, pp. 267–288, 1992.
- [7] I.V. Itenberg. Rigid isotopy classification of curves of degree 6 with one nondegenerate double point. *Topology of Manifolds and Varieties, Advances in Soviet Math.*, Vol. 18, pp. 193–208, 1994.

- [8] I.V. Itenberg. Groups of monodromy of non-singular curves of degree 6. Real Analytic and Algebraic Geometry, Proceedings, Trento (Italy) 1992, pp. 161–168, 1995.
- [9] I.V. Itenberg and E.I. Shustin. Real algebraic curves with real cusps. Topology of Real Algebraic Varieties and Related Topics, Advances in the Mathematical Sciences 29, A. M. S. Translations Series 2, Vol. 173, pp. 97–109, 1996.
- [10] S. Matsuoka (Saito). Coarse projective classification of the double coverings of P¹ × P¹ branched along real algebraic curves of bidegree (4,4) (in Japanese) = bidegree (4,4)の 実代数曲線で分岐するP¹ × P¹の2重被覆の coarse projective classification. Hokkaido Univ. Technical Report Series in Math. 19 'Topology of Complex Manifolds', pp. 39-52, December 1990.
- [11] S. Matsuoka (Saito). The configurations of the *M*-curves of degree (4,4) in $\mathbb{R}P^1 \times \mathbb{R}P^1$ and periods of real K3 surfaces. *Hokkaido Math. J.*, Vol. 19, pp. 361–378, June 1990.
- [12] S. Matsuoka (Saito). Nonsingular algebraic curves in $\mathbb{R}P^1 \times \mathbb{R}P^1$. Trans. Amer. Math. Soc., Vol. 324, pp. 87–107, 1991. (written in 1988).
- [13] S. Matsuoka (Saito). Congruences for M- and (M 1)-curves with odd branches on a hyperboloid. Bull.London Math.Soc., Vol. 24, pp. 61–67, 1992.
- [14] G. Mikhalkin. Extensions of Rokhlin congruence for curves on surfaces. Real Algebraic Geometry, Proceedings, Rennes 1991, Lecture Notes in Math., Vol. 1524, pp. 372–377, 1992.
- [15] G. Mikhalkin. The complex separation of real surfaces and extensions of Rokhlin congruence. *Invent. Math.*, Vol. 118, pp. 197–222, 1994.
- [16] G. Mikhalkin. Congruences for real algebraic curves on an ellipsoid. Topology of Manifolds and Varieties, Advances in Soviet Math., Vol. 18, pp. 223-233, 1994.
- [17] J. Milnor and D. Husemoller. Symmetric bilinear forms. Springer, 1973.
- [18] V.V. Nikulin. Integral symmetric bilinear forms and some of their applications. Math. USSR Izv., Vol. 14, pp. 103–167, 1980.
- [19] V.V. Nikulin. Involutions of integral quadratic forms and their applications to real algebraic geometry. *Math.USSR Izv.*, Vol. 22, pp. 99–172, 1984.
- [20] V.A. Rokhlin. Complex topological characteristics of real algebraic curves. Russian Math.Surveys, Vol. 33, No. 5, pp. 85–98, 1978.

- [21] S. Saito. Correspondences between topological properties of real algebraic curves and invariants of lattices with involutions (in Japanese) = 実代数曲線の位相的性質と、対合 付格子の不変量の間の対応. Kyoto University Surikaisekikenkyusho Kokyuroku, Vol. 926, pp. 21–29, 1995.
- [22] O Viro. Progress in the topology of real algebraic varieties over the last six years. Russian Math. Surveys, Vol. 41, pp. 55–82, 1986.
- [23] V.I. Zvonilov. Complex topological characteristics of real algebraic curves on surfaces. Funct. Anal. Appl., Vol. 16, pp. 202–203.
- [24] V.I. Zvonilov. Complex orientations of real algebraic curves with singularities. Soviet Math. Dokl., Vol. 27, No. 1, pp. 14–17, 1983.
- [25] V.I. Zvonilov. Complex topological invariants of real algebraic curves on a hyperboloid and on an ellipsoid. St. Petersburg Math. J., Vol. 3, No. 5, pp. 1023–1042, 1992.
- [26] V.I. Zvonilov. Stratified spaces of real algebraic curves of bidegree (m, 1) and (m, 2) on a hyperboloid. Topology of Real Algebraic Varieties and Related Topics, Advances in the Mathematical Sciences 29, A. M. S. Translations Series 2, Vol. 173, pp. 253–264, 1996.

Department of Mathematics Hokkaido University of Education (Hakodate Campus) 1-2, Hachiman-cho, Hakodate, 040, Japan.

e-mail address: sachi63@hak.hokkyodai.ac.jp

〒040 函館市八幡町1-2 北海道教育大学 函館校 数学教室

(1997年5月より1998年2月までは、北海道大学数学教室に滞在します。)