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RELATIONS BETWEEN EQUIVALENCE
RELATIONS OF MAPS AND FUNCTIONS

MAaSAHIRO SHIOTA

Dept. of Mathematics, Nagoya University

There are many kinds of equivalence relations of maps and functions, e.g. C*°
R-L, C® R, C° R-L and C° R equivalence relations. Some relations between them
are clear. For example, C® R-L (R) equivalence implies C° R-L (R, respectively,)
equivalence, and the converse does not necessarily hold. But we do not know all
the relations. The present paper is a list of relations, which is far from complete.

We treat map germs in §1, function germs in §2, global maps in §3 and global
functions in §4.

A Nash manifold is a semialgebraic C* submanifold of a Euclidean space. A
semialgebraic (subanalytic) map between semialgebraic (subanalytic) sets is a C°
map with semialgebraic (subanalytic) graph. A Nash map between Nash manifolds
is a semialgebraic C* map. For a point a and a set, a map or a sheaf A4, let A,
denote the germ of A at a or the stalk of A over a. A map or function germ means
a germ at a point unless otherwise specified.

§1. MAp GERMS

Let f, g: R — R§* be C°° map germs. We call f and g formally R-L equivalent
if there exist C*° diffeomorphism germs 7 of Ry* and 7 of R§ such that 7o f—gor
is flat at 0. We define naturally formal R and L equivalences. Let R[[---]] and
R{---} denote the formal and convergent power series rings, respectively. In these
sets, we always assume the Krull topology (the m-adic topology, where m denotes
the maximal ideals). Let t-dim and dim denote dimension as a topological set and
as an analytic set or a ring, respectively. An analytic closure of a set germ is the
smallest analytic set germ including it.

Fact 1.1. Formal R equivalence of C¥ map germs implies C* R equivalence.
C¥ R equivalence of Nash map germs implies Nash R equivalence.

Proof. The former and latter statements are trivial by Artin First Approxi-
mation Theorem [A;] and by the following small generalization of the Second [A2]
(which also we call Artin Approximation Theorem), respectively.

Let F: R} x R® — RE be a Nash map germ, and let f: R} — R be C¥ map
germ such thd.t F(J: f(z)) = 0. Then f is approximated by a Nash solutlon

The proof is the following. Let X denote the Nash closure of graph f (the smallest
Nash set germ including graph f). We can assume F~!(0) = X. If X is algebraic,
the statement is clear by [A,]. So suppose X is not algebraic, and let XU X[ U---
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be the Nash irreducible decomposition of the Zariski closure of X. By [A2] we can
approximate f by a Nash germ whose graph is contained in XUX,U---. Since each
graph is Nash irreducible, it is contained in X or some X. If it is always in X, the
statement holds. Hence assume there is a sequence of Nash maps f;: Rf — R{*
converging to f with graph in X;. Let ¢ be a Nash function on Rg™™ with zero set
= X;. Then ¢(id, f;) = 0. Hence ¢(id, f) = 0, i.d. graph f C X, which contradicts
the assumption that X is the Nash closure of graph f. [

Conjecture 1.2. Formal R-L equivalence of Nash map germs implies Nash
R-L equivalence.

The following fact was suggested by S. Izumi.
Fact 1.3. Formal L equivalence of Nash map germs implies Nash L equivalence.

Proof. Let f,g be formally £ equivalent Nash rriap germs from R§ to R, and
let * = (w1, ..., ¥m) be an invertible element of R[[y1, ..., ym]|™ such that ro f =g
in R([z1,...,Za]]™. Set ¢ = (f,9) = Ry — R x RF". Let

¢I : R[[ylr <y Ym, 215 -0y Zm]] - R[[.’I:l, Tt xﬂ]])
#3: R{y1, -, Ym, 21, --» 2m} = R{zy, ..., z0}

denote the homomorphlsms induced by ¢ Clearly Ker ¢7 and Ker ¢} are prime

ideals and
Ker¢1 > Ker¢2R[[y17 )ym)zlr"'yzm]]'

Moreover, we have
(x) Ker ¢1 = Ker ;R [[y1, -+, Ym, 21, ---) Zm]]

for the following reason.
It suffices to see

dimR([y1, ... , 2m])/ Ker ¢} > dim R(fy1,.. . , zm]]/ Ker 3R [[y1, - . . , zm]].

Recall (see [M]) that the completion of R{y1,...,2m}/Keres is R[[y1,... , 2m]]
/ Ker 3R[[y1, - .. , zm]] and the dimension of a local ring is invariable after its com-
pletion. Hence '

dimR{y1,... ,zm}/Ker¢; = dimR[[y1, ... , zm]]/ Ker o3R[[y1, ... , 2m]],

and what we prove is
dimR{[[y1,... ,2m]]/ Ker ¢7 > dimR{y,... »Zm}/ Ker ¢3.

Let ¢©: Cy — CJ* x C* denote the complexification of ¢. It is easy to show that
dimR{yy,... ,zm}/ Ker ¢ is equal to the dimension of the complex analytic closure
of (i.e. the smallest complex analytic set including) ¢€(U) for a sufficiently small
neighborhood U of 0 in C™. The dimension of the complex analytic closure equals
the half of its topological dimension because the image is a subset of a complex
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algebraic set of the same topological dimension. On the other hand, t-dimIm¢ =
t-dim Im ¢€/2. So we need only prove

dimR([[y1,. .. ,2m]]/ Ker ¢] > t-dim Im ¢.

Set k = t-dimIm @. Choose a linear map p: R™xR™ — RF so that t-dimImpo¢ =
k. Then

dim R[[y1, ..., 2m]]/ Ker ¢7 > dim R{[uy, ..., uk]]/ Ker(po ¢)}

because a formal power series ring is a Cohen-Macaulay ring. Hence what we need
to show is dim R[fu1, ... ,ux]]/ Ker(po ¢)] = k, which is equivalent to that (po @)}
is injective. Assume (po ¢)] is not so. Let a € R[[uy, ..., ux]] be in Ker(p #)7 and
of the minimal order. We have an equality of matrices:

F) dpyo¢ - dpiod
TLQC;IM ’5‘_;: a;? 6u1 (p ¢)

0= : = : ,
aac;goda 82; o¢ . 82;;045
Oz oz, Oz, auk (P o)

where p = (p1,...,px). Now the Jacobian matrix of po ¢ is of rank k, if we regard
its elements as in the quotient field of R{z, ..., .}, because t-dim Im(p o¢) =k.
Hence a"‘ (po @) =0 for all 5. But some of a—": is nonzero and of order < order «,
which is a contradiction. Therefore, (x) holds.

We have Nash generators ay, ..., o; of Ker ¢3 because Im ¢€ is a constructible set.
Set z; — mi(y) = Bi(y,2), i = 1,...,m. Then B; € Ker¢; and N;5;*(0) = graph.

b1 0515 B G W oy
Hence | @ | = : : : | for some v;; € R[[y1,..., zm]] . Let
Bm TYm,1 .- TYm,l Qy
fy{’ ; be Nash germ approximations of ; ; and define Nash germ approximations B: of
B\ My - oy o1 ‘
Biby | @ | = : : : | sothat 8] = z; — m;(y)+ formal power
B, Y1 - 7m . oy

series of order > 1. The former equahty implies B!(f,9) =0, i =1,...,m. On the
other hand, by the latter and the implicit function theorem, there e*clst uniquely
Nash function germs GY(y, z) of the form 2; — n/(y), ¢ = 1,...,m, such that
N:B:71(0) = N:B"~1(0). Set «” = (¥, ...,x"). Then 7" is a Nash diﬁ"eomorphism
germ and o f=g. O '

Fact 1.4. C* L (R-L) equivalence of C¥ map Vgerms, does not necessarily imply
C¥ L (R-L, respectively,) equivalence.

Proof (cf. [G1]). Let f, g: R} — R{ be the analytic map germs defined by

f(zr,z2) = (Il’xlfl;?vxlx?(’zz 0)

I\,+L+l)‘

gz, x3) = (-EI»-L'I-L) T1z26"?
k=1 i=0
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Then f and g are C* L equivalent but not C* R-L equivalent.
Proof of C*> L equivalence. Define m € R[[y1,..,y4]]* by

m(y) = (yl,ya,ys,m(y)) for y=(y1}--,y4)

7T4(y) =Y+ Z(k’yl Y3 — Z (1‘ 1)'y’1‘3 ' 1'

It is easy to calculate o f = g in R[[z1,z2]]*.

We will find a C*° diffeomorphism germ 7 of R$ so that its Taylor expansion
" equals m and 7o f = g. For each n € N, let 74, denote the homogeneous part
of 74 of degree n. Let ¢ be a C* function on R* which equals 0 outside a small
neighborhood of 0 and 1 on a smaller one. Let N: N — N be a sufﬁmently large

map. Set

a(y) = Zmn(y)fb(N (n)y), *(y) = (y1,92,s,7a(¥)) for y=(y1,.,v4) € R".
neN

Then it is easy to see that 7 is a C* map between R*, its germ at 0 is a C*°
diffeomorphism germ of Rg, and its Taylor expansion at 0 equals 7. But we can
not expect To f = g as germs at 0. We need to modify 7 so that this equality holds.

Since g is convergent on {|z;z2| < 1}, we regard f-and g as C* maps defined on
the domain. Then f — 7~ ! o g is flat on {z; = 0} for the following reason. Clea.rly,
it is so at 0. Let | € N. By the form of f, the C“ map:

(192,93, ), Tan @) SN (m)y)) © f = (Y1,92,¥3, D Tan(y)) © f

n<l n<l

vanishes on a neighborhood of {z; = 0} — 0 in R? and converges to # o f — g as
[ — oo in the C*° compact-open topology. Therefore, 7o f —g and hence f—7~"1og
are flat on {z; = 0} — 0. By the definition of 7, #~! 0 g is of the form

i (11:1,131172, x1$2e$2’ h’(xh 1:2))

Then h is a C*° function on {|z,z2| < 1} and flat on {z; = 0}.

We want to find a C*° diffeomorphism germ 7 of R§ of the form (y1,%2,¥3, ¥4 +
14(y1,y2)) such that 7o f = #=1og. For that, it suffices to construct a C* function
T4(z1,%2) on {|za| < 1} such that 74(z1,z122) = h(z1,z2) on {|z;1z2| < 1}. Define
7a(z1,72) to be 0 on {z1 = 0, |z2| < 1} and h(z1,22/71) on {z1 # 0, |z2| < 1}.
Then 74(z1,z122) = h(a: 1,Z2), and it follows from the above flatness that 74 1s of
class C*°.

Proof of non C¥ R-L equivalence. If they are C* R-L equivalent, there is
a C* diffeomorphism germ m of RO such that 7#(Im f) = Img. But there exist a
non-zero C* function germ on R which vanishes on Im f and there does not for
Im g as shown in [G;]. That is a contradiction. O
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Conjecture 1.5. Formal £ (R-L) equivalence of C* map germs implies Cc>
L (R-L, respectively,) equivalence.

Another natural question is under what conditions formal £ (R-L£) equivalence
of C* map germs implies C¥ £ (R-L, resp.) equivalence. A partial answer is the
following. ‘

The next fact also was suggested by S. Izumi.

Fact 1.6. Let f, g: R — R be formally L equivalent C* map germs. If
Im f and its analytic closure are of the same topological dimension, then f and g
are C¥ L equivalent.

The assumption is satisfied if the topological dimension of Im f equals 1, m or the
height of the ideal of R{z1,... ,z,} generated by fi ..., fn, where f = (f1,..., fa).
The last condition is equivalent to that 2n = t-dimIm f© + t-dim f©~1(0), where
f€ denotes the complexification of f.

Proof. Define ¢, ¢7, ¢3, etc., as in the proof of 1.4. We set
f-rank f© = dim C[fys, .- . , ym]]/ Ker f°",
and for a set germ A C R™(C C") at 0, a-dim A denotes the dimension of the
(complex, resp.) analytic closure of A as an (complex, resp.) analytic set germ. By
the proof of 1.4 it suffices to prove
(0) t-dim Im ¢€/2 = a-dim Im ¢©.

By assumption,
t-dimIm f = a-dim Im f.

Complexification of this equality holds, namely,
(1) - t-dim Im f€/2 = a-dim Im f€,
because
t-dimIm f = t-dimIm f€/2, a-dimIm f = a-dim Im f©,

which we see easily. It is also clear that

(2) f-rank f€ < a-dim Im f€,
(3) f-rank ¢€ = f-rank f©,

(4) t-dim Im f€ < t-dim Im ¢,
and we know (Lemma 1.5 in [I])
(5) t-dim Im f€/2 < f-rank f€, t-dim Im ¢ /2 < f-rank ¢€.

Thercfore, ,
t-dim Im $p€ /2 = f-rank ¢,
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which implies (0) by Theorem 4.8 in [Gg]. U

Let f = (fi,---, fa): R — RY* be a C¥ map germ. We say that f is of finite
singularity type if dimgR{z1,... ,za}/(f1,- .+, fm, Js) is finite, where J; denotes
the Jacobian ideal, i.e. the ideal of R{zy,... ,Zn} generated by the minors of the
Jacobian matrix of f of degree m (J; = {0} if m > n). (We say also that f defines
an isolated complete intersection singularity in the case of m < n [L] or f is finitely
C* K determined [W].) If m > n, this condition is equivalent to that f is finite,
ie., dimrR{Z1,.-. ,Za}/(f1,... , fm) is finite.

Let f be of finite singularity type. Let U C C™ and V C C™ be open neighbor-
hoods of 0, and let f~: FC. U — V be a complex analytic map whose germ at 0 is the
complexification of f. Let ¥z fc denote the singular point set of f*~. FC. Then we know
the following facts.

(1) In the case of m < n, Jy is reduced if and only if the following subset of X 7c is

dense around 0 (Proposition 4.5 in [L]):

{z € Zc: fE€ is C* R-L equivalent to (z1,... ,Tn) = (T1,--+ , Tm—1, Z H}.

i=m

(2) R{z1,... ,zn}/J; is normal if the jet section j'fC: U -0 — JY(U - 0,V) is
transversal to the canonical stratification of the jet space J*(U, V) by the rank of
the Jacobian matrix (cf. the proof of Theorem 4.7 in [L])..

(3) This condition is satisfied when f is finitely C*° R-L determined.

Fact 1.7. Two formally R-L equivalent C* (Nash) map germs f, g: R} —
RT are C¥ (Nash, resp.) R-L equivalent if f is of finite singularity type, if
R{z1,... ,zn}/Jf is normal in the case of 2 < m < n and if J¢ is reduced in
the case of m =2 < n.

Later we shall globalize this (Fact 3.7).

Proof. First we prove that if f and g are C¥ R-L equivalent Nash map germs
then they are Nash R-L equivalent. Replacing g with 7 o0 g o v for some Nash dif-
feomorphism germs m and 7, we can assume g and the C* diffeomorphism germs
of equivalence are arbitrarily close to f and id, respectively. If m = 1, f is C*
R finitely determined (e.g. Proposition 2.3 in[W]) and hence Nash R finitely de-
termined. Therefore, we assume m > 1. Let us consider the case of 2 < m < n,
and postpone the other cases. For simplicity of notation, we assume f is the germ
of a Nash map f: R®™ — R™. Let ¥; denote the singular point set of f, let

é1(f), ..., d(f) denote the minors of degree m of the Jacobian matrix of f, and
let J; denote the sheaf of O-ideals generated by ¢ ( .. de(f), where O is the
sheaf of analytic function germs on R™ Write ¢;(f)o = ¢:(f), J 7o = Js and
)y jo = ¥ ¢. We assume also a complexification fC is defined on C™ for simplicity
of notation, and define Jsc, 0°, fc in the same way.

We need the following known facts.

(1) There exist small open neighborhoods U of 0 in C™ and V of 0 in C™ such
that UNXE fc is everywhere of dimension m — 1 and _I I(_rn):f.c :UNX; je — Visa
finite-to-one proper map. (See Theorem 2.6 in (W] and Theorem 2.8 in [L].)
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First we prove: A

(2) For every point z of C™ near 0, the ring OS/J fc,» is normal.

It suffices to consider the case of £ = 0 by a theorem of Oka (see Remark in
p. 126 of [H]). The ideal J¢c is prime for the following reason. Assume it is not so.
For a prime ideal p of C{x,... ,z,}, P = {g: g € p} also is prime, and

pﬂﬁz (an{l‘l, ,azn})C{xl,... ,.’lfn},

where 7 is defined by g(z) = g(Z) and ~ stands for the conjugate operator. Hence
it is easy to see Jyc = pNp for some prime ideal p # Jsc of C{zy,... ,z,}. Then
there exists g = g1 + ig2 € p — J¢c, gi € R{z1,... ,zn}, such that gg € Jpc. It
follows

gi+gseds, g1, 92 €5

Hence

2
(j—1> +1=0, Z—l # 0 in the quotient field of R{z1,... ,z,}/J;,
2 2 ‘

which contradicts the assumption that R{z,,... ,z,}/J; is normal. :

Let A denote the integral closure of C{z1,...,z,}/Jsc in its quotient field.
Then A = A. Hence A is generated by elements defined by real analytic function
germs. Since R{z1,...,2,}/J; is normal, it follows that A = C{z1,... ,zn}/Jsc,
Le., the ring C{z1,... ,z,}/Jfc is normal.

We have C* diffeomorphism germs 7 of R} and 7 of RJ* close to id such that
fom=7o0g. As usual we assume g€, 7€ and 7€ are the germs of a C* function
§g¢: C* - C™, C¥ diffeomorphisms #€ of C™ and #C of C™, respectively, for
simplicity of notation. Clearly we have

(L) = Iy, WC(Egc) = X¢c, |
f(zf) =T°g(zg)) fc(zfc) =TC°90(ZgC)'

Here f©, g€, .. are the complexifications of f, g,.. .
We construct a Nash germ approximation 7’ of 7 such that

(3) ™(Zg) =Zf,  7C(Tye) = e,

Since ¢1(f) o7,... ,dx(f) o m are generators of Jg, there exist convergent power
series v; ;, ¢,7 = 1,... ,k, such that

k ’ .
¢i(9) =) ;- (#;(f)or), i=1,... k.
7j=1

By Artin Approximation Theorem we have Nash germ approximations 1/12’ j of v¥; ;
and 7' of 7 such that v

.
$i(g) =D Wl (8i(f)on), i=1,... .k
=
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Then (3) is satisfied.
We want to approximate also 7 by a Nash diffeomorphism germ 7/ so tha.t

(4) fE) =709, [O(Ese) =7'C0g°(Ty0).

By (1), f°(Zsc) and g€(Z,c) are complex Nash set germs everywhere of dimension
m — 1. We have also

f(Zr)=709(%g),  fO(Tse) NRY =1(9°(Z4e) NRYY),
fC(Bge) = 7€ 0 gC(Zy0),

because f€ o 7€ = 7€ 0 g©. Hence by the same arguments as above we obtain a
Nash germ approximation 7/ of 7 such that

f(Ep)=709(%y),  fO(Ese) NRY =7'(9°(Z4e) NRY),
fC(Zse) =7 0 g®(T,0e).
Replace g with 7/ 0 g o n/~1. Then g is close to f, and by (3) and (4) we have
S,=%5, Te=3s0,  fE) =05, fOSse) =g(E,0).
Next we want to reduce the problem to the case where
(5) . f€=4¢° on Zge.
C‘lea.rlyr by (1), the sets
Sse N fO1(Sing fO(Ssc)) and e N gC1(Sing FO(E <))

are complex Nash set germs and everywhere of dimension < m — 1, where Sing
means the singular point set germ. Set

X={ze et O,?/ch,z is not regular}.

Then X is of dimension < m — 1. By the same arguments as above we have a Nash
diffeomorphism germ 7" of Rf such that 7" is close to id, and

W”(Ef) = Ef, F/’C(ch) = Efc,
(¢ N f71(Sing f(Z5))) = T N g~ (Sing f(y)),
©"C(Xo U (T N fC71(Sing fC(T4c)))) = Xo U (Tpe N gC~(Sing FC(Esc))).

Replace g with g o 7”~!. Then we have a complex Nash subset germ S of Yo
of dimension < m — 1, which does not depend on g and is defined by polynomlal

functions with real (oefﬁuents such that

$>Xo,  fOS)=4g%8),  TpenfOHfOS)) =T ngCTH(IOS) = S
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and the map germs fC|g ,c-s and gclgfc_s are complex Nash covering germs onto

fe(z s —S). Hence there exists a complex Nash diffeomorphism germ p = (py,.. .,
pn) of Tyc — S such that

f€op=g° on Yc—S
and p is close to id in the sense that for a large integer {;
|z _ p(z)| < |zt for z € Tpe - S,

which is possible by the Lojasiewicz inequality. Such a p is unique because for some
positive integer l2 and a complex algebraic subset germ .S; of ¥ (c of dimension 1
which does not intersect with S — 0,

dist(z, e NfCYfC()) —x) > |zl for z € S;.

Clearly p is bounded. Hence, since OF /Jsc is normal (2), we can extend p to a
complex analytic map germ P = (Py,..., P,) of C}. Here we can choose P so that
(6) P is close to id,

(7) P(Rg) = Rg, and
(8) P is semialgebraic for the following reason.
For such P, replace g with g o (P~!|grz). Then we have (5).

Proof of (6). We assume fcl):;fc_§3 Lrc — S — fC(Efc — §) is a covering
for some complex Nash set S C T o of dimension < m — 1, and P is the germ of

a C¥ diffeomorphism P of C™. By the equality f€o P = 7C-1o fC€o#C on e
for any large integer [, if g is sufficiently close to f, we have

|7 0 P(z) — fC(z)| < |z|* for z € Y7c around 0.
Now there exists a number !’ > 0 such that

sup  dist(z,UNTe N fOHY) < fy -y
zeUNZ;cNfC-1(y) : :

for (y,y') € (Vﬂfc(zfc - 8))?,

where U and V are the neighborhoods of 0 given in (1), which follows from the
L01a51ew1cz inequality because the both sides are semialgebraic functions on (V' N
f C(Z :c — S))? vanishing on the diagonal. Hence we have

dist(, U N T7e 1 fO71G%) < 1£%() - 6@
= |fc 013(:1:) - fc(x)lll for x € UﬂEfC -S.
Consequently,

dist(x,U N LieN fE Y% @) < 2| for z € Lic - S around 0.
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Choose large I. Then, since p is unique and close to id,
dist(z,UNXfc N fCY§%))) = |P(z) —z| for z € Lic — S' around 0.
In conclusion,

|P(z) — z| < Iz for z € Ljc — S around 0.

Moreover, this holds for z € S around 0 also because /15 is continuous.

The maximum of [’ such that |P(z) — z| < |z|" for z € Tfc is called the
geometrical order of Plg o= id, and its algebraic order is by definition the maximal
number of (3 such that

1«3

P(z) —zi € MmO +Jpe, i=1,...,n,

where z = (21,... ,Zn) € C™ and m€ means the maximal ideal of OF. By the
theorems of [R] and [L-T] on relations between geometrical order and algebraic
order, we have . ’
‘ 1® 00 as " — .
Therefore, replacing each P; with the sum of P; and an element of Jsc, we can
assume

P(z)—zi€ M), i=1,...,n,

and hence P is close to id.
Proof of (7). We have

(PL +pt)($)/2 —-Z; € (mC)l(a)’ 1= 1) » T2,
and, since P = P on Z¢c,
fCo((P+P)/2) =¢° on Zjc.

Hence we can replace P with (P + P)/2, which is real-valued on R.

Proof of (8). Since f©o P = g€ on Zc and Jsc is a prime ideal by (2), we
have real convergent power series o j, i = 1,... ,k, 7 = 1,... ,m, in n-variables
such that

k s k
foP—g=0 ai1i(f)--. > amdi(f)).
=1 i=1
Hence by Artin Approximation Theorem we can assume P is of semia.lgebraic.
From (2) and (5) it follows that
fi—=gi€lJs i=1,...,m,

because Jgc is reduced. On the other hand, as we have chosen g to be close to
f, for a large integer r, each f; — g; is contained in m”. Therefore, by Artin-Rees
Theorem

9) fi—giemls di=1,...,m,
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where m denotes the maximal ideal of Op. From (9) it shall follows that f and g
are C*° R equivalent. Hence by Artin Approximation Theorem they are Nash R
equivalent, which completes the proof in the case of 2 < m < n.

It remains to prove C*° R equivalence of f and g. Recall the following fact. Its
function case is Lemma 1.1 in [S;], and the map case is proved in the same way.

We omit the proof.
Assume C* function germs a;(z,t), ¢ = 1,...,n, at 0 x [0,1] in R™ x R such

that

(10) |

| g9(z) = f(z) = Zai(z,t) (8255)75 + Bgim) (1- t)) as germs at 0x [0, 1],
i=1 ‘ [ i

a;(0,t) =0, i=1,...,n.

Then f and g are C°° R equivalent. (Here we do not need the hypothesis that f
and g are of class Nash. The one of class C* is sufficient.)
Using (9) we will construct such a;’s. First we show

O(F: —a)
(11) %Em#, i=1,...,n, j=1,...,m.

By (1) there exists a complex analytic Nash subset X ¢ & fc of dimension < m —1
such that for each zg € ¥ fo — X near 0, if we choose suitable local coordinate
systems u = (u1,... ,u,) around o in C™ and v = (vy, ... ,v,) around fC(zo) =
§°(z0) in C™ with u = 0 at zg and v = 0 at fC€(xo), then the germs fff, and §fo
are of the form: :

(u1,-.. ,Um—-1,a(u)) and (u1y- .., Um—1,B(u)),

and |
Tie g = Cgt x 0*7mHL

where a and f vanish and are singular on C*™! x 0"~™+!. Hence all ﬂ@
vanish on ¥ ¢c — X near 0, which implies (11). -
Set ® 5
sit+ 2L(1-1)
B- s
2Lt + 2L (1~ 1)
It follows from (11) and Nakayama’s Lemma that if we fix ¢ € [0,1], the minors of
B of degree m are generators of J;. Hence the minors ¢, (gt+ f(1—1),...dr(gt+
f(1—1)) of B are generators of the ideal of the ring Opxo,1] of C* function germs at
0x [0,1] in R™ x R generated by ¢,(f),... , @k (f), which are regarded as function

germs at 0 x [0, 1] in R™ x R. Therefore, by (9) there exists a (k, m) matrix C with
elements in Oox|o,1] such that :

9= f=@ugt+ f(1-1),...bulgt+ FL-1)))C,
C=0 on 0x[0,1].
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Now we can restate (10) as follows:

W) (bu(gt+ F— ). belgt+ F(L —1))C = AB,

where A = (a,,. .. , ar). To solve (10’) we need only consider
©,...,0, (gt + f(1 =1)),0,... ,00C = AB, i=1,...,k

Hence we can reduce the problem as follows.
Let ¢ be the minor of the upper m rows. Let C; € (Ogxo,1))™ with C; =0 on
'0 x [0,1]. Then there exists A; € (Opx(o,1))™ such that

#1(gt + F(1 —¢))Cy = A B, A =0 on 0x0,1].

This is clear if we ask only for A; € (Opxo,1j)™ x 0"~ ™.

Case of m = 2 < n. We proceed as above. The fact (1) holds true. But (2)
does not hold, namely, OF /Jsc is not always normal. Hence we need to modify the
above arguments on extension of p. As in the first case, let g be close to f. Assume
Zfc has singularities. Then, since dimXsc = 1, 0 is the isolated singularity of
Ytc. By the same reason as in the first case we assume

£,=5f Sge=Spc, f(E)=9E), fO(Tsc)=g%(Z,0).

Then define a complex analytic diffeomorphism germ p = (py,... ,p,,,) of Xfc -0
so that
f€op=g° on Yc - 0.

We extend p to L ¢c by setting p(0) = 0. In general, p is not extensible to a complex
analytic map germ : C§ — Cg, but:

If g is sufficiently close to f then p is extensible.

Proof of extendability. Without loss of generality we assume any irreducible
component of ¥ ¢c is not contained in any hyperplane {z; = 0}. By a theorem of
Oka (Theorem IV.14 in [H]) there exists a positive integer s such that z3(p;(z) — ),
i=1,...,n,and z{/z;,i = 2,...,n, on Y ¢c are extensible to complex analytic
function germs on C§. Let oy,f; be respective extensions. Then by the same
arguments as in the first case each a; is chosen to be arbitrarily close to 0. Hence
each «; is of the form .

C
(12) > agd’, ane0f,
7=(71:'" )‘77)€Nn
fri=s
where
— Y n - N
.'E‘Y___xll...xz’ Iry|_71++/n’

and s is some large integer. Hence if ¢ is close to f then we can choose arbitrarily
large s'. Note
r; =iz on Lse, i=2,...n
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In (12) replace ¥ with ,Béxllﬁ«la:"f/a:"s, where § = (0,02, ... ,6n) € N™ is the maxi-
mum such that 7 > 86, i.e. v > 86, 1 = 2, ... ;n. Then each «; becomes divisible
by 931”: where s” is an integer such that s” — oo as ' — oo. Let g be so close to
f that s” > s. Then o;/z{ is a complex analytic extension of pi () — Zi- Hence p

is extensible.
The above proof shows, moreover, that we can choose an extension P of p to be

close to id. The rest of proof is the same as in the first case except that J fe is
prime. In the present case it is only reduced but sufficient for the rest of proof.

Case of m 2> n. We modify the proof in the first case. The proof becomes
easier. In this case f Cly: U — V is proper and finite-to-one for small open neigh-
borhoods U of 0 in C™ and V' of 0 in C™. Let g be close to f. Then as in the first
case we obtain Nash diffeomorphism germs m of R and 7 of RJ* such that they
are close to id, and

m(X,) = Ty, W?(Egc) = Y¢c,
f(Ep)=70g(Z,),  fO(Sge) =7%0g%(T4e),
f(Rg) =7 0og(Rg), fc(C ) =7C0g%(C}).

Replace g with 7o gon~1. Then

g =L, Zge =Xz, [f(Zf)=g(Z,), fC(Ese) = g°(Zy0),
F®RE) =9(R}),  fE(Cp) =g°(CY).

Next by the same reason as in the first case we can assume a complex Nash
subset germ S of Cf of dimension < n, defined by polynomial functions with real
coeflicients, such that

fE8) =g°(S),  FETHIOS) =9 (eS(S)) = S,

and the map germ €| cp-s and gclcn_s are complex analytic covering germs onto
fC(C3 — S). Define a complex analytic diffeomorphism germ p of CJ — S so that

fCop=¢° on Cy—S.

Then p is sermalgebralc and extensible to a complex Nash diffeomorphism germ P
of C2 because OF 1s normal. Clearly P|ry is a Nash diffeomorphism germ of R,
and we have

foP=g on Rj.

Proof of C* R-L equivalence of C* map germs. Let f, g: R? — R be
formally R-L equivalent C* map germs of finite singularity type. We can prove that
they are C* R-L equivalent in the same way as above. The difference is that for
an invertible element m € R[[zy,... ,z,]]" the equality 7(Z,) = £ is meaningless.
We replace it with

.]g = R{.’It1,... ,Il?n} ﬂJf oT,

where
Jpom={Ypom:1pe s}
Then the above arguments work. We omit the detail. O
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Conjecture 1.8. We can remove the assumptions of normality and reducedness
in 1.7.

Fact 1.9. 1.7 is not correct for C* map germs. Namely, ‘there exist two for-
mg,lly R-L equivalent C*™ map germs which are of finite singularity type but not
C® R-L equivalent. For ezample, define f: R — R: by f(z,y) = (z,3°) and
choose g = f +(a C* function germ flat at 0) with an isolated singularity at 0.
Then f and g are formally the same each other and of finite singularity type but
not C* R-L equivalent.

"This is one reason why I expect a better theory of C* and Nash singularities
than C'*° ones.

§2. FUNCTION GERMS

Fact 2.1 (Theorem II.7.1 in [S3]). Let X C Y C R™ be semialgebraic
(subanalytic) sets, and let f, g: Y — R be semialgebraic (subanalytic) functions
with f~1(0) = g71(0) = X. Then the germs of f and g at X are semialgebraically
(subanalytically) R equivalent up to sign, i.e., the germs of |f| and |g| at X are
semialgebraically (subanalytically) R equivalent. Here we can choose the semialge-
braic (subanalytic) homeomorphisms of equivalence to be the identity map on X.
Consequently, if the germs of f and g at X are semialgebraically (subanalytically)
R-L equivalent, then the germs of f and g are semialgebraically (subanalytically)
R equivalent or the germs of f and —g are so.

This fact is one of typical properties of semialgebraic (subanalytic) function
germs and semialgebraic (subanalytic) equivalence relation. Clearly there exist two
non-negative C° function germs on Ry whose zero sets are both 0 and which are
not C° R-L equivalent. It is also clear that the function germs z — z2 and z — z*
are semialgebraically R equivalent but not C!' R-L equivalent. Moreover, C¥ R-L
equivalence of non-negative C* function germs does not imply C' R equivalence
as follows.

Fact 2.2. Define polynomial function germs f and g on R2 by
flz,y) =y*(y -2’ (y - 2%  g=4f.

Then f and g are linearly £ equivalent but not C' R equivalent.

Proof. Set
A={y=0}, B={y=2z}, C={y=z.

Assume there exists a C! diffeomorphism 7 = (7, 7) of R2 such that for =g,

b . .' .
and let ¢ d denote its Jacobian matrix. There are two cases : 7(4) = A and

-

n(B) = B, or m(A) = C and n(B) = B. Let us consider the first case. Then we
can change the definition of f and g by f = y(y — 22)(y - 2%), ¢ = 2f.
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We have ,
‘ df of (0, z%) on A
(E’ (9_y-) - { (-2z5 + 227,24 —2%) on B,
a_fﬂ)(a b)zg(a_fg..
or’dy’  \ ¢ d oz’ Oy
Hence '

c(z,0)73(z,0) =0, d(z,0)r8(z,0) = 23:6,
b(:z:,a:z)(—27rf(a:, :1:2) + 2”{(:1:) x2)) + d(JI, $2)(7('%(IIJ, 3:2) - 7!'?($, $2)) = 2.’174 - 2376.

Since
m1(z, y) — a(0) as (z,y) — 0 on AU B,
T

" it follows that
c(0) =0, d(0)a®0)=2, d(0)a*(0) =2.

Therefore,
a?(0)=1, d(0)=2.

We can assume a(0) = 1 because f(—m1,72) = g. Set

h1 (y) = Wl(an) - b(O)y, ha (y) =m2 (Ovy) — 2y,
which are C! function germs on Ro such that h{(0) = h5(0) = 0. Consider for =
2f on {z = 0}¢. Then we have E
(2y + h2)(2y + ha — (0(0)y + h1)*)(2y + ha — (B0)y + h1)*) =24 on Ry,

Divide the both sides by y*, and take the limits as y — 0. Then 8 = 2, which is
impossible.

In the case of m(A) = C we arrive at a contradiction in the same way but more
easily. We omit the detail. O

Fact 2.3 (Example I1.7.9 in [S3]). There exist two homogeneous polynomial
functions on R” with an isolated singularity at 0 which are C° R equivalent but
not subanalytically R equivalent and whose germs at 0 are also C° R equivalent
but not subanalytically R equivalent.

Fact 2.4. Two formally R-L equivalent C* (Nash) function germs are C
(Nash, resp.) R-L equivalent.

Proof. Let f and g be formally R-£ equivalent C* function germs on R7 with
f(0) = g(0) = 0 which are singular at 0, and let 7 € R[[z1, ... ,Zn]]™ and 7 € R|[[y]]
be invertible elements such that for = 70g. By 1.1 it suffices to find an invertible
polynomial element 7 € R|[[y]] such that 7, 0g and 7o g are formally R equivalent.
Let 71 € R[[y]] be a polynomial and sufficiently close to 7, and set 7 = o
Then 7, is close to id, and hence g—r,0g is contained in the ideal of R[[zy, ... , Zn]]
generated by gP for a large integer p. Complexify g and apply Hilbert zero point
theorem to g€ and the Jacobian ideal Jye = (%"I—l, cee %‘g) Then we have g7 € J,
for some integer q. Hence we can assume g — mog € mJg where m denotes the
maximal ideal of R[[z,... ,z,]]. Then it is known that g and 7, o g are formally
R equivalent. (The C'*° germ case is Proposition I1.2 in [T]. The formal case is
proved in the same way.) O : '
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§3. GLOBAL MAPS:

Let O(M) (N(M)) denote the ring of C* (Nash) functions on a C* (Nash,
respectively) manifold M, and let O™ denote the sheaf of C* function germs on
M. We write O for OM if no confusion happens.

For an analytic set A C M, the sheaf of ideals I(A) C O defined by A is such that
T(A), consists of germs vanishing at A;. We call A coherent if T (A) is coherent,
which is equivalent to the following statement by the fundamental theorem A on
Stein manifolds. There exist C* functions f; on M vanishing on A such that for
each T € M, fir generate Z(A)s.

For a subset A of a C¥ manifold M, the analytic closure of A is the intersection
of the zero sets of C* functions vanishing on A, and the Nash closure of A is defined
in the same way if M is a Nash manifold. Note that the analytic (Nash) closure
is the zero set of one C* (Nash, respectively) function, which is proved as follows.
This is clear if M is compact or in the Nash case. So assume M is a noncompact C*
manifold. Let A% denote the analytic closure, and let ¢;, 1 € N, be C“ functions
on M whose common zero set is A%. Since the ring C¥(K) of C* function germs
at a compact semianalytic set K in M is Noetherian, there exist a finite number
of ¢; such that another ¢; is their linear combination with coefficients in C¥(K)
‘as germs at K. Hence we have a complexification A%C C M of the pair A°C M
such that M€ is a Stein manifold and A°C is an analytic set in M. Using the
fundamental theorem A we can assume the complexifications of ¢; are defined on
M€, Then Y a;¢? is the required function, where a; are small positive numbers.

From now, for a C* manifold M, let M denote the germ at M of a com-
plemﬁcatlon of M. Let f: M; — M, be a C* map between C* manifolds. Let
fC: ME — MEF always denote the germ at M; of a complexification of f, let =
denote the singular point set of f, and let J; C OM: denote the sheaf of the Jaco-
bian ideals of f defined so that for each z € M, Jf; is the Jacobian ideal of f,.
Remember Jy = {0} if dim M; < dim M,. We say f is of finite singularity type if

the germ f, at each point z is of finite singularity type. We define naturally OM:,
Z€(4), Z¢c and Jge, and write OC.

We give to C*° and C* map and function spaces the Whitney C* topology and
to Nash ones the Nash topology (see [S2,3]) unless otherwise specified.

Fact 3.1. C*¥ L, R-L, or R equivalence of Nash maps does not necessarily
imply Nash L, R-L, or R equivalence, respectively, if the Nash manifolds are non-
compact.

Proof. See Fact 4.1 for a counter-example of R-£ and R equivalences.

Let us construct a counter-example of £ equivalence. By Remark VI.2.6 in
[S2] there exist Nash manifolds M; C M, and a C* diffeomorphism.¢: (M) x
|-1,1{, My x 0) — (M>, My) such that M, is compact, M; x ]—1,0] and ¢(M; x
]-1,0]) are Nash diffeomorphic, and M; x [0,1[ and ¢(M; x [0, 1[) are not so. Set
Mz = M, x S'. Let p and q denote the projections of M, x |-1,1[ onto the first
and second factors, respectively. Let ¢': M| x ]-1,1[ — M, be a Nash imbedding
such that ¢’|a, xo =id. Let h: S' — ]-1,1[ be a Nash map such that h and —h
are not Nash £ equivalent by any orientation preserving Nash diffeomorphism of
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]—1, 1[. Define Nash maps f, g: M3 — M3 so that

mj,lmg C ¢!, podiof=pod- Hog =proj,
qo¢'tof=h,  qo¢log=-h

Then f and g are C¥ L equivalent but not Nash £ equivalent. [

Conjecture and Examples 3.2. A conjecture is that C*° R equivalence of
Nash (or C¥) maps implies C* R equivalence. Some special cases are proved in
[S4].

If the following globalization of Artin Approximation Theorem holds then the

Conjecture is clear.
Let F;: M x N — R be a finite number of C“ functions for C* manifolds M

and N. Let y = y(z): M — N be a C* solution of Fi(z,y(z)) = 0. Then we can
approximate it by a C* solution.

But this globalization is not always true. For example, let M = R, N = R? and
F(z,y1,¥2) = y1y2, and let y = y(z) be defined so that its image is contained in
{y1y2 = 0} and of the form .. Clearly we can not approximate the solution by a
C“ solution.

A counter-example in the case where M = N and y = y(z) is a C° dlffeo-
morphism is the following. Set M = N = R2 and F = (z; — y1)(z2 — 12). Let

= (f1, f2): R? = R? be a small C*™ perturbation of id such that

if ;<0

x1 if z;>0,
> T2 if z1<0
T if z;>0.

f1($1,$2){ N
f2(3717~732){

Then y = f(z) is a C*° solution of F = 0, and there does not exist its C* approx-
imation because any strong C* approximation solution is a solution of £; = y; on
{z1 < -1} and a solution of z2 = y3 on {z; > 1} and hence a C* approximation
is uniquely id.

Fact 3.3. C* R equivalence of Nash maps implies Nash R equivalence if the
source Nash manifold is compact.

Proof. This follows from the global approximation theorem (Theorem 0.0 in
[C-R-S]). O

Conjecture 3.4. C* R-L equivalence of Nash maps implies Nash R-L equiv-
alence if the manifolds are compact. :

Fact 3.5. C* L equivalence of Nash maps does not imply C¥ R-L equivalent
even if the manifolds are compact. But C* L equivalence implies Nash L equiva-
lence if the manifolds are compact.

Proof. See the proof of Fact 3.8 for the first statement.
The proof of the second is similar to it of 1.3. Let f, g: M, — My be C¥ L
equivalent - Nash maps, and let 7 be a C* diffeomorphism of M, such that 7 o
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f = g. Assume M, is contained in R™. Set ¢ = (f,g9): M, — My x M, and
T=(m,... ,Tm). Let |
@1 O(Mz x Mz) — O(M)), ¢5: N (M2 x Mz) — N (M)
denote the homomorphism induced by ¢. We want to see
Ker ¢] = Ker ¢50(My-x Ma).

The inclusion D is clear. We show the reverse inclusion. We have

Ker ¢] = {h € O(M2 x M2): h =0 on Im ¢},
Ker ¢ = {h € N(M; x Mz): h =0 on Im¢}.

Hence it suffices to prove the following two statements. (1) For a semialgebraic set
A C M, the Nash closure of A is the analytic closure of A. (2) For a Nash set

A C M,, set
I={heO(M;): h=0o0n A}, J={heN(My): h=0o0n A}.

Then I C JO(M>). ,

(1) is an immediate consequence of Proposition 0.4 in [C-R-S]. To show (2) we
can assume A is irreducible as a Nash set. Then J is prime, and so is JO(M;) by
Proposition 0.5 in [C-R-S]. On the other hand, it is easy to see that the coheights
of I and J equal t-dim A. Hence (2) follows.

Since the Nash function ring on a Nash manifold is Noetherian, Ker ¢3 is finitely
generated. Let ay,...,a; be generators. Set

z; —mi(y) = Bi(y,2) for (y,2) = (¥,21,---,2m) E Mo xR™, i=1,... ,m.
Then Bi|a, x m, € Ker @7 and N;5;7(0) = graph =. Hence there exist Yi,; € O(Ms x

P Y1 - M1 231
M) such that [ @ | = [ : : | on My x M,. Let +}; be
Brm. Ym,1 .- Ymyl Qy
Nash function approximations of +; ; and define Nash function approximations B:
ﬂi 7{,1 ’Y{,z a1
of the restrictions of g3; to M, x M, by : = ; . :
B Ym,i cr Yo Q1

Extend the small C* functions 3] — 3; to small C*¥ functions on M, x R™, and
approximate [;+the extensions by Nash functions 6! in the compact-open C*°
topology fixing them on My x M,. Then [;,’ are close to B; on a neighborhood of
B M1 o Ma\ e
My x My in My xR™, and | : | =] : : © | on My x M,.
B Ymt oo Yo o
By the implicit function theorem, there exist uniquely Nash functions 3/(y, z) on
a neighborhood of M, x M in My x R™ of the form z; — n//(y), i = 1,... ,m, such
that Ny8,71(0) = N;B”~1(0) on the neighborhood. Set 7 = (m!,...,m2). Then
7" is a Nash imbedding of M, into R™ and n” o f = g. Let p be the orthogonal
projection of a tubular neighborhood of M, in R™. Then p o 7" is the required
Nash diffeomorphism of M, of £ equivalence. O '
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Fact 3.6. Let f, g: M, — M, be C* L equivalent C* maps between C* man-
ifolds. Assume Im f is a coherent analytic set in My. Then f and g are C¥ L
equivalent.

Proof. Let m = (m1,... ,™m), @, ¢} and B; be defined as in the proof of 3.5.
Then by the proof it sufﬁces to prove that each §; can be apprommated by an
element of Ker ¢7. Assume
(x) Im ¢ is a coherent analytic set.

Now Ker ¢} is the global cross-sections of the sheaf of ideals Z(Im ¢) C OMz2xM;
defined by Im ¢. Hence by (*) and Theorem VI1.3.10 in [Mal],

Bi € Ker¢IC°°(M2 X M2)

Such B; can be approximated by an element of Ker ¢] by the following assertion.
(¥x) Let U C C™ be a Stein open set containing R™, let X C U be a complex
analytic set such that X NR™ is coherent and X is a complexification of X NR™, and
let v be a C*° function on R™ which vanishes on X N R™. Then + is approximated
by a C* function on R"™ with the same property.
Proof of (x). By 1.6, for each (y,2) € Im¢, (Im@), . is the graph of a C¥
map germ defined on (Im f),. Hence, by coherence of Im f, Z(Im ¢) is coherent.
Proof of (#*). This is a small generalization of Lemma 6.2.3 in [S;]. Set -

Kc={zeR": |z|<c}, KE={zeC": |z|<c} for ¢>0.

Let h be a C* function on R™ with b =0 on K; /3 and h = 1 outside K;. Shrink
U and let ¥y, ¥s,... be generators of HO(U,Z€(X)) and real-valued on R™. Then
for each ¢ > 0, HO(U NKS,I°(X N KE)) is generated by 1, ... , 4, for some L.
Hence 7|k, is of the form (flz/Jl + -+ &,Y1, )|k, for some C* functions &;,... ,&,
on R™. Approximate each {; by a polynomial function in the compact-open C*
topology. Then we have I'; € H%(U,Z(X)) such that I'y|g, is an approximation
of 7|k, We choose I'y so that (y — I'1)h; is also sufficiently small on K,, where
hi(x) = h(z/2). Repeating this construction we can obtain a sequence of complex
C* functions I'y, I's, ... so that (T'; + T2 + ---)|r~ is a C™ approximation of +y
which vanishes on X N R"™.

For analyticity of I'y + Ty + - -+, we define T’y precisely as follows. Let Iy, €
H°(U,I°(X)) be such that y—T'; —T% and (y—T; — %)y on K3 are small, where ‘
ho(z) = h(x/3). Set

!(z) = dk™ / hi(y)e * 1= dy for z € C™
R» )

here d = 1/ ;. e ¥dy and k is 2 large number. Then I'y is analytic on C™, and
by Lemma 5 in [Wh], 'Y — h; on K3 and [ on K 52 are small. Hence I's = LTy
on K3 is an approximation of (y—TI';)h;|k,, and y—I'; — 5 on K3 is small because
v—T1 and (y = T'1)h; on K, are small and because h, is close to 1 on K3 — Ko.

Define I'3, I'y, ... in the same way and set ' = T',+T's+---. Then T is convergent
on U because ') on K?z, I'Y on Ks/ 4+ are small, and I'|g~ is an approximation’
of v and vanishes on X NR" O



180

Fact 3.7. Two C* R-L equivalent Nash maps f, g: My — M are Nash R-L
equivalent if My and M, are compact, if f is of finite singularity type, if O/Jy is
normal in the case of 2 < dim M, < dim M, and if Jg is reduced in the case of
dim M, = 2 < dim M;. ‘

Proof. Let = and 7 be C* diffeomorphisms of M and M,, respectively, such
that fom = 7 og. Since a C* map between compact Nash manifolds can be
approximated by a Nash map, we can assume 7, 7 and g are sufficiently close to
id, id and f, respectively. As in the proof of 1.7 we can suppose

Sp=%, Sp=3Nc, fE)=9E), fO(Ts) =)

Set m; = dim M;, i = 1,2, and let M; C R™.

Case of 2 < ma < my. We reduce the problem to the case where f€ = g€
on ¥ sc, which is similar to the proof of 1.7. We can assume there exists a complex
Nash set germ S C Zsc at M of dimension < mz — 1, defined by real polynomial
functions, such that O€/J¢c and OF/J,c are regular on T¢c — S,

£S(8) =¢S(S),  Tsen fOHFO(S)) = £pe NgCTHFE(S)) = S,

and fC|z,c-s and 9€lz,c-s are complex Nash coverings to f€(Efc — S). Then
there exists a unique complex Nash diffeomorphism germ p of X sc — S close to id
in the C° topology such that f€op=g® on Zsc — 8.

Since ©/J; and hence O€/Jsc are normal, we can extend p to a complex C*
map germ P: ME — C™. We can choose P so that
(1) P|at, is close to id, '
(2) P(My) = M, and
(3) P is semialgebraic for the following reason.

Assume such a P. If we replace g with g o (P|ar,)~"! then the required property
f€ = g€ on Tc is satisfied.

Proof of (1). We have

7°(Zsc) =Zpe,  TE(FC(Tge)) = FO(Es0),
and we can assume _
m°(8) =5,  T(FO(S)) = FC(9).

Define a complex C* diffeomorphism germ x of £fc — S by f€ox = 7€ o fC.
We will construct its extension X: ME — ML so that X|as, is close to id. Then
p=x"'onC, and P = X! oxC fulfills the requirement.

We claim that there exists a C* isotopy 7, t € [0,1], of M, such that o = id,
71 =T, and

(4) e (fC(Ese)) = fC(E5e), 7C(fC(8)) = fO(S) for t€[0,1].

As shown in the proof of 1.7, (4) is equivalent to that z = 7(y) is a solution of an
equation:

(5) R(y7z)=0’ 'i=1,...,l,
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where F; are Nash functions on MZ. Recall the proof of Theorem 0.0 in [C-R-S].
There are a compact Nash manifold M3 in some R™, a Nash map h: M3 — M,
and a Nash submersion h': M3 — M, such that a C¥ map z = 7(y) satisfies (5) if
and only if there exists a C* map {: Mz — M3 such that 7, = ho and h'o( = id.
Let (;: My — R™, t € [0,1], be a C* homotopy such that ho (o = 7, (i is of
class Nash, and each (; is close to (o, and let g3 be the orthogonal projection of a
tubular neighborhood of M3 in R™. Set 7/ = hog3o(;. It is easy to modify G
so that ' o gz o (; = id. Thus we obtain a C* isotopy 7/ of M, such that 7 = 7,
7| is of class Nash and 7] satisfies (4). Replace g and 7 with 7 o g and 70 7L
respectively. Then 7y = 10 T, ~! is what we wanted.

Set
M;=M;x[0,1], i=1,2  f=fxid: My — M,.

Let p;: T M; — M;, i = 1,2, denote the tangent bundles. We call a tangent vector
and a vector field on M; canonical if their T[0, 1]-factors are 0/0t, where ¢ is the
variable of [0, 1]. Define 8¢ to be C* maps ¥: M, — T M, such that py ot = f and
the T[0, 1]-factor of ¥(z,t) is O for each (z,t) € My, and let 8;, 3 = 1,2, denote the
space of canonical C* vector fields on M;. These vector spaces are Fréchet spaces.
Define continuous homomorphisms ' '

o _
tf: 01— 0+ 5 by tf(€) =Tfo¢,

ol -~
wf: 0y ——>6f+55 by wf(n) =no f.

Let ¢1,...,¢ be generators of HO(My, Js). (By the fundamental theorem A,
®1,z,--- »P1,z are generators of Js, for each z € M;.) Let ¢; denote the C¥
function on M) naturally induced by ¢;. Set

L
O ={(mna...,cu) €61 x0; x fo: tf(f)"‘Z&iai =wf(n)}.
=1

Then for construction of X it suffices to show that the image of ©¢ under the
projection 8; x 6 x O’f — 03 is closed in 6, for the following reason.

Assume the image is closed. Then by the open mapping theorem for Fréchet
spaces, the map : ©fy — the image is open. On the other hand, we have n € 6,
whose integral curves equal {(m:(y),t): t € [0,1]}, y € M,. Here 1 can be arbitrarily
close to 8/0t by the above construction of 7;, and is an element of the image because
there exists a C* isotopy AC of £ fc real valued on Iy such that f€oAL = 750 f€ on
¥ sc. Hence there exists an element (£, ary, ... , ;) of ) x Ojr close to (8/6t,0,... ,0)
such that (§,n,cy,... , o) € ©f. If we can C¥-smooth €, v ... , «y, then integrating
¢, we obtain a C* diffeomorphism 7/ of M, close to id such that f€on’C = 7€ 0o fC
on Esc. Hence n'C is the required extension X.
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Fix n as above, and write

9 g__
a
- < - itl a _ -'T:l a
¢=(¢l;-.-,¢l)7 €=(€1""’Enl) : +a—_-: : +5t_,
) ' )
313"1 8xn1 /
g 8 _ o
| ) s ) o "N _. ™
77‘—‘(7717---,'%2) : +‘8‘2=H : -{-5};—’ S = ; ’
9 8 : a 5
3yn2 3y,,2 6yn2

where the elements of = and A are C* functions on M, and the ones of H are C¥
functions on M>. Then

N

6) ggf;mm Hof, EgEZ§=O,

and reversely a solution (Z’, A’) of (6) together with 7 induces an element of Oy,
where ™ indicates extension to M; such as f, %(3 means the restriction to M;
of the Jacobian matrix of a C* extension of f to : R™ — R™, u = (uy,...,m),
K1, -, are generators of HO(R™, T(M;)), and M means the restriction to M;

of the Jacobian matrix of yu. We regard (=, 4) as a solutlon of (6). We want to find
a C¥ solution. Let B and ¢: B — (OM1)n2+! denote the sheaf of free @Mi-modules
and a O-homomorphism defined by

1,1 ... Cl,no
Br:={(B,C): B=(b1,... ,ba,), C=| : S
Cl1 ... Clng
b; and c; ; are elements of Ot}

() D)
o)., OB, )

Then by the fundamental theorem B, the following sequence is exact :

¥(B,C) = (B

0 — Ho(Ml,Kerz,b) —_ HO(MI,B) — HO(Ml,Imw) — 0,

and by Artin Approximation Theorem, for each (z,t) € M), (Ho f);., is an element

of HO(M,, Imz,b)“ Hence there exists a C* solution (Z’, A’) of (6). It suffices to

approximate (Z — =/, A — A’) by an element of H 0(1\/[1,Ker ). By Artin Approx-
imation Theorem, for each (z,t) € My, the Taylor expansion of (Z — =/, 4 — A')

at (z,t) is an element of the completion of H°(M,,Ker), .. Hence by Theorem

VL.1.1" in [Mal],

(E-EA-A) e C®(M)H(M,,Ker ).
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Let hy,... , hx be generators of HO(]\;I_l, Ker), and let v1,... ,vx be C® functions
on M, such that

k
E-Z,A-A)=) vh.

i=1

Let 7: denote C¥ approximations of ;. Then Zf=1 v:h; is an approximation of
(2-Z',A—A’) and an element of H°(My, Kerv). Thus we C*-smooth ¢, a, ... , q;.

It remains to show that the image of © in 6, is closed. Do not fix now 7, i.e. H.
Let p, ..., up be generators of HO(R™2, Z(M,)), and let %—%—)2 mean the restriction
to M- of the Jacobian matrix of p’ = (ui,...,u}). Set

——

, D) _
(6) D() 0.
Regard (, H, 4) as a solution of (6) and (6)’, and let D C C'(M;)™ x C*°(M,)™ x
C*°(M;)™2 denote the solutions. Then what we prove is that the image of D under
the projection vs: C®(M;)™ x C®(M,)"™ x C=(M;)m2 — C®(M>)™ is closed.
If the image of D’ = {solutions of (6)} is closed, then 15(D) is closed because
v2(D) = v2(D') N {solutions of (6)'}. Hence we can forget (6)’. Moreover, it suffices
to-prove that the image of C°°(M;)™ x C*° (M;)" under the map:

C®(My)™ x C®(M;)'™ 5 (E, A) — E—IL% + QA4 € C®(M,)™

is closed because D’ is the inverse image of this image under the induced map
(f xid)*"2: C®(Mp)™2 — C™(M;)™.

The image is closed if the following statement is true.

An ideal of C°°(M;) generated by a finite number of C* functions is closed in
C>(M,).

This follows from Theorem VI.1.1’ in [Mal] and a theorem of Krull which states
that any ideal of a power series ring is closed, which completes the proof of (1).

(2) is clear by the above proof of (1). Using the global approximation theorem
as in the proof of 1.7, we can modify P to be of class Nash (3). But then (2) may
fails. If it fails, it suffices to replace P with g o P, where q; denotes the orthogonal
projection of a tubular neighborhood of M; in R™!.

To complete the proof in the case of 2 < m, < my, we need only show that f
and g are C* R equivalent because of 3.1. Define a C¥ map F: M, — M, by

Fz,t) = q2(9(@)t + f(z)(1 - 1)) for (z,t) € M,
where ¢y is the orthogonal projection of a tubular neighborhood of M, in R"2.

Then it suffices to find a canonical C* vector field ¢ = Dok £:0/0xi +08/0t on M,
such that {F' = 0. Moreover, by the same reason as above, a vector field of class
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¢ is sufficient. Hence the problem becomes local, ‘and we assume M, = R™. Set
= = (£1,..- ,&n,). Then what we do is to find a C¥ solution Z of ‘

.. _-(Dl, lxn
(7) f-j=g ( o) D(x) (1- t))

Set f = (f1,---,fny) and g = (g1,--- ,9ng)- Since fC = g? on Xgc,

fj - g; E-HO(Rnl,Jf), j=1,...,n2.

As above, let ¢1 ... , ¢ be generators of H*(R™, Jy). Let c; be C°° functions on
R™ such that

l
(8) f]_g]__-zat,]d)‘n J‘—“l, , M2
. poe

Here we can choose sufficiently small o ; as above. Set

| (0.5 1% N . 1,n,
®=(¢1,...,0), A=
o1 ... Qing
Then (8) becomes
®) | f-g=2A
Hence the problem is
27 _ = D(g) D(f)
! PA=Z= 1-¢t) ).
In the same way as in the proof of 1.7, we see that each 9(f; — g;)/0zi is a
linear combination of ¢,... ,¢d; with small coefficients in C*°(R™!), and then J 7 is

generated by the minors of E%Q%t + B )(l t) of degree ny. Hence we can assume

é1,. .., are the minors. Then we can solve (7)’ easily as in the proof of 1.7. Thus
we prove the first case.

Case of mz = 2 < m;. We reduce the problem to the case f€ = g€ on Lgc
as in the proof of 1.7 and the above first case. Define a complex C* diffeomorphism
germ x of ¥¢c — S so that

fCox=7%0fC on T;c -85,

where S denotes a finite point set, as in the first case. Then by the above proof
it suffices to show that x is extensible to M. Moreover, the proof of 1.7 of
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extendability works if for each y € f (S) T, is sufficiently close to id (in the Krull
topology). Hence we need only construct a Nash diffeomorphism 7 " of M3 such that,

() Tof(8)= f(5), TFEN = £, TCUC(Ese) = FO(Epe),

and for each y € f (S’), 7, is sufficiently close to 7, because we can replace g and 7
with 7/ o g and 7o 7/~!, respectively. As shown a.lready, (9) holds true if and only
if there exists a C* map ¢’': My — Ms such that 7/ = ho(’ and A’ o (' = id, where
M, C R™ is a certain compact Nash manifold and h, h': M3 — M, are certain
Nash map and submersion. Hence what to prove is the following assertion.

For a C* map (: M, — M3 there exists a Nash map ¢': M2 — M3 close to ¢
such that for each y € f(S5), ¢, is sufficiently close to .

Clearly we can suppose M2 = R™ and ( is of class C*°. (Then we replace
the germs with the Taylor expansions in the assertion, and we apply the compact-
open C* topology.) Using a tubular neighborhood of M3 in the ambient Euclidean
space, we can assume also M3 = R, i.e., ¢ and ¢’ are functions. Moreover, we do
not need to require ¢’ to be close to ¢ because if ¢ is not so then we can modify
¢ so that this requirement is satisfied by the arguments in the first case. Let

f(S) = {a1, ... ,ak}. The last reduction is to the case where {,;, =0,i=2,... ,k,
which is clearly possible by a C* partition of unity. Now we construct ¢’. Let ¢”
be a polynomial function on R™ such that ¢”(a1) # 0 and ("(a:) =0,2=2,... ,k.
Let n be a large integer, and let ((® be a polynomial function on R™ such that
the Taylor expansion T, ¢® is close to Ty, ¢/(¢")". Then ¢’ = (¢")*¢® fulfills the
requirements. |

The rest of the proof is the same as in the first case.

Case of ma > m;. We can prove this case as in the proof of 1.7. O

A C® map is called C*° R-L stable if it is C*° R-L equivalent to its small C'*®
perturbation. In the same way we define C* and Nash R-L stable maps.

A Nash R-L stable proper Nash map is C¥ R-L stable and a C¥ R-L stable
proper C* map is C*° R-L stable because they are infinitesimally stable (see [Ma;]
for the definition). Conversely, a C¥ R-L stable proper Nash map is Nash R-£
stable by 3.7.

Fact 3.8. The map f: R? 3 (z1,22) — (z1,7122,73) € R3 is proper C® R-L
stable but not C* R-L stable nor Nash R-L stable. We can modify the map to be
a Nash map between compact Nash manifolds. '

Proof. It is easy to see that f is infinitesimally stable. Hence f is C° R-L
stable by [Ma,].

We will construct a C¢ perturbatxon g of f which is not C¥ R-L equivalent to
f. Note

Im f = {(31,92,53) € R®: yiys = 43, ys > 0},
Im fU{y, =y2 =0, y3 < 0} = the Whitney umbrella,
Imfﬂ{y1=y2=0, y3<0}=0

Let h: R? — R? be a C* map such that b = id on {=.
an imbedding but a C°° immersion and the curve h({z

o

Z 0}, h|(z,=0} is not
0, =

5 < 0}) intersects
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transversally. Let h denote a C¥ ~:a,pproxima.’tion of h, and set g = (f1, h(fa, f3)),
where f = (f1, f2, fa). (Note that h({z1 = 0, 22 < 0}) is not a simple curve.) Then
g is close to f because f is proper, and not C* R-L equivalent to f for the following

reason.
Assume f and g are C¥ R-L equivalent. Then there exists a C* diffeomorphism

r of R3 such that 7(Im f) = Img. It follows that 7 carries the analytic closure of
Im f to it of Im g. But the former analytic closure is the Whitney umbrella, and the
latter is not homeomorphic to the Whitney umbrella because the latter—Img =
0 x h({z1 =0, 22 < 0}), which is not a simple curve.

We can construct a Nash perturbation of f which is not Nash R-L equivalent to
f in the same way.

By the same reason, the following map between compact Nash manifolds is C*°
R-L stable, but not C¥ R-L stable nor Nash R-L stable:

{z € R®: [z] = 1} 5 (71,22, 23)

— (21,7172, 73, /4 — 23 — o0} — 73) € {y € R*: |y = 2}.

a

Fact 3.9. By the above proof and 4.3 it may be natural to conjecture the
following assertion

Let f,g: My — M, be C*® L equivalent Nash maps between compact Nash
. manifolds. Then there erist semialgebraic open neighborhoods U of Im f and V of
Img such that f: My — U and g: M; — V are Nash L equivalent.

But we can construct a counter-example by modifying the latter example in the
above proof. We omit the construction.

Fact 3.10. There ezist two Nash maps between compact Nash manifolds which
are C° L equivalent but not semialgebraically R-L equivalent.

Proof. Let N be a C* manifold homeomorphic to S2 x S® such that N and
53 x 83 have distinct PL structures, whose existence follows from [K-S]. Set

=8°x 8,  M;=5%x SN,

where f indicates the connected sum. Give to N and M, Nash manifold structures.

Here the part of connection of M, is C*° diffeomorphic to S° x [—1,1]. By unique-
ness of a Nash structure of a compact C* manifold possibly with boundary (S2],

the part of connection is Nash diffeomorphic to S° x [—1, 1]. Hence we identify the
part with S x [~1,1]. Let fo: S' = [~1,1] be a Nash map such that f; and — f
can not be C° R- L equivalent by any orientation preserving homeomorphism of
[-1,1]. Set

f=idx fa, g=idx (=f2): $°® x St — S° x [-1,1],
and regard them as Nash maps from M| to M,.

Since M> is homeomorphic to 5% x S3§S% x S%, f and g are C° L equivalent.
On the other hand, they are not semialgebraically R-L equivalent for the following
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reason. Assume they are so. Then there exists a semialgebraic homeomorphism
from M2 N N to My N S3 x S3. The homeomorphism can be extended to : N —
53 x §3, i.e., N and S x S? are semialgebraically homeomorphic. It follows from
Hauptvermutung Theorem II1.1.4 in [S3] that N and S® x S® have the same PL
structure, which is a contradiction. 0

§4. GLOBAL FUNCTIONS

Fact 4.1 (Example I1.7.13 in [S3]). There exist two polynomial functions on
R8 which are C¥ R equivalent but not semialgebraically R-L equivalent.

Fact 4.2 (Corollary I1.7.6 and Theorem IL.7.7 in [S3]). Two C! R equiv-
alent C¥ functions on a C* manifold are subanalytically R equivalent. Two C*
R equivalent Nash functions on a compact Nash manifold are semialgebraically R
equivalent. Two subanalytic R equivalent semialgebraic functions on a compact
semialgebraic set are semialgebraically R equivalent.

Fact 4.3. If C* (Nash) functions f, g: M — R are C*® L equivalent then there
ezist open interval neighborhoods U of Im f and V' of Img such that f: M — U
and g: M — V are C* (Nash, respectively) L equivalent. :

Proof. A homeomorphism 7: Img — Im f such that f =70g is unique. On
the other hand, by 1.3 and 1.6 we can choose 7 of class C* (Nash) locally at each
point of Im g. Hence 7 is of class C* (Nash). O

Fact 4.4. Two C¥ R-L equivalent Nash functions are Nash R-L equivalent-if
the domain is compact. ‘

Proof. Let f and g be C* R-L equivalent Nash functions on a compact Nash
manifold M. Let 7 and 7 be C¥ diffeomorphisms of M and R, respectively, such
that fomr =7o0g. Assume 7 is orientation preserving. (The other case is proved
similarly.) By 3.3 it suffices to find a Nash diffeomorphism 7, of R such that 7 o g
and 71 o g are C* R equivalent (i.e., g and T oT0g are s0). Let S denote the
critical value set of g, and let ¢y,... , ¢x be generators of H oM, Jg). If we have a
Nash diffeomorphism 7, of R such that the Taylor expansion of — 11 at each point
of 5 is close to 0, by the proofs of 2.4 and 3.5 g — 75 0 g is a linear combination of
¢i¢; with small Nash function coefficients, where 7, = 7107, and by the proof of
3.7 g and 1 o g are Nash R equivalent. '

We construct 7; as follows. Let s; and s, be the minimum and the maximum
of S, respectively. Let r be a sufficiently large integer. We have a C™ Nash dif-
feomorphism 73 of R such that the derivatives of 73 — 7 of order < r vanish on S
and

T+ 7(s1) — 851 on ]—o0,s1 —1]
(@) = {
r+7(s2) —s2 on [sp+1,00].

Fixihg the derivatives of 73 of order < r at S we can approximate 73 by a Nash
function 71 (Theorems I1.4.1 and I1.5.2 in [S,]). O
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