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BIFURCATIONS OF AFFINE INVARIANTS FOR
ISOTOPIES OF GENERIC CONVEX PLANE CURVES

TakASHI SANO (EH &&

Department of Mathematics, Faculty of Science, Hokkaido University

1. Introduction

For a single plane curve in affine plane, we studied some interesting mathematical
notions in [7]. We characterized affine vertices and affine inflexions by using the notion
of affine distance cubed functions and affine height functions. They are very interesting
geometrical notions. We take an interest in the following fact of the geometry: How are
affine vertices (affine inflexions) created and destroyed ? In this note, we attempting
to answer the question. The basic tools we shall use have are families of affine distance
cubed functions and affine heightfunctions.The main result is Theorem I which will
given in Section 4.The basic techniques we used in this paper depend heavily on those
in the paper of Professor Bruce [3].

All curves and maps considered here are of class C* unless stated otherwise.

2. Basic Notions of Affine Differential Geometry for Plane Curves

In this section we introduce some basic notions of affine differential geometry for
plane curves (cf., [2,7,8]).

Let R? be an affine plane which adopt the coordinate such that the area of the
parallelogram spanned by two vectors a = (a1, az), b = (b1, b2) is given by determinant
of a and b, thatis | a b| = a1bs —azb;. Let S? be unit circle in R?, and ¢ : S* — R? be

24
a smooth plane curve with —f—g(t) (ciltz

using s(t) := /t: ( ) (t) "—(3) ( ) ‘

d
1. We call such s an affine (arc-length) parameter. We call —¢(s) an affine tangent
2
vector and T(s) an affine normal vector. The affine curvature is defined to x(s) =

(t) ‘ # 0. If we reparametrize a given curve ¢ by

3
dt, then the curve satisfies that

1220 220 .

Suppose that x(s) # 0, then the point ¢(s) +— (s) is called an affine center of

d?¢
()d2
2
curvature of ¢ at s, and its locus is called an affine evolute. The curve %—-?— St — R?
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is called an affine normal curve of ¢.

d
We say that a point ¢(s) of curve ¢ is an affine vertex if :;—(s) = 0. We also say that
s

a point ¢(s) of curve ¢ is an affine inflexion if the affine curvature of ¢ at s is zero.
We assume that ¢ has the following properties, both of which are satisfied generically
(ct., [6]).
(A-1) There is no conic having greater than six-point contact with ¢(S?).
(A-2) The number of points p of #(S!) where the unique non-singular conic touching
#(S') at p with at least five-point contact is a parabola in finite.
(A-3) There is no parabola having six-point contact with ¢(S?).

In [7], we have shown the following theorem.

Theorem I. [7] Let ¢ : S* — R? be a smooth plane curve without inflexional points
satisfing (A-1),(A-2),(A-3). Then We have ;
(1) Let p be a point of the affine evolute of ¢, p being the a]fﬁne center os curvature at
sg. Then, locally at p, the affine evolute is
(a) diffeomorphic to a line in R? if the point ¢(sg) is not an affine verter of ¢ ;
(b) diffeomorphic to an ordinary cusp in R? if the point ¢(so) is an affine vertez of
¢. | '
(2) Let p be a point of the affine normal curve of ¢ at so. Then, locally at p, the affine
normal curve is

(a) diffeomorphic to a line in R? if the point ¢(sq) is not an affine inflexional point

of ¢;
(b) diffeomorphic to an ordinary cusp in R? if the point ¢(30) 15 an affine inflezional

point of ¢.

3. Basic Notions of Singularities

In this section we introduce some basic notions of singularity theory (cf., [1,3,4]).

Let G : R x R",0 — R, 0 be a function germ. We call G an unfolding of g(¢) =
G(t,0). We say that g(t) has an Ag-singularity at ¢ if g () = 0 for all 1 < p < &,
and g(**+1)(t) # 0. The family G is a versal unfolding of the function g with an A-

oG
singularity if and only if the truncated Taylor expansions of B_(t’ 0),1 <7< n,span
a; ;

the space of polynomials in ¢ of degree at most k& — 1.
We consider an unfolding G(t,a,u) of the potential function G(¢,0,0) = g(t). The
bifurcation set is defined as

B(G):={ (a,u) e AxU |2 (at) ‘Zf(a W) =01}

We consider the extended unfolding G(t a,u,c) = G(t,a,u) — c. The discriminant set
is defined as

D(G) :={ (a,u,c) € AXU xR | G(¢,a,u) =, %_f(a’.t) _oy.
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The unfoldings G' and G give rise to families of binfﬁrcation, resp. discriminant sets
obtained by fixing the parameter u. We have natural projections 7 : AxU — U (resp.
m:AXUXxR-—U). :

Theorem I. [4] Let G(t, a,u) be as above. if1, -g—G(t, 0,0) (1<i< n)kand g—G(t, 0,0)
a; U

span R[t]/(t*) then G (resp. G) is a versal unfolding of the function (resp. potential
function) g(t). When this is the case we have the following.

(a) If 1, -gg(t,0,0) span R[t]/(t*) the projection w (resp. m1) is equivalent, via a

bifurcation (resp. discriminant) preserving diffeomorphism, to the trivial pro-
jection onto one factor of a product bifurcation (resp. dicriminant) set.
" : : oG
(b) If G is of minimal dimension k—1 and 1, B, —(t,0,0) span R[t]/(t*) then the pro-

jection piy (resp. pi) is equivalent to the proyectzon of the standard discriminant
(resp. bifurcation) set of F (resp. F') above onto the a;- coordinate,

where F(t,a) = £t5+1 +a,tb~1 + .. 4 ap_st+ag and F(t,a) = £t fath-14.. 4
ak_lt.

4. One Parameter Family of Plane Cﬁrves
Let U be an open interval (—1,2). We consider the following set ;
Iﬂim+(Sl,R2) :={i:8" — R? | i is immersion, | (s) y 2(s) | >0}
s
We also consider the following set ;
C:={®:8'xU —R?| &, € Imm*(S',R?),for any ue U }.

In particular, ®, and ¢; satisfy above conditions (A-1), (A-2) and (A-3), and <I>u(3)
satisf -@(s) 2, ~(s) | =1
y ds? o

Then we have following result.

Theorem M. There e:czsts a dence subset O C € such that for any ® € O we have the
follounng ;

(1)Let p be a point of the family of affine normal curve of @, at s, then locally at p, the
family of affine normal curve s ;

(a) diffeomorphic to the plane in R? and projection is equivalent to the trivial pro-
jection if ®,, has A;-singularity at s.

(b) diffeomorphic to the cuspidal edge in R and proyectzon 1s equivalent to the trivial
projection if ®, has Aj-singularity at s.

(c) diffeomorphic to the swallowtail in R3 -and projection is equivalent to the pro-
jection : B(F) — R; (u,a) = ay if ®, has Az-singularity at s.
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(2) Let p be a point of the family of affine evolute of ®, at s, then locally at p, the
family of affine evolute s ;
(a) diffeomorphic to the plane in R® and projection is equivalent to the trivial pro-
jection if ®,, has As-singularity at s.
(b) diffeomorphic to the cuspidal edge in R® and projection is equivalent to the trivial
projection if ®, has As-singularity at s.
(c) diffeomorphic to the swallowtail tn R® and projection is equivalent to the pro-
jection : D(ﬁ) — R; (u,a,c) — a1 if B, has Ag-singularity at s.
Here the cuspidal edge is given as R x { (z1,z2) | 2% = z3 } and the swallowtail is given
as { (z1,22,23) | 1 = 3u* + vlv, 32 = 4ud + 2uv, 23 = v }.

We present ideas of the proof in outline as follows.

4-1. Family of Affine Height Functions. When we study a single plane curve in
affine plane, we define the affine height function as follows. For ¢ : S — R? as above,

h: 8! x 81 — R; h(s,a) := ‘ %(s) a

. Similarly we now define the one parameter

family of affine héight function
H:S'xUxS" —R

by

H(s,u,a):= l %—?—(s,u) a
We also define a function H : S? x U x §' x R — R by
ﬁ(s,u, a,v) = H(s, u, a) — v.

The discriminant set of H is as follows ;

- 2
DE(H) = { (u,)\(s,u)%(s,u),)\(s,u)) ceUxS'xR|seS},

where \(s,u) = £ = 82;" , ®(s,u) = (@1(s,u), ®%(s,u)).
pICA I

We now consider D*(H). We define a map ¥ : U x (R? — {0}) — U x S* xR by

I L9 1

, £ : , ), £
N A T R

It is clear that W is a diffeomorphism and ¥(Ng) = D*(H),

0*®
where Ng = { (u, 5z

U(u,z1,22) := (u, (£

(s,u)) | s € ' }, that is the family of affine normal curves.
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We consider the following set ¥ and the canonical projection P; ;

2
Y ={(s,u,a,v) € S* xU xS xR | a:)\(s,u)g—j—'(s,u) }

that is singular set of H,
P :T—UxS8 xR

Then we have D*(H) = Cp,, where is Cp, is the critical value set of P;.

Without loss of generality we shall work at © = 0 and ¢t = 0. We write ®(¢t,u) =
(t, cot® + c3t3 + cqt* + cst® + c5t® + O(7)) where O(k) denotes a smooth function on
R vanishing at ¢ = 0 to order £ — 1. In particular, we assume that cg # 0. If a =

C3 2C§
F =) + the condition for H to have a Ag-singularity at ¢ = 0 is
( \/c3+4cz \/c3+4c2) 8
as follows ;

(1) H has a A;-singularity ¢t = 0 if and only if 5¢2 — 4cgcq # 0,

(2) H, has a A,- singularity ¢t = 0 if and only if 5¢2 — 4cacq = 0, Tezeq — Seaes # 0,

(3) H, has a As-singularity t = 0 if and only if 5c3 —dcgcs =0, Tezeq — Seges = 0,
21ckcy — 10c3cs # 0,

(4) H, has a A>4-singularity ¢ = 0 if and only if 5¢§ — 4cacs = 0, Tezes — Sepes = 0,
21C§C4 - 10c§cs =0,

where H,(t,u) = H(t,u,a) for any a € S*.
We now define the function F: S! x U xR— R ;

F(s,u,z) = ai(s u)sinz; — 8;;2 (s,u) — z2,

where £ = (z1,z2). This is considered as a local representation of H. We may use F
instead of H. We obtain ; :

OFg, , (2c2)5 3 2 2

hdits | 222 " V(—ca + A3t

s (s,0) = (m)( c3 + 4cyt + 6¢he3t” + -+ ),
OF,,
63}2 (Sa 0) - 19
0F,, 2¢;)” 8

(60 = (L) 26k = cen)t + (el = o)t +--),

where 221 ——2(t,0) = dit + dyt® + O(3), 0°®, —(t,0) = 1t + ext? + O(3) .
Budt i+, uot ) T AT e
(i) A; and A,-singularity

Since 1,—=* ale —=(s,0), %le (s,0) span R[t]/(t?), the pI'OJCCthIl is the teivial one,

by Theorem I. And F is always versal unfolding.
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(i1) As-singularity

{ T F.’l:l T
The condition for a versal unfolding is that 1, %Fxll (s,0), 6(972(3’ 0), 8;;1 (s,0)

span R[t]/(t3), that is c3 # 0. And the condition that the projection is automatic
by Theorem II. ' S

Applying the transversality results of Bruce [4] as Theorem I, we have Theorem II (1).

4-2. Family of Affine Distance Cubed Functions. When we study a single plane
curve in affine plane, we define the affine distance cubed function as follows. For o :

S§' — R? as above, d : ST x R? — R; d(s,a) := l %(s) #(s)—a , Similarly we now
define the one parameter family of affine distance cubed function
D:S'xUxR? —R
by
D(s,u,a) := l g—f(s,u) ®(s,u) —a

The bifurcation set of D is as follows ;

B(D) = { (u,®(s,u) + msg—z(s,u)) €U xR* | k(s,u) #0,s € S }.
B(D) is the family of affine evolute. We now condsider the following set ¥ and the
natural projection P ; :

29
% ={(s,u,a) € ST xU xR? | a:@(s,u)—/\z?(s,u),)\eR},

that is singular set of D,
P:¥— U xR

Then we have B(D) = Cp, Cp is the critical value set of P. :

Without loss of generality we shall work at v = 0 and ¢ = 0. We write ®(t,u) =
(t, cat® + st +cat* + c5t® +c6t® +crt” +O(8)). In particular, we assume that co #0. If
Co 2¢3

264 — 3C3 ’ Cs (264 - 363)
is as follows ;

a= (-

) the condition for D, to have a Ap-singularty at t = 0

(1) D, has a As-singularity t = 0 if and only if 3cyc3cq — 2c§ —ckes #0, A

(2) Dg has a As-singularity ¢ = 0 if and only if 3cacscy ~2c¢3 —cics =0, 148¢, ciey -
160c3 + 128c4c2 — 60c3cg — Sccq + 4egesc? # 0,

3) D, has a Ay-singularity ¢t = 0 if and only if 3cyczcs —2¢3 — c2ey = 0, 148cycicy —

g 3~ C2 3
160c3 + 128c5c; — 60c3cs — Bc3es + 4cacsel = 0, 16060cicsce — 84360cycics +
168499c3 — 2080cjcsc; — 3360cicr + 5520cacics — 3840c3cics — 8280cych
+5760c3c3cq # 0, , ‘

(4) Do has a Asjs-singularity ¢ = 0 if and only if 3coc3cs — 2¢3 — c3cs = 0,
148cyccs — 160ch + 128c2c2 — 60cics — 5c3cy + 4caczc: = 0, 16060c3c3ce —
84360czc3cq + 168499c3 — 2080c2csc? — 3360c3cr + 5520czchcqy — 3840c3c3cy —
8280c2c3 + 5760c3cicy = 0,
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where D,(t,u) = D(t,u,a) for any a € R%.
By similar argument to 4-., we have Theorem I (2).

The situation described in Theorem II (2) is depicted as follows. The dotted line is
the curve ¢(t) = (cos 2t — cos(t + a), sin 2t 4 sint). The real line is the affine evolute of
¢. The parameter a is 1.9, 2.0, 2.1, 2.2, 2.3, 2.4.
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