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THE MODULI SPACE OF ONCE PUNCTURED ELLIPTIC CURVES
WITH LAGRANGIAN SUBLATTICES

YOSHITAKE HASHIMOTO (#54 #&&) AND KIYOSHI OHBA (X3 i)

1. INTRODUCTION

We introduced a new method of constructing once punctured Riemann surfaces in [H-
O1] (see also [H-O2]). In our construction we use line segments in the complex plane
C and parallel transformations: For a pair of disjoint parallel line segments with the
same length in C, we first cut C along the segments and paste each side of one segment
and the opposite side of the other segment by a parallel transformation obtaining a once
punctured elliptic curve. The puncture is at infinity. We shall call such a pair an Igeta.
(Igeta is a Japanese word coming from a technical term “Igeta-kuzushi” used in a Japanese
martial art.) Putting g disjoint pieces of Igeta on C, we obtain a once punctured Riemann
surface of genus g in the same way. (See Figure 1. The numbers (1),...,(6) in Figure 1
indicate where to paste.) We denote a set of g disjoint Igeta by I" and the resulting once
punctured Riemann surface by (R(I'),pw). Moreover when we move the position of g
Igeta, there appears a family of once punctured Riemann surfaces of genus g. All the
possible configurations of ¢ disjoint Igeta up to the affine automorphisms of C form a
3g — 2-dimensional complex V-manifold and this dimension is the same as the dimension
of the moduli space M, ; of once punctured Riemann surfaces of genus g. We thus expect
to have a visual image of the moduli space by using this construction.

Let I,mo be the collection of those I' having [0,1] as one of its 2¢ line segments. Iyno
turns out to be a 3g — 2-dimensional complex manifold. We showed in [H-O1] that the
Kodaira-Spencer map

pro : T(I;mo)r — HY(R(T); O(—peo))

is an isomorphism for any I' € I 1, where T(I;no)r is the holomorphic tangent space of
Iyno at T' and O(—py) is the sheaf of germs of holomorphic vector fields on R(I") having
zero at po,. This implies that the family of once punctured Riemann surfaces of genus g
by Igeta-construction is complete and effectively parametrized at any point for each g.

We also showed that any once punctured Riemann surface (R, p) can be obtained from
C by cutting along line segments and pasting by parallel transformations. (Note that
Igeta-construction is a special way of cutting and pasting.) This result is obtained by
considering a Lagrangian sublattice A of R, a subgroup of Hi(R;Z) which coincides its
orthogonal complement with respect to the intersection form on H;(R;Z).

When we construct a once punctured Riemann surface (R(I'),p) from I', R(T") has
a natural Lagrangian sublattice Ap. Igeta-construction leads us to consider the moduli
space of once punctured Riemann surfaces with Lagrangian sublattices.

In this paper we consider the case of genus 1, and describe the moduli space using a
natural extension of Igeta-construction, that is, we make a complete list of once puctured
elliptic curves with Lagrangian sublattices (see §2):
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FIGURE 1. Igeta-construction

Theorem 1 . For any once punctured elliptic curve with a Lagrangian sublattice (E,p, A),
there ezists one and only one (E(a,b, ), pos, Ao) isomorphic to (E,p, A).

For any once punctured Riemann surface (R,p), a Lagrangian sublattice A and the
puncture p determine a certain Abelian differential wy of the second kind up to scalars.
To prove Theorem 1 we study the geometry of geodesics on once punctured elliptic curves
having metrics with conical singularities induced by the Abelian differentials w,. For
each (E(a,b, ), peo, Ao), all the closed geodesics can be described visually by using our
construction.

In §3 we consider the complex structure of the moduli space of once punctured elliptic
curves with Lagrangian sublattices by using the description given in §2.

The authors would like to thank the many people who have contributed ideas and
suggestions for this manuscript, among them C. F. Bodigheimer, V. Chueshev, K. Fukaya,
M. Furuta, A. Hattori, S. Morita and K. Ono. The authors would like to express their
gratitude to H. Helling for useful suggestions on how to improve the early drafts.

2. ELLIPTIC CURVES WITH LAGRANGIAN SUBLATTICES

In this section, we give a description of all the once punctured elliptic curves with

Lagrangian sublattices by using a natural extension of Igeta-construction. =
We prepare some notations and terms about the metrics induced by Abelian differen-

tials. For an Abelian differential w on a closed Riemann surface R, we denote by w~1(0)
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(resp. w™(00)) the set of zeros (resp. poles) of w. We call a simple path or simple loop
v :[0,1] = R w-line-segment if its image contains no poles of w and the integral

/‘Y(t)

: w

, 7(0) :

depends on t € [0,1] linearly. We also call its image w-line-segment. Let us denote
by ¢. the flat metric on R — w™!(0c0) induced by the 2-form -;-w A @, which has conical
singularities at w™1(0). Then w-line-segments are geodesics for g,. Let us call a w-line-
segment 7 : [0,1] = R — w™!(00) w-edge if ¥([0,1]) N w™!(0) = {7(0),7(1)}. Then closed
geodesics with respect to g, which contain some zeros of w consist of w-edges because
the integral of w gives rise to a local isometry between R — (w™(00) Uw™!(0)) and C.
An Abelian differential w of the second kind on a closed Riemann surface R induces
an element of H'(R;C), and further an element denoted by PD{w] of H1(R;C) via the
Poincaré duality. It holds that '

/w = o-PD[w] for any a € Hi(R;Z).

We look for a singulaf 1-cycle o representing PD[w] such that

N
o= ch%, c €C
k=1
where 71, ... /Yy are w-edges. (We can find it if w™!(0) is nonempty.)

Let (R,p) be a once punctured Riemann surface of genus g and A a Lagrangian sub-
lattice of H1(R;Z). The kernel Z, of the homomorphism given by Abelian integrals

H°(R;Q'(2p)) — Hom(A,C) (2= CY)
is always one-dimensional because it holds that
dim HY(R;QY(2p)) =g +1

from the Riemann-Roch formula and the surjectivity is implied by the bilinear relations
of Riemann. Accordingly, a Lagrangian sublattice and a point on the surface determine
an Abelian differential up to scalars. (Note that A = Z9.)

From now on we consider the case of genus one.

Figure 2 is a list of some once punctured elliptic curves with Lagrangian sublattices
denoted by E(a,b,z) (or (E{(a,b,z), P, o)) constructed from C by cutting along the
line segments and pasting by parallel transformations. (The numbers (1), (2), ... in each
figure indicate pasting data or where to paste.) They split into the following four types,
and each once punctured elliptic curve (E(a,b, z), po) is constructed as follows:

I: (The case where « = 0, b = 1, and 2 is a complex number in the upper half plane

H or a real number in the interval (0,1).) Cut the complex plane along

=([0,1]) U (=([0,1]) + 1),

and paste each side of (|0, 1]) and the opposite side of (z([0, 1]) + 1) by a parallel
transformation. (Igeta-construction)

II: (The case where a and b are relatively prime positive integers, and z is a complex
number in the upper half plane H.) Cut the complex plane along

z([0,1]) U [0,a + b U (2([0,1]) + a + b),
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I (E(0,1;z),pe) where z € HU(0,1).
x z+1

@) /(2) () )

0 1
1I (E'(a.,b,:n), Doo) where a,b€ Z+, (a,b)=1, € H.
T . a+t+b+zx

1 2
()(2) ()(1)

R

III (E(a.,b,:x:),poo) where a,b€ Z+, a%b, (a,b)=1, =z € (max(a,b),a+b).

w T @ 1 ()
" ) e @ 3 ® 4

e

IV (E(a,b,0),px) Wwhere a,b€Z+, (a,b)=1.

m e O
O A R

FIGURE 2. The list of E(a,b,z)’s
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and paste each side of z([0,1]) and the opposite side of (z([0, 1]) + a+b) by a parallel
transformation and paste the upper side of [0, a] (resp. [a,a + b]) and the lower side
of [b,a + b] (resp. [0,b]) by a parallel transformation.

ITI: (The case where a and b are distinct relatively prime positive integers, and z is a
real number such that z € (max(a,b),a + b).) Cut the complex plane along [0, z],
and paste the lower side of [0,z — a] (resp. [z — a,b], [b,z]) and the upper side of
[a, z] (resp. [z — b, a], [0,z — b]) by a parallel transformation.

IV: (The case where @ and b are relatively prime positive integers, and z = 0.) Cut
the complex plane along [0, a + b] and paste the upper side of [0, a] (resp. [a,a + b])
and the lower side of [b, a + b} (resp. [0,b]) by a parallel transformation.

Note that each elliptic curve constructed in this way has a natural Abelian differential wy
induced by the differential d( of the standard coordinate ¢ of C and that the Lagrangian
sublattice Ag of E(a,b,x) is characterized as the kernel of the period map of wy from
Hi(E(a,b,z);Z) to C. Further, the primitive period of wy is equal to 1 because a and b
are relatively prime. When E(a, b, z) is of type I, II, or III, the set wy'(0) consists of the
two points py and p; coming from the origin and the point = of C, and when E(a, b, z) is
of type IV, the set wy'(0) consists of the one point py coming from the origin in C. (See
Figure 2.)

Our goal in this section is to prove

Theorem 1 . For any once punctured elliptic curve with a Lagrangian sublattice (E,p,A),
there exists one and only one E(a,b,z) isomorphic to (E,p, ).

We call two once punctured Riemann surfaces with Lagrangian sublattices (R, p, A) and
(R,p', ') isomorphic, if there exists a biholomorphic map from R to R’ transforming p
to p’ and A into A’.

In order to prove Theorem 1 we investigate the geometry of geodesics on once punctured
elliptic curves having metrics with conical singularities induced by Abelian differentials.

For a once punctured elliptic curve with a Lagrangian sublattice (E, p, A), there exists
an Abelian differential ws, unique up to sign, in the kernel Z, (see [H-O1] or [H-O2])
such that the primitive period of w, is equal to 1, because Z, is one-dimensional and any
non-trivial element in Z, has non-trivial periods. Then PD[w,] is an integral homology
class. Since the metric g,, on E — p depends only on A in this case, we shall shortly
denote this metric by g5. For the same reason we shall also use the term A-edge instead
of wy-edge. _

We first show that E(a,b, x)’s are not isomorphic to one another by studying Aq-edges.

For each E (a,b, z), the Abelian differential wy, coincides with wp up to sign. So Ag-edges
are line segments in C between the points of wy'(0) in each case of Figure 2. Accordingly
we can easily obtain the following proposition. '

Proposition 1 . All the Ag-edges can be described as in Figure 3 for each E(a, b,z).

Proposition 1 implies that all the closed geodesics containing some zeros of wp, which
consist of Ag-edges, can be described visually for each E(a,b,z). This proposition yields -
the following corollary.

Corollary 1. If (a,b,z) # (d',V,2'), then E(a, b, x) is not isomorphic to E(a’,b’,az’).

Proof. Suppose (F, poo, Ag) is isomorphic to E(a,ﬁb, x). We shall recover the data (a, b, )
from (Eapcxn AO)
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We distinguish the type IV from others by the degeneracy of zeros of wy,, and distin-
guish the types I, I and III from each other by the properties of Ag-edges on E. Let
{q0,q1} be the set of singular points of gr,. (When (E, po, Ag) is of type IV, let gg be the
unique singular point of ga,.)

When we describe all the directions of Ag-edges around ¢o, we obtain Figure 4 from
Proposition 1. We can specify the Ag-edges ag, o1 and ap on E in Figure 4.

Note that these figures do not depend on the choice of gy, and that there exists a Ao-
edge which has the opposite direction of aq in the case where (E,po,Ag) is of type I,
however in the case where (E, peo, Ag) is of type II there exists no A-edge of this kind. We
thus specify the type of (E,pw, A). We shall orient the Ag-edges ap, @1 and a3 in Figure
4, which are also in Figure 3, from g to ¢ in the case of type I, II or IIL

When (E, poo, Ag) is of type I or II, we choose the sign of wy, such that Im f Wy > 0

Then we obtain
r = / Whg-
ao
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In case (E, pso, Ao) is of type II, we also obtain the following: (See Figure 3)

a =/ Whgy
og—ag

b =/ WAg-
a3 —ag

When (E, peo, Ao) is of type III, we choose the sign of wy, such that fao wp, > 0. Then
we obtain the following: (See Figure 3)

4 =/ WAgs
ag—a3

b=/ WA
a]—a2

T =/ WAag-
ap+ay—oa2

When (E, poo, Ag) is of type IV, we obtain the following: (See Figure 3)

a=!/ el

(s3]

b=|/ .
[¢5}

We thereby recover the data (a,b,2) from (E, peo, Ag) in any case. Hence this corollary
follows. O

Corollary 1 implies the uniqueness in Theorem 1. In order to finish our proof of The-
oreml, we next show the completeness; for a given once punctured elliptic curve with a
Lagrangian sublattice (F, p, A), there exists an E(a, b, z) which is isomorphic to (E,p, A).

Let v be an oriented loop or map from S! to E representing a generator of A. The
Abelian differential w, is exact on E — v(S!) because the integral of w, along a loop «
equals zero if and only if a represents a homology class whose intersection number with
the homology class [y] equals zero. When we denote by ||| the length of v with respect
to the metric ga, it is verified from the following two facts (1), (2) that there exists a loop
representing a generator of A which has the smallest length among such loops, and that
the loop consists of A-edges. We shall call a loop consisting of A-edges a A-edge-loop.

(1): For any loop a on E, there exists a A-edge-loop o' consisting of A-edges such that
@' is homotopic to a and ||/|| < |||

(2): For any positive number r, there exist at most finitely many A-edge-loops with
length smaller than r.

We can show that fact (1) follows this way: we first approximate a by a polygonal loop,
and then we reduce the number of vertices which do not lie on ws(0). On the other hand,
for a positive number 7, it is obvious that there exist at most finitely many A-edges with
length smaller than r, and then the fact (2) follows. :

Lemma 1. The image of an oriented A-edge-loop vy representing a generator of A contains
-1
wy (0).
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Proof. The Abelian differential wy has one point as zero of order 2, or has two points as
zeros of order 1. We show the lemma in the second case. (In the other case the statement
is trivial.) We set wy'(0) = {q0, @1}

Suppose the image of -y contains gy and does not contain ¢;. (The image of y consists
of only A-edges from qq to qq itself.)

We cut along v with E and denote by E the resulting Riemann polygon or Riemann
surface with line-segment-boundary. (See [H-O1] or [H-O2].) Let g be a point in E
corresponding to gg. The holomorphic map '

®(q) = /q: WA

from E—(y(S')U{p}) to C extends to one from E to CP,(= CU{p}), and ® maps a local
neighborhood of any point which is not in w;*(0) to'a subset of CP; biholomorphically.
Moreover, ® maps the boundary OF of E into the real axis in CP;, because wy only has
real periods.

Then we shall find two paths from ¢; to p

ap, oz [0,1] — E
such that
ai([0,1}) Nax([0,1]) = {q1,p},
(@ 0 a;)([0,1]) = (@ 0 az)([0, 1]).

We fix a path 8 on CP; from ®(q;) to pe such that 3([0,1]) N <I>(6E) C {®(q1)}. (See
Figure 5.) Around ¢; we can take two distinct paths

‘ oy, ah: [0, — E
such that
([0, 1)) N a5((0,1]) = {a},
(@ o0))(t) =(Poay)(t)=p(t) (te€l0¢]).
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Since @ is a local biholomorphic map except go, 1, We obtain the desired paths a4, as
as the pull-back of # by ® which coincide near ¢; with o, o} respectively. Meanwhile,
the map & is biholomorphic around p. This is a contradiction. O

We recall three well-known facts about simple loops on elliptic curves.

Fact (1) The homology class represented by a simple loop is trivial or primitive.

Fact (2): If v and ' are simple loops such that their homology classes [v], [y] are
primitive and their intersection number [y] - [y'] is equal to zero, then [y] = £[y].

Fact (3): If 7y and ' are simple loops such that their intersection number is equal to
+1, then the pair ([7],[y]) is a basis of H\(E;Z). '

Since the integral value of wy along any A-edge does not vanish, the following lemma
follows from Fact (2) and the definition of A-edge immediately, and we omit its proof.
(Note that two distinct parallel A-edges have no common points except the points in

wy(0).)

Lemma 2. Suppose wy'(0) consists of two distinct points g0, qi. If m (resp. 72) is a
A-edge from qq to qo itself (resp. q1 to qy itself), then [vi] = [y € Hi(E;Z).

Let (o) be an oriented A-edge-loop representing a generator of A and having the smallest
length. When we consider +y) as an ordered set of oriented A-edges, we may obtain
another loop 720) representing the same homology class by reordering the oriented A-
edges suitably. (We assume that each A-edge inherits. its orientation from Yo0).) We
obtain the following lemma about 7.

Lemma 3. The image of Y(0) consists of A-edgés which have no intersection with one
another except w=1(0).

Proof. When wy has a zero of order 2, the lemma is immediate because all the A-edges
are parallel. We thus consider the case where wy has two points qq, ¢; as zeros.

We consider 7o) as an ordered set (71,72, ...,7) of oriented A-edges. Suppose A-edges
7 and ; (1 <4 < j < 1) have an intersection at a point ¢ € w;'(0). Then both ~; and
7; are A-edges between ¢ and ¢;, and they intersect each other transversely.

We prepare paths 7; and ; modifying ; and ~; around q as in Figure 6.

We replace 7;, v; with v;, 7} respectively, and set

7{0) = (’71,---,%,---,’Yj,---,%)-
Then the cycle (y, represents the homology class [(g).

In the case (1) or (2), we can consider y as a loop, and the length 17(gyll is smaller
than ||y)l[- This contradicts the definition of ().

In the case (3) or (4), it is necessary to reorder the elements of 7(’0). If there still exist
A-edges between ¢y and ¢ in 7{0), then it is easy to obtain a loop by reordering the
paths and loops {v1,...,7},...,7},..., %} whose length is smaller than ||y ||. This also
contradicts the definition of 7). If there exist no more A-edges between gy and ¢; in 7(6),
we further replace the loop v} by A-edges from gg to qq itself, the loop ; by A-edges from
¢1 to qp itself preserving the homology class. Moreover, by using Lemma 2, we can replace
all the A-edges from ¢; to ¢ itself by A-edges from gy to gy preserving the homology class.
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Then we obtain a cycle representing the cohomology class [(g)], and consisting of only
A-edges from g to qq itself. This cycle can be considered as a loop, and this contradicts
Lemma 1. O

Proof of Theorem 3. Let 7o) be an oriented A-edge-loop representing a generator of A
and having the smallest length as before. We describe 7o) as an ordered set of oriented
A-edges;
Yoy = (M5 M)- |

We first consider the case where w;l(O) consists of only one point go. In this case, each
element v, of 7(g) is an oriented simple loop on E, and the integral of wy along v is a
non-zero integer. Hence it follows from Fact (2) that -y, represents a primitive class in
H,(E;Z). We shall choose the sign of w such that

/ wp > 0.
7

Since the integral of wy along 7o) is equal to zero, we may further assume by reordering

/ wp < 0.
T2

The loops 7; and —7; represent different homology classes, because 7y has the smallest
length. On the other hand, they intersect each other only at go. Hence from Facts (1)
and (2) it follows that their intersection number at go is equal to 1 or —1 and that the
pair ([11], [12]) is a basis of Hi(E;Z).

Therefore we can describe the direction as in (i) or (ii) in Figure 7.
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Cut E along v, and 7, and denote by E the resulting Riemann polygon. In each case
in Figure 7, by choosing a point o in OE suitably (see Figure 7), we obtain a holomorphic
map ® from E to CP;:

q
®(q) = / WA-

%

In case (i), set
In case (ii), set

Then the integers a and b are relatively prime because the pair ([y1],[72]) is a basis of
H,(E;Z), and then & gives rise to an isomorphism between (E, p, A) and E(a, b,0).

We next consider the other case: w;l(O) consists of two distinct points gy and ¢;. In
this case, from Lemma 1 there exists at least one A-edge from gy to ¢; and at least one
A-edge from ¢; to gq in (). We may assume that v, is a A-edge from ¢ to q;. We may
further assume from Lemma 2 that 7y does not contain A-edges from g to ¢ itself.
Since 7, is a A-edge from ¢ to ¢, the A-edge <, is from ¢; to go.
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(i) Suppose there exists a A-edge 7; from ¢; to go in () such that

/w,\z—/w,\.
Vi N

Because 7(g) has the smallest length, the simple loop (71,7:) is non-trivial, and hence
primitive (Fact (1)). Therefore we obtain o) = (71,%). (Note that a loop <y representing
a generator of A is characterized by two properties; one is that 7 represents a primitive
homology class, and the other is that the integral of wy along 7y vanishes.)

Cut E along v; and 7;, denote by E the resulting Riemann polygon, and set the
signature of wy such that -

Im( [ wa)>0 or /w,\>0.

M s}
By choosing a point o in F suitably, we obtain a holomorphic map ¢ from E to CP;:

®(q) = /q: WA-

a:=/ WA,
M

then @ gives rise to an isomorphiSm between (E,p, A) and E(O, 1,z). (Igeta-construction)

(i1) Suppose
/ WA # — WA
Y - 7

for any ~;, A-edge from ¢; to go in ().
(ii-a) When the integral of wy along 7, is not a real number, we choose the sign of wy
such that

If we set

Im(/ wp) > 0.
N

We may assume without loss of generality that there exists a A-edge 7; from q; to go in
7(0) such that the integral of ws along 71+ is a positive integer. We may further assume
by reordering that the integral of wy along v, + 72 is minimal among such 7;’s.

/ wp 2> / wp 20
T1+7i T1+72

Since the integral of wy along -y vanishes, we see from the inequality above that there
occur the following two cases:

1: There exists in ) a A-edge v; from gq to g such that
‘ / wA'< 0.
N

2: There exist in () A-edges v, and 7, (7, is from go to q1, 7, from q; to go) such that

/ Cwp < 0.
YutW
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Suppose the following two inequalities hold for any 7, from gy to ¢; and for any +, from

1 to go.
/ won 20, / wp 20
Y2+ T+7

Then we obtain the following inequality from the second inequality above and the choice

of 7s.
/ WA 2> / wa
Jy1+v0 Nn+72

Furthermore we obtain the following inequality, and this is a contradiction.

/ WA = / WA — / wa + / YA
Tutry Tetr2 2t 71+
2 / WA
Yut72

> 0.

Therefore the following three cases occur:
(1) there is y; from g to g; such that

/ wp < 0.
Y2 +7;
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(2) there is 7; from ¢; to go such that

/ wp < 0.
T1+7;

(3) there is «y; from go to go such that

/w,\<0.
e

The figures on the left-hand side of Figure 8 indicate the images of 11, 72, and v; by
the integral of w, in each case above.

In the case (1), we shall show that the homology classes represented by the simple
loops (71,72) and (7;,72) form a basis of Hi(E;Z); If the homology classes [(71,72)] and
—[(74,72)] represent the same homology class, then we get a loop '720) representing a
generator of A by removing 71, 72, and 7; from ) and placing —7; instead, and 7(0)
is shorter than <yg). This is a contradiction. Hence from Facts (1) and (2) it follows
that the intersection number [(y1,72)] - (7, 72)] is not equal to zero. On the other hand,
(m1,72) intersects (7;,72) only at 2. Therefore the pair ([(v1,72)], [(7j,72)]) is a basis of
H,(E;Z). In the same way, we obtain the fact that the pair ([(1,72)], [(71,7;)]) is a basis
of Hy(E;Z) in the case (2), and that the pair ([(71,72)], [1;]) is a basis of Hi(E;Z) in the
case (3).

Cut E along 7, 72, and v; in each case, and then denote by E the resulting Riemann
polygon. We obtain a holomorphic map @ from E to CP,

®(q) = /qoqw,\

when we choose a base point gy in E, because we obtain a basis of Hi(E;Z) from 71, 7,
and ;. '

In the case (1), let go be the point in the boundary OF which is the initial point of
and is also the end point of 7,. Then we get the image ®(E) as in the middle figure in
Figure 8. It is now easy to modify E by cutting and pasting from ®(F) such that we can
obtain a Riemann polygon of type II. (See Figure 8.) Note that a’ and ¥ are relatively
prime integers where b is the integral of wa along (7;,72)-

In the similar way, we obtain a Riemann polygon of type II in the cases (2) and (3),
and omit the explanation.

(ii-b) When the integral of wy along 7; is a real number, there also exists an element
7; in 7o) different from 7; and ;. We obtain the fact that -; joins g with ¢; as follows:
Suppose v; is a A-edge from qq to qo itself. We may assume

(/71+.,2 wh) - (_/_7_‘4’/\) <0.

The simple loop 7; intersects the simple loop (71,72) at go with intersection number zero
because the directions of 71, 72, and y; can be described as in the following figure. Hence
it follows from Fact (2) that the homology class [y + Y2 + 7;] vanishes. This contradicts
the definition of ).

Now we may assume that <; is an edge from ¢g to ¢;. Then the two homology classes
[(11,72)] and [(7;,72)] form a basis of Hy(E;Z). We can also describe the directions of
the three A-edges 71, 72, and v, around ¢o and ¢; as in Figure 9.
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FIGURE 9

Cut E along v;, 72, and 7;, and denote by E the resulting Riemann polygon. We
choose the point gy at the vertex on OFE where the boundary is smooth. (See Figure 9.)
We choose the sign of wy such that ® maps each point to a positive number around @p.
Then the map & gives rise to an isomorphism between (E,p, A) and E(a,b, z) of type III
for some (a, b, z). We have completed the proof of Theorem 1. O

We denote by ML the set of once punctured elliptic curves with Lagrangian sublat-
tices; ' _

_ MLy = {E(a,b,1)}.
We will consider the complex structure of MLy in the next section.

3. COMPLEX STRUCTURE OF ML,

When we consider the forgetful map from the set ML, of once punctured elliptic
curves with Lagrangian sublattices to the moduli space My, of once punctured elliptic
curves, it should be a holomorphic map; ML, should be a complex V-manifold whose
complex structure is induced from Mj; by the forgetful map.

" We consider the complex structure of ML;; by using the description in Theorem 1:
We give a local coordinate of ML;; around each once punctured elliptic curve with
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FIGURE 10

a Lagrangian sublattice E(a., b,z). For this purpose we first prepare two methods of
deforming complex structures of Riemann surfaces. :

Let t be a complex number and let s, be the line segment between v/t and —/t in C.
Set : ,

Um = {Z € C; |2| > l\/l:,|}

Then the following map J, is biholomorphic:
1 t
Jy:Upy 32— -2—(z+;) € C—sy.

Hence we obtain a biholomorphic map J, o J_‘t1 from C — s_; to C — s;. Note that the
map J; o J=} is parametrized by ¢ holomorphically. (See Figure 10.)

. On the other hand, let s} be the union of two line segments; the line segment from 0
to 1 and the line segment from 0 to 5™ We denote by K the biholomorphic map from
Uy = {z € C;|z| > 1} to C — s} such that K(1) = 0. (There exists uniquely such a
biholomorphic map due to Riemann’s mapping theorem.) Let ¢ be a complex number as
above. We also denote by ¢ the automorphism of C defined by multiplication by ¢. Set

sy = t(s}).

Then K; := to K ot™! is a biholomorphic map from Uy to C — s;. The map K, is
parametrized by ¢ holomorphically even at ¢ = 0. We consider the biholomorphic map
K;o J;l from C — s to C — s}, which is also parametrized by ¢ holomorphically. (See
Figure 11.)

Let p be a point on a Riemann surface R, and fix a local coordinate z : U, — C
(2(p) = 0) around p. The subset U, of R is also regarded as a subset of C, and then both
sets s, and s; are also subsets of U, if ¢ is sufficiently small. We can choose a sufficiently
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FIGURE 11

small positive number € such that

| (Jio JZ)({z € C;l2| < €} — s_y) C U,
(Ko JZN({z € C; 2| < €} — sp2) C U,
for any t € U, '

w-deformation of (R, (U, z)): For a complex number ¢t € D, = {t € C;|t| < €} we
paste R — s, and {7 € C;|z| < €} by the attaching map

JioJZ} :{z€C;lz| <€ —s_y — U,—5, CR—s,.
Then we obtain a holomorphic family of Riemann surfaces on D,. Note that the
fiber on the origin is R, and that the fiber R, on t is obtained as follows: cut R along

s; and paste by identifying kv/% and —k+/t on one side of s; and identifying £/t and
—£0+/t on the other side of s, (0 < k,¢ < 1).

2r-deformation of (R, (Uy, z)): For a complex number ¢t € D, = {t € C;|t| < €} we

paste R — s, and {z € C;|z| < €} by the attaching map
KioJ;' : {z€Clz| <€} — 5 — U, — s, C R~ s

Then we obtain a holomorphic family of Riemann surfaces on D,. Note that the
fiber on the origin is R, and that the fiber R; on t is obtained as follows: cut R along
s} and paste by identifying kt and ktes™ on one side of s, and identifying ¢t and
—ftes™ on the other side of s} (0 < k, ¢ < 1).

We apply a m-deformation to each E (a,b,z) of type I, II or III.

Let p; be the point on F(0,1,z) (z € H) coming from z and z + 1, and fix a local -

coordinate z : U,, — C around p; such that ( = 22+ z or ( = 22+ z + 1, where (

is the global comdmate of C as before. When we consider the coordinate (Upl,z) the
line segment s; is transferred onto two parallel line segments with the same length ¢ in
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FIGURE 12. w-deformation of E(O, 1,z € H)

x+t x4+t

112

T+t
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FIGURE 13. w-deformation of E(a, b,z) of type II

(-plane: one is from z to x +t and the other is from z + 1 to £ + 1 +¢. The fiber F; on
t € D, is obtained from E( 0,1,z) by cutting and pasting along the two line segments; F;
is equivalent to E(O, 1,z +t). (See Figure 12. The numbers (1), ... ,(4) indicate where
to paste.) Accordingly we can regard z € H as a local coordinate when a = 0 and b = 1.

Applying a m-deformation to E(a, b, ) of type II in the same way, we see that z is also
a local coordinate if we fix a and b. (See Figure 13.)
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FIGURE 14. n-deformation of E(0,1,z € (0,1)) of type I

We apply a m-deformation to E(0,1,z € (0,1)) of type I in the same way, and it follows
that the fiber F; is equivalent to F(0,1,2+t) when 0 < argt < , and that F} is equivalent
to E(0,1,—z —t) when 7 < argt < 27 (we use the rotation of angle 7). (See Figure 14.)

We also apply a w-deformation to E(a., b, z) of type III in the same way: Fix a local
coordinate z : U, — C around p; such that

2, . 1 o 1

24z —37 < argz < g,
(=q22+z—a Im<argz<m,

2+r-b m<argz<im

We consider the case when a is less than b. It is easy to see that the fiber F; of this
deformation is equivalent to E(a,b,x + t) when argt = 0 or 7. When 0 < argt < T,
we see by cutting and pasting that F; is equivalent to E(a,b —a,z — b+1t). When
™ < argt < 2m and a # 1, we see that F} is equivalent to E(a — (b/a), (b/a),—z + a — t)
where (b/a) is a non-negative integer such that 0 < (b/a) < @ and (b/a) = b mod a.
Note that (b/a) is equal to 0 if and only if @ is equal to 1, and then F; is equivalent to
E(O, 1,-z+1-t) of type L. (See Figure 15.) Accordingly we obtain the following injective
map fE'(a,b,z) : D¢ = ML, when a is less than b, and the inverse mapping of fi:(a,b,z) is

a local coordinate of ML, ; around E( a,b,z).

E(a,b,:c +t) argt =0 or ,
E(a,b—a,z —b+1t) 0 <argt <,

~ t —
IO E(a—(b/a),(b/a),—x+a—t) 7 <argt<2m(a#1l),
E(0,1,—2+1-1) 7 T < argt < 2w (a =1).
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FIGURE 15. 7-deformation of E(a,b,z) of type III (a < b)

Similarly we obtain the following injective map fE(a,b,z) : De - MLy when a is
greater than b, and the inverse mapping of fF;(a be) 18 @ local coordinate of ML, around

E(a,b, ).

E(a,b,z+1) ‘ argt =0 or m,
fEpey(t) = E(a=0,b,—x +a—1t) T < argt < 2m,
E((a/b),b— (a/b),x —b+1t) =< argt < 2.

To E‘(a, b,0) of type IV we apply a %W-deformation: Fix a local coordinate z : U, — C
around pg, the unique zero of wy, such that

23 0 <argz < %,

)P +ae Er<argz<om,
¢= P +a+bdb m<argz< i,
B+ 3r < argz < 2m.

Then the segment s} is transferred to two parallel line segments with the same length ¢3
in (-plane.
By cutting and pasting we obtain the following map fF:(a,b,O) :De = MLy ;¢
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FIGURE 16. Zr-deformation of E(a,b,0) of type IV (a < b and a # 1)



When a < b and a # 1 (Figure 16),

(E(a,b,a+b—1%) argt =0,
E(a—(b/a),(b/a),t* =b)  0< argt < i,
E(a,a+ba+b—1%) argt = 3,
E(a,b, —t%) ir < argt < 2m,
E(a+b,b,a+b+1) argt = Z,
E(a,b-a,a+1%) ir < argt <m,

TBapo®) = 9 E(a,b,a+b+13) argt = m,
E(a - (b/a),(b/a),~t> —b) 7 <argt < %,
| E(a,a+ba+b+13) argt = 3,
lZ?(a,, b, 3) 47 < argt < 3,
E(a+b,b,a+b—t3) argt = 3,
\E(a,b-—a,a-—t3) 3r < argt < 2m.

Whena=1anda<b, -

/

1,b,1+b—1t3) argt = 0,

0,1,t3 —b) 0 < argt < 3,
1,14b,1+b—13) argt=3r,

1,b, —t3) ir <argt < Znm,
1+4+b,b,1+b+13) argt:%w,'
1,b—1,1+1%) ir <argt <m,
1,b,1+b+13) argt =,

0,1, -t —b) T < argt < 3,
1L,1+b1+b+13) argt=3m,
1,b,t3) 3T < argt < 3,
1+b,b,14+b-1t3) argt=3m,
1,b—1,1—13) 3r < argt < 2.

FEas,0(t) =<

:tl\jzftgegjzEzgzgzgzgzgz;ﬂzgage




Whena=b=1,

(E(0,1,1—1¢%)  argt=0,

~

E(0,1,3—-1) O<argt< 3T,
E(1,2,2-13) argt= %7r,
E(1,1,-t%) 3T < argt < 2,

~

E(2,1,2+1t%)  argt = 2m,
E(0,1,1+1%) ir < argt <m,
E(0,1,1+1t3)  argt=m,
E(0,1,—-t*—1) = <argt< j3m,
E(1,2,2+1t%)  argt = 3m,

-~

E(1,1,13) ir <argt < 2,

~

E(2,1,2-1t%)  argt= 3,

o~

(E(0,1,1-#%) 27 <argt<2m.

fE‘(l,l,O)(t) =<

When b =1 and a > b,

(E(a,1,a+1—13) argt =0,
E(a—1,1,83-1) 0 < argt < 3,
E(a,a+1,a+1~-1) argt=1ir,
E(a,1, —t3) ir <argt < 2,
E(a+1,1,a+1+t%) argt=2n,

1 E(0,1,a + t3) i < argt <,
fE(a,l,O)(t) =4 = 3 _

E(a,1,a+1+1%) argt =,
E(a—1,1,-t3-1) 7r<argt<§-7r,
E(a,a+1,a+1+t) argt= 3,

E(a, 1,t3) ir < argt < 2,
E(a+1,1,a+1—1t%) argt= 3,
E(0,1,a —t%) 3r < argt < 2m.

\



When b # 1 and a > b,

S0y () = 4

E(a,b,a+b—t3)
E(a—1b,b,t3 —b)

E(a,a+b,a+b—t3)

~

E(a,b, —13)

| E(a+b,b,a+b+13)
E((a’/b)vb - (a‘/b)aa + ts)

E(a,b,a+b+t3)

E(a —b,b,—t3 — b)
E(a,a+b,a+b+1t3)

E(a,b,t3)

é(a+b,b,a+b—t3)
| E((a/b),b— (a/b),a —t*)

argt =0,

0 < argt < 37,
argt = I,

1 2
37 < argt < 3,
argt = 2,

ir < argt <,
argt =,

T < argt < 3m,
argt = 3,

4 5
3T < argt < 3,
argt = -g-7r,

5

37 < argt < 27.
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For each E( a,b,0) of type IV, the map f Blab0) gives rise to a two-fold branched covering;

FBap0)() = Fiap,0)(—1)-

Then (f Blap0) D.,Z/2Z) gives rise to a local manifold cover of ML, around E‘(a, b,0).
In this way, the set ML, ; is regarded as a complex V-manifold.
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