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IMMERSIONS FROM THE 2-SPHERE TO THE
3-SPHERE WITH ONLY TWO TRIPLE POINTS

WAREHE EEEFAT (AKIKO SHIMA)

ABSTRACT. Let f be an immersion from the 2-sphere S? to the 3-sphere S3. Suppose that
the singular set S(f) contains only two triple points, and all components of S(f) contain
triple points. In this paper, we list up the neighborhoods of singular sets of immersions up
to homeomorphism.

0. INTRODUCTION

Let S™ be the n-dimensional sphere, and I = [—1, 1]. In [Y], Yamagata researched about
singualr surfaces with only one triple points. In [B], Banchoff showed the following: let F'
be a closed surface, and f an immersion from F to S3, then the number of triple points
is congruent modulo 2 to the Euler characteristic of F. Therefore an immersion from S2
to S% with only two triple points is the easiest in all immersions ﬁom S 2 to S with triple
points. Let f be an immersion from S2 to S3. In this paper, we list up the following -
neighborhoods of singular sets of immersions: |

(1) the singular set S( f) contains only two triple points, and
(2) all components of S(f) contain triple points.

We will work in the PL category. All submanifolds are assumed to be locally flat.

Put B = {(z1,z2,23) € R3| 22 + 22 + 22 < 1}, P, = BN {(z1,Z2,23) € R3|z; = 0}
(i=1,2,3), and P;" = BN {(z1,T2,z3) € R3|z; > 0 and x5 = 0}. Let P; be a cone with
a vertex (0,0,0) of a figure eight in @B (see Figure 1).

Let F' be a compact surface, M a 3-manifold, and f : F — M a map. We say that f
is in general position, if for each element = of f(F'), there exist a regular neighborhood
N of z in M and a homeomorphism h : N — B such that N and h satisfy the following

three conditions:
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branch point

Figure 1
(1) Under A, (N, NN f(F),z) is homeomorphic to either (B, P;, (0, 0,0)), (B, U

P,,(0,0,0)), (B, P, U P2 U P3,(0,0,0)), (B, P{", (0,0,0)) or (B, P4, (0,0,0)).

(2 If (N, Nhf(F), z) is not homeomorphic to (B, Py, (0,0, 0)) and (B, P;, (0,0,0)),
then for each component R of f~!(f(F) N N) there exists' an integer 7 such that ho f|R:
R — P; is a homeomorphism. |

(3) If (N, NN f(F),z) is homeomorphic to (B, Py, (0,0,0)), then f~}(N N f(F)) is
a disk.

Note. If (N, N N f(F),z) is homeomorphic to (B, Py, (0,0,0)), then z is called a branch
point (also known as “Whitney’s umbrella” or “a pinch point”). If (N,N N f(F),z) is
homeomorphic to (B, P, U Py, (0,0,0)), then z is called a double point. If (N, NN f(F),z)
is homeomorphic to (B, P, U P, U P3,(0,0,0)), then z is called a triple point.

Let f be a map in general position. Then let S(f) be the set of all double points, triple
points and branch points of f. We call S(f) a singular set of f. And S(f) = f~1(S(f)).
Let T'(f) be the set of all triple points of f. If S(f) does not,contaiﬁ any branch points,
then f is called an immersion. '

We say that a 3-manifold M is a cube-with-handles if M is orientable and M is obtained
from a 3-ball by attaching 1-handles. | b'

All homology groups are with coefficients in Zs.

The paper is organized as follows. In Section 1, we define S-neighborhoods. In Section
2, we consider necessary coﬁditions of singular sets of inll‘mersions‘froni' closed surfacés. In
Section 3, we consider a singular sét containing only two triple' points. In Section 4, we

consider a part of singular sets. In Section 5, we introduce Main Theorem.
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1. S-NEIGHBORHOODS

Let F be a compact surface with or without boundary, M a 3-manifold, and f a map
from F to M with in general position and S(f)Nf(OF) = ¢. Let C be a subset of S(f). We
call C a double curve of f if there exists an immersion i from S* to S(f) with ¢(S*) = C.

To each component of the double curve, au(2 X 2)—signéd permutation matrix is associated
as follows: Choose a double point in the double curve. A disk that is transverse to the
double cui've at the double point intersects f(F) at a pair of the coordinate arcs. Assign
e1 = (1,0) and ez = (0,1) to any two consecutive branches of the coordinate arcs. The
opposite branch of e; is assigned —e; for s = 1,2. Follow the branches e; and ez around
the double curve until they come back to match the branches v; and v, respectively where
v1,vy = te; or tey. Then the (2 x 2)-signed permutation matrix (v, v2) is the associated
double curve point matrix. We denote by M(C) = (v1,v2). The double curve matrix
depends on the choice of two consecutive branches. However, it is affected at most by a
change of sign when a different choice is made (see [C-K]).
~ Let C4,...,C, be double cu‘rvés of f and C = U, C;. Let N(C) be a regular neigh-
borhood of C in M, and G(C) = N(C) N f(F). Then we call N(C) = (N(C),G(C)) an
S-neighborhood of C.

Remark. If M is orientable, then a neighborhood N(C) of C is a cube-with handles in M,
and AN(C) N G(C) is a 4-valence graph on the oriented closed surface dN(C).

Let 0(C) = (N(C), G(C)) be as above. Then N (C)\G(C) consists of some regions. We
say that 9(C) has a checkerboard coloring, if each regions can be colored black or white
such that adjacent regions have different colors (i.e. Let Ey, ..., E, be the components of
ON(C) \ G(C). Then there exists a map g : {El, ..., Ep} — {0,1} such that g(E;) #
g(E,) if there exists an arc o in S3 with da = a;Uas, a; € E;, az € Ej and oNf(F) = {one
point}). | |

Let C be a double curve of f, and 91(C) an S-neighborhood of C. If C is a simple closed
curve, and if M is orientable, then N(C) is a solid torus, aﬁd M(C) satisfies one of the
following conditions:

(C1) G(C) consists of two immersed annuli and disjoint meridional disks,
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(C2) G(C) consists of one immefsed Mobius band and disjoint meridional disks,

(C3) G(C) consists of two immersed Mébius bands and disjoint meridional disks.

Lemma 1.1 ([S1, Lemma 1.1]). Let f be an immersion from a compact surface F to
an oriented 3-manifold M. Let C be a double curve of f, and N(C) an S-neighborhood of
C. Suppose that C is a simple closed curve and M(C) has a checkerboard coloring.

(1) N(C) satisfies the condition (C1) or (C3) if and only if the number of the meridional
disks of G(C) is even.

(2) U(C) satisfies the condition (C2) if and only if the number of the meridional disks
of G(C) is odd.

Lemma 1.2 ([S1, Lemma 1.2]). Let F, f,C,M(C) be as above. If C is a simple closed

curve, then
r /1 O ) . .-
(O 1) if W(C) satisfies the condition (C1)

0 1
MC)=/{ + ( 1 0) if N(C) satisfies the condition (C2) .

-1 0
( 0 1) if W(C) satisfies the condition (C3)
{ —

Notes 1.3 ([S1, Lemma 1.3]). Let F be a closed surface, M a 3-manifold, f a map from F
into M with in general position, and ¢ a simple closed curve in M such that c is transverse
to f(F), cNS(f) = ¢. If f,[F] =0 in Hy(M), then

(1) the number of points of ¢ N f(F) is even, and '

(2) each region of M \ f(F) can be colored black or white so that adjacent regions have

different colors.

Lemma 1.4 ([S1, Lemma 1.4]). Let F,f,M be as above. Let Ci,...,C, be double
curves of f, C = U, C;, and N(C) an S-neighborhood of C. If F is closed and f.[F] =0
in Ha(M), then N(C) has a checkerboard coloring.

Let F' be a compact surface, M a 3-manifold, f a map from F into M with in general

position and S(f) N f(F) = ¢. Let C be a double curve of f, M(C) an S-neighborhood of
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C, and z a point of C. Then we will define two operations at z. Let 75 : RZ — R? be the

rotation map at (0,0) obtained by

ro (:1:) _ ( cosf sz'nH) (m)
Y —sinf cosl Y
Put X = 0xIUIx0, D = {(z1,72) € R?|z2+2% < 1}, Q4 = X x[1,2], Q- = X x[-2,-1],
Q =X x[-22], N, = Dx[1,2], NN = Dx[-2,-1], and N = D x [-2,2]. Let
Q=Q_UQ4/(z,—1) ~ (rx(z),1). That is Q is obtained by a half twisting at (0,0,0) to
Q. Let N = N_UN,/(z,~1) ~ (rr(z),1). We consider N = N and Q cH.

Suppose that z is a double point of f. Then there exist a regular neighborhood N
of z in S® and a homeomorphism A : N — N, such that (N, N N(C),N, N f(F)) is
homeomorphic to (N, Q) under h. Let M, (C) = (N(C), (G(C) \ Nz) Uh(Q)), then we say
that ’ﬁ;(C’) is obtained by a half twisting at z.

Let p; : R3 — R2 be the map obtained by p;(z1,z2,23) = (z1,—3,72), and p3 :
R3 — R3 the map obtained by p;(z1,T2,z3) = (Z2, —z1,z3). Put Ny = N, Npy1 =
(p1 0 p3)(Ni), @1 = X x [~2,2] UD x 0, and Q41 = (p1 0 p3)(@i) for k = 1,2. There
exists a homeomorphism g, : [~2,2]> — [=2,2]® (k = 1,2,3) such that f|9[-2,2]® is
an identity, and Ny N ]\7]- = ¢ if k # j where N = gix(Ni). Put Qr = gx(Qx), then
QNQ=9¢ifk#j |

Suppose that z is a triple point of f and i. Then there exist a regular neighborhood N,
offc in S® and a homeomorphism h : [-2,2]> — N, such that (N, N N(C), N; N f(F))
is homeoinorphic to (N7 U Ny UN3,Q1 U Q2 U Q3) under h. Let 91,(C) = ((N(C) \
N,) U (U3_,h(NR)), (G(C) \ Nz) U (U3_,h(Qx))), then we say that 9,(C) is obtained by
a decomposition at z (see Figure 2). We can define a decomposition at = if z is a triple

point of f and a double point of i (see Figure 3).

Lemma 1.5 ([S1, Lemma 1.5]). Let F be a compact surface, M a 3-manifold, f a map
from F into M with in general position and S(f) N f(F) = ¢. Let C be a double curve of
f, NC) an S¥neighborhood of C, and x a point of C. If N(C) has a checkerboard coloring,
then M, (C) has a checkerboard coloring. ' ‘ '

Remark. Suppose that z is a double point of f. Then 91(C) has a checkerboard coloring
if and only if M, (C) has a checkerboard coloring.
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Figure 2

Figure 3
Lemma 1.6 ([Sl, Theorem 1v.6]). Let F be an oriented closed surface, and f an im-
mersion from F'to a.n oriented 3-manifold M. Let Cy be a double cur;fe of f, and C a‘
component ofS(»f). If f,[F] = 0 in Hy(M), then

(1) M(Cy) is an identity matrix.

(2) the number of i;l(T( f)) is even, where i is an immersion from S* to Cy, and

~ (3) the number of C N S(f) is even.

2. NECESSARY CONDITIONS OF SINGULAR SETS

Let F' be a compact surface, M a 3-manifold, f an immersion from F into M with

S(HNF(F) =¢. In .this section we may assume that f is an immersion. Let C be a
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component of S(f), and N(C)=(N(C),G(C)) an S-neighborhood of C. Then G(C) is an
immersed surface, and f~1(G(C)) consists of compact surfaces. Let c;, ¢z, . . ., cx be simple
closed curves of d(f~1(G(C))) and € = {¢1,¢,...,ck}. Let D1, Ds,..., Dy, be properly
embedded disks in N(C) such that D; N D; = ¢ (i # j), D; is transverse to all simple
closed curves of €, D; N (UE) = {four points} and (R, RN G(C)) is homeomorphic to a
neighborhood of a triple point, where R is the closure of a component of N(C)\ (U7, D;).
Fix an orientation of N(C). Fix the orientation of D;. Put {z;,,Zj;, Tjs, T, } = D;N(UT)
in the order in which they appear on D, (see Figure 4).
dj dj4

d;

2

dja
Figure 4
Fix an orientation of each ¢;. Let z;, be a point of D; N (UE), c; a simple closed curve of
¢ with z;, C D; N¢;. We can find an embedding h : I — ON(C) such that h(0) = z;,,
h=1(D;) = I x 0 and h~(c;) = 0 x I. Then the orientation of h is determined by the
orientations of k|I x 0 and h|0 x I. Therefore we can define the sign of z;,, €(z;,) = £1,
as follows. Choose h so that h|I x 0 and k|0 x I are in the given orientation for D; and

¢;- Then €(x;,) = +1 if h is in the given orientation for IN(C) and —1 if not.

~ N DI,
;'/ 7 N ?j
(1) Figure 5 (2)

We say that € has an orientation for colorings if there exists an orientation of ¢;
such that (e(z;, ), €(zj,), €(Tj, ), €(zj,)) = (+1,—=1,+1, —1) or (=1, +1, —1,+1) for all disks
D; (see Figure 5 (1)). We say that € has a good orientation if there exists an orien-
tation of c; such that (e(z5,), €(z5,), €(zs5), €(z5,)) = (+1,+1,-1,-1), (+1,-1,-1,+1),
(-1,-1,+1,+1) or (—1,+1,41,-1) for all disks D; (see Figure 5 (2)).
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Note. If € has an orientation for colorings, there are only two cases of the orientations for

colorings.

Lemma 2.1 ([S1, Theorem 2.1]). Let F be a compact surface, M an oriented 3-
manifold, f an immersion from F into M. Let C be a component of S(f), and N(C) =
(N(C), G(C)) an S-neighborhood of C. Then

(1) G(C) is an orientable immersed surface if and only if € has a good orientation.

(2) N(C) has a checkerboard coloﬁng if and only if € has an orientation for colorings.

Corollary 2.2 ([S1, Corollary 2.2]). Let C,91(C), N(C),G(C),T be as above. Let
Dj,c; be as above.

(1) If G(C) is an orientable immersed surface, and if M(C) has a checkerboard coloring, |
then D; N¢; is at most two points for all D; and c;.

(2) The map f|f~1(G(C)) is extended to an immersion from closed surfaces to M with-

out changing G(C) if and only if € has an orientation for colorings.

Let f be an immersion from a compact orientable surface F' to a 3-manifold M with
S(f) N f(F) = ¢. Fix an orientation of each double curve of f. And fix the orientation
of S(f) induced from the orientation of S(f). Let C be a simple closed curve in S(f),
and N(C) a regular neighborhood of C in F. Then N(C) N S(f) consists of oriented
immersed arcs. Let 81, Bz, ., Bk be the arcs in N(C) N S(f) such that (N(C), U?zl,@j) is
homeomorphic to ({t1,%2,...,tx}, S') x I. We can define define the sign of 3;, €'(8;) = £1
in a similar way above Lemma 2.1. And we define I(C) = Sk_,€/(6;).

Let C and C’ be double curves of immersions f and f’, respectively. We define two
relations of double curves and S-neighborhoods. Let 91(C) and 91(C”) be S-neighborhoods
of C and C’, respectively. If M(C) is homeomorphic to MN(C") or —N(C') where —N(C")
is a mirror image of 91(C"), then we say M(C) is equivalent to N(C’) and C'is equivalent
to C'.

Lemma 2.3 ([S1, Lemma 2.3]). Let f,C be as above. If f is an immersion from the
2-sphere S2, then I(C) = 0.
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Proof. Let D be a disk in S with 9D = C. The set D N S(f) consists of oriented
immersed arcs and oriented immersed closed circles. Therefore I (C) = ( the number of

arcs into D) — ( the number of arcs out of D) = 0. U

3. A SINGULAR SET S(f) CONTAINING ONLY TWO TRIPLE POINTS

Let F be an oriented closed surfaqe, and f an immeréion frpm F vto S3. Let C be a
double curve of f, and i an immersion from § 1 to C. Let k; be the number of i~1(t5)
where ¢; is a triple point of f. Let CNT(f) = {ta,... ,tn}. Then we say that C is the
double curve of type (ki,...,k,). We may assume k; > kg > --- > k. Suppose that T(f)
. consists of only 2 points. If C contains triple points of f, then C is type (k1) or (k1, k2)-
If C is type (k1), then k; = 2 by Lemma 1.5. If C is type of (ki,kz2), then k; + ko =0
(mod 2) by Lemma 1.5. Therefore C is type (1,1), (2,2) (3,1) or (3,3).

Let C be a double curve of f, i an immersion from S! to C. Let a be a subarc in St

such that a Ni~Y(T(f)) = {t1,t2} C inte, and i(t;) = i(tz). Then we call i(a) a loop in
S(f)- |

‘Lemma 3.1. Let F be an oriented closed surface, f an immersion from F to S3, and
C a double curve. Suppose that T(f) consists of only two points. If the double curve C

contains triple points of f, then C is equivalent to one of figures as in Figure 6.

(1-1)
C, ) "X
A—F BN

@2 (3-1)

P FE

Figure 6
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( (é 2) ) (L/
(7) > (M Figure 6

Lemma 3.2. Let F, f be as above. Suppose that the triple points set T(f) consists of only
two points. If C is a component of S(f) with triple points, then C is equivalent to one of

P T
CLDY () D

T 32D op

figures as in Figure 7.




156

N B
VAN
ara» ™

s
& 2 -

4. A PART OF A SINGULAR SET

Let F be a compact surface, f a map from F' to a 3-manifold M with in general poéition
and S( f) N f(OF) = ¢. Let C be a double curve of f, i an immersion from S to C. Let
a be a subarc in S? such that a Ni~(T(f)) = {t1,t2} C inte, and i(t;) = i(t2). Then we
call i(a) a loop in S(f).

We use the following notation about an S-neighborhood of a singular set. Let C be a
double curve of f, and N(C) = (N(C),G(C)) an S-neighborhood of C. Let ay,...,an
be the subarcs of C such that o; connects triple points of f, inta; N T(f) = ¢, and
Ut o; = C. Put D = {(z1,22) € R?|z} + 23 < 1} and X = {(z,y) € R?| (2 +4* < 1)
and (z = 0 or y = 0)}. For each a;, there exists an immersion f; : D x I — M such
that Imf; N G(C) = fi(X x I) U f;(D x 8I), Imf; C N(C), and f;(0 x I) = c;. Let
v = (0,1) € D. Then we denote by Sk(C) = C U (UL, fi(v x I)) and we call Sk(C) a
skeleton of C. We can construct 91(C) from the skeleton Sk(C). Therefore we use the

notation Sk(C). We can define a skeleton of subarcs in S(f) in a similar way as above

(see Figure 8).
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— Figure 8

Lemma 4.1 ([S1, Lemma 3.1]). Let F be a closed oriented surface, and f an immersion
from F to S3. Let a be a loop in S(f). Then Sk(c) is equivalent to a figure as in Figure
9. |

Figure 9

Lemma 4.2 ([S1, Lemma 3.2]). Let F, f be as above. Let C be a double curve of f. If
C is the double curve of type (2), then the génus of F is greater than 1..

5. MAIN THEOREM

- We define an immersed surface with arcs. Let G be a closed surface, g an immersion
from G to S3. Let aj,..., 0, be pairwise disjoint arcs in S3 which satisfy the following
conditions. | |

(1) S(g)Na;=¢foralli (1<i<k).

(2) da; C f(G), and inta; is transverse to g(G) for all i (1 <4 < k).
Then we call (9(G), UL, ;) an immersed sur face with arcs.

Let & = (g(G),UR_;;) be an immersed surface with arcs. We construct an immersed
surface F(®) in S® as follows. Let D? be a disk. Let N(c;) be a small product neighbor-
hood of ¢; in S3 such that N(«;) has a parametrization as o; x D? with a; = a; x {0}
and N(a) N f(G) = (o N g(G)) x D? (see Figure 10). Set G’ = g(G) \ (UL, 80 x D?).
Let v1,...,7% be the components of intN(c;) N g(G). An immersed surface F(&) in S8
satisfies F(®) = G U (UX_,a; x OD?).
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F(Sa U{":l ai)
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’
N, !

/
Figure /0
Main Theorem ([S2]). Let f be an immersion from S? to S3. Suppose that T(f) con-

sist only of two points, and each component of S(f) contains triple points. Then an

S-neighborhood of S(f) is equivalent to one of immersions as in Figure 11.

ste I
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Remark. As above immersion f can be lifted to an embedding to S* (i.e. there exists an

embedding f : $2 — $4\ {00} with po f = f where p is the projection map from 54\ {00}
to §3\ {o0}) (for a definition of liftings, see [C-S2]).
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