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1. Introduction and Main Theorem.

Throughout this article, we work in the C* category. Let EN
be the N-dimensional Euclidean space R" with the standard affine
structure in the strict sense and the standard orientation. We are in-
terested in a “geometric intersection number” of an immersed manifold
and planes in EV. We based on a general method below ;

In a situation that a set consist of a kind of geometric objects
(lines and planes in this article) contains codimension 1 “wall” which
decompose the set into some “chamber”s. By giving orientation to the
wall, we can associate an number to each chamber. In some special
cases, the number could correspond to a geometric phenomenon (a

geomtric intersection number here) of the original object.

FirSt, we introduce some spaces and maps with which we are
mainly concerned. Let P(N,n) be the set of oriented n-planes (lines
if n = 1) in EN. This space P(N,n) admits a structure as an
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(N — n)(n + 1)-dimensional C*° ORIENTED manifold. In fact,
P(N,n) is homeomorphic to the total space of the orthogonal comple-
ment vector bundle to the tautological bundle over the corresponding
real oriented Grassmannian manifold G’(N ,T)-

Let M™ be an m;-dimensional closed connected manifold and
f: M — EN an iimhersion, where we allow that M is non-orientable.
We let my denote the codimension' of f: mg =N —my. In sec-
tion 2, from f, we construct an ((mg + 1)m, — 1)-dimensional closed
ORIENTED manifold E(L;*(p1)) and a map HLys: E(Ls*(p1)) —
P(N,m3). We regard HL; as an ((mz+1)m; —1)-cycle in P(N, ma).
Since the codimension of HLy is 1, the image of HL; decompose
P(N,m3) into some regions.

For an my-plane z € P(N, m2)\ImH Ly, We construct an element
', in Hmz+t)mi—1( P(N, m,)\{z}) We have,

THEOREM. Let f: M — EN be an immersion and HL; as above.
When we take x € P(N,m)\ImHL; and I'; corresponding to z, |

(A) #5({F(M) N z}) is finite.
(B) #7002 = Ta(HLy).

Except “pathological "cases!, the rlght hand side ', (HL f) is equal
to the number defined by algebralc intersection theory

After taking a base point zo € P(N,m;) enough near its end, we
can associate an (non-negative) integer to each component of
P(N,m3)\ImHL; by algebraic intersection number theory (see [A]) ;

1The author knows no way to construct such a pathological example.
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Int(ImHLfa Azoz); (=T:(HLy))
where a.,, is an oriented arc in P(N, my) which starts at zo and ends
at = and which intersects with InHL s transversely. We mean that
I, is the Poincare dual of the arc a,,r. This association depends on
neither a;,; nor zo (see [Wh]) (even in the case in which mz = N —1 |
and P(N,N —1) 2 S¥~1 x R has two ends).

‘We adopt #f~1({f(M) N 2}) as a geometric intersection number
of f(M) and z. Note that when f is an embedding, it is equal to the
geometric intersection number in the original meaning of the word.

In this story, ORIENTATION plays an impotant role.

2. A Decomposition of P(N,m;)
7 In this secion, from a given immersion f: M — EV, we construct

an ((mg +1)m; — 1)-dimensional closed oriented manifold E(Ls*(p1))
and a map HL;: E(Ls*(p1)) — P(N, mz).

First we introduce a canonical double fibration. For 0 < n; <
ny < N, we let P(N;ni,n2) denote the set defined as follows :

P(N;ny,ng) = {(x,X) € P(N,n1) x P(N,nz)|xC X }.

This set admits a structure as an ORIENTED C° manifold whose
dimension is (n1 + 1)(IN — n1) + (ng — n1)(N — nz). P(N; ni,ng) is
homeomorphic to the total space of a certain vector bundle over the
corresponding real Flag manifold.

We have two canonical fibrations :

pi: P(N;ni,n2) — P(N,n;) and pz: P(N;ni,ng) — P(N,n2)
(z,X) +— oz, | (z,X) - X
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The fiber of p; is homeomorphic to the oriented Grassmannian
G(N —ny,nz—ny), on the other hand, the fiber of p; is homeomorphic
- to P(nz,n,). ,

REMARK 1.. In the case n; = ny, P(N;ny,nz) is a disconnected
double covering of P(N; n1), and the anti-diagonal component
{(z,—z)} has opposite orientation from the one induced from that of
P(N,n;) by p;.

On the other hand, we define Ly: S(TM) — P(N,1) as follows,
where S(T'M) is the spherical bundle associated to TM:

S(TM) = (TM\{0-section}) / ~,

where v ~ vy < v; = vy for some A > 0.

S(T'M) is a (2m; — 1)-dimensional ORIENTED manifold even if M
is non-orientable, because if we change a local orientation of M, the
orientation of the fiber over the local base is also changed. We define
the orientation of S(T'M) as a local orientation of U(C M) x that of
the fiber over U. Now we define Ly as ;

Ly S(TM) — P(N,1)
v (€ S(Tp,M)) +— The straight line whose orientation is df (v)
and which passes thrdugh f(p).

Using Ly and the double fibration p;,p2 of P(N;1,m3), we con-
“struct HL; by the following diagram : HL; = p o Ls.
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HL,
E(Ls*(p1)) - - P(N;1,my)
f
o /D1 D2\,
- S(TM) ) P(N,1) - P(N,my)

We define E(L;*(p1)) as the total space of the pull-back of the
fibration p; over S(TM) by Ly. The dimension of the space is 2m; —
1+ (mg—1)(N—m3)=(ma+1)my — 1.

E(Ls*(p1)) = { (v, (%, X)) € S(TM) x P(N;1,mz)| Ls(v) =z }.

LEMMA 2.1. E(L;*(p1)) is closed and ORIENTED.

Proof. Since E(Lg*(p1)) is the total space of a fiber bundle over
S(TM) whose fiber is G(N — 1,mz — 1), it is a closed manifold, since
both the basespace and the fiber are closed.

~ In the case mg = 1, E(L;*(p1)) is the double covering of S(TM)
stated in Remark 1, thus it is oriented. The case N =2 (m; = ma =
1) is included in this case. | N e -

Next, we study the other cases, N > 2 and my > 1. The base
space P(N,1) and every fiber of p1 are both oriented, and the bundle
p, is orientable, because the base space P(N,1) = TSN-1 is simply
connected in this case [MS]. E(Ls*(p1)) is the pull-back of p; over
the oriented manifold S(T'M), thus it is orientable. We define the
orientation of the total space by the local orientation of the base space
x that of the fiber. We have the lemma. 0O
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3. The Lowest Dimensional Case.

In this section, we study the case in which m; =1 and N =2, i.e.,
the case of immeresd plane curves. When we fix an affine coordinate
(the origin o and a frame z1, z2-axes), P(2,1) (= the set of oriented
lines in E?) can be identified with C\{0} as follows ([T, IUN]) Here
we identify E? and C by (z1,%2) <> z1 + iz2.

P(2,1) —s C\{0}
I={ta—iralte R} +— ¢€aq,

where a € S (unit vector pointing the orientation of the line) and
r € R. |r| is the Euclidean distance between the origin o of E? and-
the line I (r < 0 if the origin is in the right hand side of the line).

1 %2
4 .J”
8
L >
14 X
E’ PR =C\D}

EASY OBSERVATION..

dist(o,!) = |log|z||. {l]o €} ={z € Cl|z| = 1}.

If a line ! € P(2,1) is corresponding to z, —I (= ! with the orien-
tation reversed) is corresponding to —2~1.
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Let ¢: S — E? be an immersion. Let L.: S(TS') — P(2,1)
be the following map. L. is regarded as a 1-cycle by the canonical
orientation of ST(S?).

Lc: S(TSY) — P(2,1)
Uat r — The straight line whose orientation is dc(v)

and which passes through c(z).

ImL, decomposes P(2,1) into some regions. After we take a base
point o € P(2,1) enough near its one end (0 or oo, each of which can
be chosen), we associate an integer to the each region by algebraic
intersection number of L. and a transverse arc from zo to z. This is
well-defined ([A,Wh]) and essentially this. number is equal to I'z(Lc).
In this case, our theorem claims, |

THEOREM (in the case in which N = 2). When we take x €
P(2,1)\ImL. , |

#c Y ImeNz} = 2Int(Lc,a¢§:,,) < 00.

REMARK 2. Here the 2 in the right hand side appears, because we
do not take the double covering stated in Remark 1.

EXAMPLES. First, we show the easiest case in which ¢ is the unit
circle. P(2,1)\ImL, is devided into 3 parts. It is easy to see that our
theorem works in this case. | |
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S(TS!) PRD)

- We sh_ow two more examples by drawings.' Each of the left figures
are images of immersed 'circles ¢ and the right figures are images of

the corresponding L. in P(2,1).

A_ double point of L. corresponds to a double tangent line for c.
- An inflection point of ¢ corresponds to a critical point of po L., where
p: P(2,1) — S! is the standard natural projection ([ITUN]).
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4. A Proof ( in the lowest dimensional case) .

In this section, we prove our main theorem in the lowest dimen-
sional special case.

We study a geometric intersection number #¢~!{ImeN z} of im-
mersed plane curve ¢ and a line 2. After changing and fixing an affine
coordinate (a:l,:tz) if needed, we may assume that x = (+)z1-axis =
{z2 = 0}, which is corresponding to 1 in P(2,1) = C\{0}.

Let z;: E2 —» R ( (z1,22) — x; ) be the i-th factor projection and
¢; the composition z; o c (i = 1,2). We have

#c’l{Imcﬂ z} = #{c2”1(0)}.

[Finiteness] By the assumption z € P(2 1)\Im Le, z is not a tan-
gent line for ¢, which means that 0 is a regular value of c3. Thus
c2~1(0) consists of discrete points.

[The formula] Let ¢; be the composition ¢; o 7: S(TS') - R
and é&': S(TS!) — R its differential. By the regularity, (c2=2(0)) N
(c2'(0)) = ¢ and (& 1(0)) N ((&)71(0)) = ¢. Thus,

#e ' (0) = S#(670)
= l#{v € ST(S") | Ga(v) = 0}
= [#{v € ST(SY) | &(v) =0,é'(v) >0}
+ #{v € ST(S") | &(v) = 0,6 (v) < 0}]

= #a,{v € ST(SY) | &(v) > 0,&'(v) =0}
(when it can be defined).
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The last equality comes from the fact ¢; > 0 ( or < 0 ) if and if only
¢’ is increasing (or decreasing) and standard homotopy theory.

o'

Since ¢ is an immmersion, ¢’ ('v) # 0 if &'(v) = 0. Thus,
#atg{v € ST(SY) | &(v) > 0,6 (v) =0} |
= #ag{v € ST(SY)| &2(v) > 0,&'(v) = 0,6 (v) >0}
+ #atg{v € ST(S8Y) | &2(v) > 0,&(v) =0,é1'(v) < 0}
= 2#a,{v € ST(§Y) | é&(v) > 0,6 (v) =0, (v) > 0},
because the involution —: ST(S') — ST(S?) carries the first set on
the to the second bijectively. -
We note that

Hato{v € ST(SY) | G2(0) > 0,62'(v) = 0,6/(w) > 0}
= #{Maximal points of c;} — #{minimal points of c;},

’\t\‘\*
Ca

in the case in which they can be defined.
When ¢ is locally represented as (¢;(t),2(t)) with &' > 0, L. is
represented as

£t Ty = 2 (t) + 61’(t)62(t) Cl(t) » (t) (Onented hne)

PXON - é'(®)
Thus it is not haId to see that
#atg{v € ST(SY)| G(v) > 0,&'(v) = 0,64 (v) > 0}
L= Int(Lc,_. a[01] ),
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where ay; is an arc in P(2,1) = C\{0} from an end “0"to 1. Here
we note that ¢ € [01] is corresponding to the oriented line z2 = log %
In the argument above, we may need to perturb the arc homotopi-
cally to define the numbers, but here we omit such a detailed part of
our proof. O |

5. Questions.

(5-1) Let v be a local arc (or a germ) in P(2,1). What is the
condition that v = ImL,, for an arc ¢ in E??
[Obserbation] Around z;-axis =1 in P(2,1) = C\{0},
(1) €' (—e < t <€) (family of parallel lines)
(2) eRoosbei®(—c < 0 <€) (famﬂy of hnes passmg thmugh
a point (R,0))
can not be ImL, for any arc c.

- (5-2) Does our idea work in generalized cases of the set of circles,
the set of ovals or the set of embedded closed curves (oo-dimensional
space) instead of P(2,1) ?

[Observation] Curvature and such a differential-geometric method
may be concerned with this question. |

(5-3) Generalize our formula in the case in which my > N — m;,,
i.e., the case in which higher dimensional manifolds appear as an in-
tersection of an immersed manifold and planes.

6. After the author’s talk, it was pointed out by some profes-
sors that our formula might be known in other area of mathematics.
The author is trying some more information again (Integral geometry
[S and its references,T], Radon transformation,...). Any information
from you would be gratefully appreciated. |
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