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1. Introduction. »

Let G be an affine exponentially Nash group. In this note, we are concerned
with fundamental properties of exponentially Nash G vector bundles. Our results
in the present note are an exposition of [6].
~ Nash vector bundles (resp. Nash manifolds) are bundles (resp. manifolds) inter-
mediate between real algebraic ones and C' ones. It is known that there are some
useful categories between Nash one and C™ one (e.g. [3], [11], [12], [13], [14], [24],
[25]). One of them is an exponentially Nash category.

Nash manifolds have been studies for a long time and there are many brilliant
works (e.g. [1], [2], [10], [17], [18], [19], [20], [21]).

The semialgebraic subsets of R™ are just the subsets of R" definable in the stan-
dard structure Ryian := (R;<,+,+,0,1) of the field R of real numbers [22]. It is
known that there are only three useful collections of séts definable in Rytqn [15].
These collections are the sets of semilinear sets, semibounded sets, and semial-
gebraic sets. However any non-polynomially bounded function is not definable in
Rtan. where a polynomially bounded function means a function f : R — R admit-
ting an integer N € N and a real number 2y € R with |f(z)| < 2, 2 > 2¢. C. Miller
[16] proved that if there exists a non-polynomially bounded function definable in
an o-minimal expansion (R, <, +,-,0,1, ....) of Rgsqn, then the exponential function
exp : R — R is definable in this structure. Hence R.., := (R, <, +,,exp,0,1) is
a natural expansion of Ryen. There are a number of results on R.., (e.g. [11],
[12]. [13], [14], [25]), in particular Resp is o-minimal. Since R.,, does not have
elimination of quantifiers, in R.;, Tarski-Seidenberg Theoreny does not hold true.
Remark that there are another expansions of Rsm" with snmlar properties of Regp
(3], [4]. [25]). | |

We say that a C" manifold (0 <r < w) is an erponentmlly C" Nash man fold
if it is definable in R, (See Definition 2.5). Equivariant such manifolds are defined
in the similar way (See Definition 2.8). Equivariant exponentially Nash vector
bundles are defined as well as Nash ones (See Definition 2.11).

In this note, all exponentially Nash groups, all exponentially Nash G manifolds
and exponentially Nash G vector bundles are of class C*, and every manifold does
not have boundary unless otherwise stated.
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Theorem [6]. Let G be a compact affine exponentially Nash group and let X be
a compact affine exponentially Nash G manifold.

(1) For every C™G vector bundle n over X, there exists a strongly exponentmﬂy
Nash G vector bundle (See Definition 2.13) ( which is C*°G vector bundle isomor-
phic to n.

(2) For any two strongly exponentially Nash G vector bundles over X, they arc
exponentially Nash G vector bundle isomorphic if and only if they are C°G vector
bundle isomorphic.

(3) Ifdim X > 1 and X has a 0-dimensional orbit, then for any C*°G vector bundle
n' of positive rank over X, there exists a non-strongly exponentially Nash G vector
bundle (' which is C*G vector bundle isomorphic to n'.

In the equivariant Nash category, a stronger version of Theorem (3) holds true
[9]. Remark that Nash structures of C*G mamfolds and C*G vector bundles are
studied in [8] and [5], respectively.

2. Exponentially Nash G manifolds and exponentially Nash G vector
bundles.

Recall the definition of exponentially Nash G manifolds and exponentially Nash
G vector bundles [7] and basic facts [7].

Definition 2.1. (1) An R.,,-term is a finite string of symbols obtained by repeated
applications of the following two rules:

[I] Constants and variables are R, ,-terms. ,

[2] If fis an m-place function symbol of R.;, and ty,.:.,t, are R¢;p-terms, then
the concatenated string f(t1,...,t,) is an R¢;,-term.

(2) An Regp-formula is a ﬁnlte string of R;p-terms satisfying the following three
rules:

(1] For any two R.,,-terms ¢y and to, t; = t, and t; > t; are R.,,-formulas.

[2] If ¢ and ¢ are R, ,-formulas, then the negation —¢, the disjunction ¢ V ¢, and
the conjunction ¢ A ¢ are R.,,-formulas.

[3] If ¢ is an R.;p-formula and v is a variable, then (Jv)¢ and (Vv)¢ are R.,p-
formulas.

(3) An exponentially de finable set X C R™ is the set defined by an R.;,-formula
(with parameters).

(4) Let X C R™ and ¥ C R™ be exponentially definable sets. A map f: X — Y
is called exponentially definable if the graph of f C R™ x R™ is exponentially
definable. ‘

On the other hand, using [12] any exponentially definable subset of R™ is the

image of an R, 4,-semianalytic set by the natural projection R™ x R™ — R" for
some m. Here a subset X of R™ is called R,-semianalytic if X is a finite union of
sets of the following form:

{z e R"|fi(x) =0,g(x) > 0,1<i < k,1<7 <1},

where fi,g; € Rlz1,...,Tn,exp(21),. .., exp(zTa)]
The following is a collectlons of propertles of exponentially definable sets (cf

[7D)-
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Proposition 2.2 (cf. [7]). (1) Any exponentially definable set consists of only
finitely many connected components.

" Let X C R" and Y C R™ be exponentially definable sets.
(2)The closure CI(X) and the interior Int(X) of X in R™ are exponentially defin-
able.

(3) The distance function d(x, X) from x to X defined by d(x, X) = inf{|jx —yl||y €
X'} is a continuous exponentially definable function, where ||-|| denotes the standard
norm of R™.
(4) Let f : X — Y be an exponentially definable map. If a subset A of X is
exponentially definable then so is f(A), and if B C Y is exponentially definable
then so is f~}(B).
(5) Let Z C R! be an exponentially definable set and let f : X — Y and h :
Y — Z be exponentially definable maps. Then the composition ho f : X — Z
is also exponentially definable. In particular for any two polynomial functions
f.g : R — R, the function h : R — {f = 0} — R defined by h(x) = e9(2)/f(2) g
exponentiallv definable.

(6) The set of exponentially definable functions on X forms a ring.

(7) Any two disjoint closed exponentially definable sets X and Y C R"™ can be
separated by a continuous exponentially definable function. O

~ Let U ¢ R™" and V C R™ be open exponentially definable sets. A C™ (0 < r < w)
map f : U — V is called an exponentially C™ Nash map if it is exponentially
definable. An exponentially C™ Nash map g : U — V is called an exponentially C”
Nash dif feomorphism if there exists an exponentially C™ Nash map h: V — U
such that goh = id and h o g = id. Remark that the graph of an exponentially CG"
Nash map may be defined by an R, p-formula with quantifiers.

Theorem 2.3 [14]. Let Sy,..., Sy C R" be exponentially definable sets. Then
there exists a finite family 28 = {T'%} of subsets of R" satisfying the following four
conditions:

(1) T2 are disjoint, R" = Uy 4T'¢ and S; = U{TE|ITENS; # 0} for 1 <i < k.

(2) Each T'% is an analytic cell of dimension d.

(3) T‘E —TI'¢ is a union of some cells I'y with e < d.

(4) If I‘g,I“;, € 2,1 C I'd — T4 then (Fi,F%) satisfies Whitney’s conditions (a)
and (b) at all points of I'y. 0

Theorem 2.3 allows us to define the dimension of an exponentially definable set
E by

" dim E = max{dimT'|T is an analytic submanifold contained in E}.
Ezample 2.4. (1) The C* function A : R — R defined by

M) {O f <0~
T =
_ e~V i >0

is an exponentially C*> Nash map. This example shows that an exponentially
definable C™ map is not always analytic. This phenomenon does not occur in the
usual Nash category. Notice that every C> Nash map is a C* Nash map.



141

(2) The Zariski closure of the graph of the exponential function exp : R — R in
R? is the whole space R%. Hence the dimension of the graph of exp is smaller than
that of its Zariski closure.

(3) The continuous function h : R — R defined by

h(x):{ez‘" if n<z<<n+1

, for n € 2Z,
ent?=? if n+1<z<n+2

is not exponentially definable, but the restriction of h on any bounded exponentially
definable set is exponentially definable. O

Definition 2.5. Let r be a non-negative integer, 0o or w.

(1) An exponentially C™ Nash manifold X of dimension d is a C" manifold
admitting a finite system of charts {¢; : U; — R4} such that for each i and j ¢;(U;N
U';) is an open exponentially definable subset of R? and the map ¢;o0 qSi_] lo:(U; N
U;): 6:(U; nU;) — ¢;(U; N Uj) is an exponentially C™ Nash diffeomorphism (an
exponentially Nash homeomorphism if r = 0). We call these atlas exponentially C"
Nash. Exponentially C” Nash manifolds with compatible atlases are identified. A
subset M of X is called exponentially de finable if every ¢;(U; M) is exponentially
definable.

(2) An exponentially definable subset X of R" is called a d-dimensional exponen-
tially CT Nash submanifold of R™ if for any = € X there exists an exponentially
C'" Nash diffeomorphism ¢ from some open exponentially definable neighborhood
U of the origin in R" onto some open exponentially definable neighborhood V' of
x in R” such that ¢(0) = z,¢(R*NU) = X NV. Here R? denotes the subset of
R"™ those which the last (n — d) components are zero. An exponentially C” (r > 0)
Nash submanifold is of course an exponentially C” Nash manifold [7].

(3) Let X (resp. Y) be an exponentially C” Nash manifold with exponentially C"
Nash atlas {¢; : U; — R"}; (resp. {¢; : V; — R™};). AC " map f: X — Y
is said to be an exrponentially CT Nash map if for any 7 and j ¢,(f~1(V;)NU;) is
open and exponentially definable in R", and that the map ;o f o¢; ! i (fTHVHN
U;) — R™ is an exponentially C™ Nash map. '
(4) Let X and Y be exponentially C" Nash manifolds. We say that X is exponen-
tially C™ Nash dif feomorphic to Y if one can find exponentially C” Nash maps
f:X—Yand h:Y — X such that foh=1d and ho f =1d.

(5) An exponentially C"™ Nash manifold is said to be C" af fine if it is exponentially
C™ Nash diffeomorphic to some exponentially C™ Nash submanifold of R!. We
simply write af fine instead of C" affine if r = w.

Remark that any C° Nash manifold is a C' Nash manifold, but there exists an

exponentially C*> Nash manifold which is not an exponentially C* Nash manifold
(See Example 2.4).

Definition 2.6. (1) A group G is called an exponentially Nash group (resp. an
af fine erponentially Nash group) if G is an exponentially Nash manifold (resp.
an affine exponentially Nash manifold) and that the multiplication G x G — G
and the inversion G — G are exponentially Nash maps.

(2) Let G be an exponentially Nash group. A representation of G means a group
homomorphism from G to some G L(R"™) which is an exponentially Nash map. We
use a representation as a representation space.
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Ezample 2.7. Subgroups

-t (},’ [ )t € R and {cant ((1, ieer) |

of GLy(R) are exponentially Nash groups but not Nash ones.

Definition 2.8. Let G be an exponentially Nash group and let r be a non-negative
integer, oo or w.

(1) An exponentially C™ Nash submanlfold in a representation of G is called an
exponentially C™ Nash G submanifold if it is G invariant.

(2) An exponentially C™ Nash G manifold is a pair (X,0) consisting of an ex-
ponentially C™ Nash manifold X and a group action 6 of G on X, such that
0:G x X — X is an exponentially C"™ Nash map. For snnphc1ty of notatlon we
write X instead of (X, 6).

(3) Let X and Y be exponentlally CT" Nash G manifolds. An exponentlally C'" Nash
map f : X — Y is called an exponentially C™ Nash G map if it is a G map. An
exponentially C'" Nash G map g : X — Y is said to be an exponentially C™ Nash
G dif feomorphism if there exists an exponentially C™ Nash G map h: Y — X
such that go h = td and ho g = ud.

(4) We say that an exponentially C™ Nash G manifold is C” af fine if it is expo-
nentially C” Nash G diffeomorphic to an exponentially C™ Nash G submanifold of
some representation of G. If r = w, then we simply write af fine instead of C"

affine.

We have the following implications on groups:

an algebraic group==-an affine Nash group=an affine exponentially Nash group
= an exponentially Nash group = a Lie group.

Let G be an algebraic group. Then we obtain the following implications on G
manifolds:

‘a nonsingular algebraic G set = an affine Nash G manifold
= an affine exponentially Nash G manifold = an exponentially
~ Nash G manifold => a C'°°G manifold.

Moreover, notice that a Nash G manifold is not always an affine exponentially Nash
G manifold.

In the equivariant exponentially Nash ca,tegory, the equivariant tubular nelgh-
borhood result holds true [7].

Proposition 2.9 [7]. Let G be a compa,ct affine exponentially Nash group aﬂd
let X be an affine exponentially Nash G submanifold possibly with boundary in a
representation S of G. Then there exists an exponentially Nash G tul)ular neighbor-
hood (U.p) of X in Q, namely U is an affine exponentially Nash G submanifold in
Q0 and the orthogonal projection p : U — X is an exponentially Nash G map. O

The following lemma is useful to prove the existence of nonaffine exponentially
Nash manifolds, which is a generalization of the usual Nash case (1:2.2.15 [21]).



Proposition 2.10 [7]. Let M and N be exponentially Nash manifolds and let
h : M — N be a locally exponentially Nash map. If N is affine then h is an
exponentially Nash map. Here we say that h is locally exponentially Nash if for
any r € M and f(x) € N, there exist open exponentially definable neighborhoods
UofzinMandV of f(z) in N such that f(U) CV and flU : U — V is an
exponentially Nash map. 0O

Definition 2.11. Let G be an exponentially Nash group and let r be a non-negative
integer, oo or w.
(1) A C"G vector bundle (E,p, X) of rank k is said to be an exponentially C”
Nash G vector bundle if the following three conditions are satisfied:
(a) The total space E and the base space X are exponentially C™ Nash G
manifolds.
(b) The projection p is an exponentially C” Nash G map.
(c) There exists a family of finitely many local trivializations {U;, ¢; : U; X
RF — p~1(U;)}; such that {U;}; is an open exponentially definable
covering of X and that for any ¢ and j the map ¢; ' 0¢;|(U;NU;) x R* :
(U:NU;) x RE — (U; N U;) x R¥ is an exponentially C™ Nash map.
We call these local trivializations exponentially C™ Nash.
(2) Let n = (E,p,X) (resp. ¢ = (F,q,X)) be an exponentially C" Nash G vector
bundle of rank n (resp. m). Let {U;,¢; : U; x R* — p~Y(U;)}; (resp. {Vj,¢; :
V; x R™ — ¢71(V})};) be exponentially C™ Nash local trivializations of n (resp.
(). A C7G vector bundle map f :n — ( is said to be an exponentially C™ Nash
G vector bundle map if for any ¢ and j the map (¥;)™ o f o ¢;|(U; N V;) x R™ :
(U; nV;) x R — (U; NV;) x R™ is an exponentially C” Nash map. A C"G
section s of 1 is called exponentially C™ Nash if each ¢:1 os|U; : U; — U; x R™
is exponentially C™ Nash. ‘
(3) Two exponentially C" Nash G vector bundles n and ( are said to be exponen-
tially C™ Nash G vector bundle isomorphic if there exist exponentially C™ Nash G
vector bundle maps f:n — ( and h: ( — n such that foh =id and ho f = id.

Recall universal G vector bundles (cf. [5]).

Definition 2.12. Let G be a compact exponentially Nash group. Let 2 be an n-
dimensional representation of G and B the representation map G — GL,(R) of
2. Suppose that M (1) denotes the vector space of n x n-matrices with the action
(g.A) € G x M() — B(g)"'AB(g) € M(f). For any positive integer k, we
define the vector bundle v(Q, k) = (E(Q, k), u, G(R, k)) as follows: '

G(E)={A e MQ)A2=A,A=A"TrA =k},

E(Q,k) = {(A,v) € G(Q, k) x Q| 4v = v},
w: B(Q,k) — G, k) : u((A4,v)) = 4,

where A’ denotes the transposed matrix of A and TrA stands for the trace of A.
Then (9. %) is an algebraic set. Since the action on y(2, k) is algebraic, it i1s an
algebraic G vector bundle. We call it the universal G vector bundle associated
with. Q and k. Since G(9, k) and E(f, k) are nonsingular, y(£2, k) is a Nash G

vector bundle, hence it is an exponentially Nash one.
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Definition 2.13. Let G be a compact exponentially Nash group and let X be an
exponentially C™ Nash G manifold. An exponentially C” Nash G vector bundle
n = (E.p,X) of rank k is said to be strongly exponentially C™ Nash if the base
space X is C7 affine and that there exist some representation  of G and an
exponentially C" Nash G map f : X — G(§, k) such that 5 is exponentially
C"™ Nash G vector bundle isomorphic to f*(y(, k‘)) If »r = w, then stlongly
exponentially C” Nash is abbreviated to strongly exponentially Nash.

Let G be a compact Nash group. Then we have the following implications on G
vector bundles over an affine Nash G manifold:

a Nash G vector bundle = an exponentially Nash G vector bundle = a
C“G vector bundle, and

a strongly Nash G vector bundle = a strongly exponentially Nash G vector
bundle = an exponentially Nash G vector bundle. ’

3. Sketch of p'roof.

Sketch of proof of Theorem (1) and (2). We now give a sketch of proof of (1).
Since G and X are compact, there exist a representation 2 of G and a C*°G map
f: X — G(Q,k) such that n is C°G vector bundle isomorphic to f*(v(£2,k)),
where k denotes the rank of 5. Averaging a polynomial approximation of f and by
Proposition 2.9, we have an exponentially Nash G map h : X — (£, k) which
approximates f. By [24], ¢ := h*(y(Q, k)) is the required one.

We now sketch the proof of (2). Let (; and (; be two strongly exponentially
Nash G vector bundles over X. Then Hom((;, () is a strongly exponentially Nash
G vector bundle. By the assumption, there exists an element F' in Iso((1,(2)
Approximating F by an exponentially Nash G section of Hom((y,(2), we have the
desired isomorphism because Iso((;,(2) is open in Hom((1,¢z). O

We prepare the following result to prove Theorem (3).

Proposition 3.1 [7]. Let G be a compact affine exponentially Nash group and let
n = (E,p,Y) be an exponentially Nash G vector bundle of rank k over an affine
exponentxal]y Nash G manifold Y. Then n is strongly exponentially Nash if and
only if E is affine. O

Sketch of proof of Theorem (3). By Theorem (1) we may assume that 7’ is expo-
nentially Nash G vector bundle. Since X has a 0-dimensional orbit G(z) and by
Proposition 2.9, one can find an open G invariant exponentially definable neighbor-
hood U of G(z) such that n|U is exponentially Nash G vector bundle isomorphic
to U x = for some representation =. Using Proposition 2.9, we can construct three
open G invariant exponentially definable subsets of U which cover U. We paste their
overlaps with a collection of exponentially Nash G diffeomorphisms. By Proposi-
tion 2.10. we can show that the total space of the resulting exponentially Nash G
- vector bundle (' is nonaffine. Therefore we have (3) by Proposition 3.1. [
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