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VASSILIEV TYPE INVARIANTS OF ORDER ONE
OF GENRIC MAPPINGS FROM A SURFACE TO THE PLANE

ToRU OHMOTO ( _Fj-f ’j\ )

Department of Mathematics, r&if 2 N
Kagoshima University :

ABSTRACT. In this note we give some isotopy invariants of C°° stable mappings from a
closed surface M to R? in the similar way as Vassiliev, Arnol’d and Goryunov [13], [2],
[3], [7]- The detailed argument and applications will appear in the forthcoming paper.

§1 INTRODUCTION

V.A Vassiliev introduced in [13] graded modules of knot invariants ( the so-called
Vassiliev knot invariants or knot invariants of finite type) by using appropriate starti-
fications of the mapping space from S' to R?®. Later, his method was used to produce
Arnold’s invariants of immersed plane curves, denoted by J* and St ( cf. [2], [3] ), and
Goryunov’s invariants of generic mappings from a closed oriented surface into R? ( cf.
[7] ). In this note, we will describe in a formal way Vassiliev type invariants of order
one for 1sotopy classes of Co° stable mappings , that is mostly based on Goryunov’s
description. When the target manifold of mappings is Euclidean space, we will see
‘that such invariants corresponds to 1-cocycles of the“Vassiliev complex” for A-classes
of multi-germs ( graded by A, codimension ). And next, as a concrete example, we
will give Vassiliev type invariants for C* stable mappings from a closed surface to
the plane. Throughout this paper, we assume that all manifolds and mappings are of

class C*°.

Let N be a closed C°° manifold of dimension n and P a C'°° manifold of dimension
p. Recall that f is C*°-stable ( simply called stable ) if there is a neighborhood U of f
in the W topology on C*°(N, P) such that ¢ € U implies that there is h € Diff(V)
and k' € Diff( P) such that g = h'ofoh (i.e., g is A-equivalent to f ). In other words, |
the A-orbit of f is open in C*°(N, P). We shall say that two C* stable maps f and
g from N to P are C* stably 1sotopic ( or simply, isotopic ) if there exist a C*
mapping F' : N x [0,1] — P such that
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(1) for each 0 <t <1, the map F; : N — P sending « to F(z,t) is C* stable ;
(2) Fo = f and Fy = g.
It can be shown that the isotopic relation is an equivalence relation among all C*°
stable mappings in C°°(N, P), and also that any two isotopic C* stable maps are A-
equivalent to each other ( see §2 ). We shall often write by [f] the isotopy equivalent

class of a C'*° stable mapping f.

We assume that N and P are connected. Let M denote the mapping space
C°°(N, P) and T the subset of M consisting of all C> maps which are not C stable.
The complement M —T' consists of all C % stable mappings. When p < 2n+1 and the
codimension o(n,p) of moduli spaces of A-orbits is greater than n +1 ( cf. [9] ), it
turns out that ' can be regarded to have ”"codimension one in M”. In particular, the
regular part ['p.4 of T’ consists of C*> mappings which have only a (multi-)singularity
with codimension one except for C™ stable singularities ( namely, there is a finite set
S of N such that the germ at S, f : N, S — P, f(S) has A.-codimension one, and
also that f|y_g is proper and C'* stable ).

We are interested in numerical invariants of C>° stable mappings. Let R be a
comutative ring with unit. A locally constant function V: M —T' — R is said a
R valued isotopy invariant of C*> stable mappings : for any f,g € M — T stably
isotopic each other, V(f) = V(g). It may be worthy to note that the 0-th cohomol-
ogy group H°(M —T'; R) can be regarded as the module consisting of all G valued
isotopy invariants. Let a C>° stable map fo € M — T be fixed such as it defines an
argumentation € : So(M —T') — R of the singular chain complex S.(M —T'; R), and
then each element of the reduced 0-th cohomology group H°(M — T'; R) corresponds

to an isotopy invariant which vanishes on the isotopy class of f.

Definition 1.1. Assume that R has no elements of order 2. An isotopy invariant
V:M-T — R is called Vassiliev type of order one if V can be extended to a
function M — R satisfying the following condition : there is a locally finite partition
G of I'gey consisting of some cooriented strata {Z:} and non-coorientable strata such
that
(i) V is constant on each stratum of G, and especially, constantly zero over non-
coorientable strata ;
(ii) V is constantly zero over I' — I'peq ;
(iii) ( the difference equation ) for each cooriented stratum Z; and for any family
of C> maps ¢ = ¢¢ : (—a,a) — M, ¢o € E;, which is transversal to Z; with

the positive direction compatible to the coorientation, it holds that

V(E) = V([g+e) = V(lg-e]),  (e>0)
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(iv) ( normalization condition ) V is constantly zero on the isotopy class of the

distinguished map fo.

In particular, according to Goryunov’s terminology [7], we state one more defini-

tion :

Definition 1.2. A Vassiliev type invariant V of order one is called local if each stratum
of the partition of T'g,, corresponds to a singularity type ( i.e., A-equivalent class of
germs ) with codimension one, and the coorientation of a stratum is determined by
the coorientation of the corresponding singularity type ( that is the coorientation of

the parameter space of its versal deformation, see §2 ).

In §3 we will introduce Vassiliev cycle of order one for A-classes of multi-germs ,
and we will see in Proposition 4.2 in §4 that for the case of P = R? there is one-to-one

correspondence between order one local invariants and Vassiliev cycles.

Remark 1.8. (1) We can also define Z, valued invariants of order one, by ignoring the
coorientability of strata in the above definition. (2) Given any Vassiliev type invariants
V and V' of order one, by taking a refinement of both of accosiated partitions of I' gy,
any linear combination aV + bV’ ( a,b € R ) also becomes an invariant of order one.
Thus all Vassiliev type invariants of order one form a submodule of H'(M —T;R).
(3) As in [2], [3], [14], there may be several way to coorient strata by using the data

of configurations of singular point sets of maps in N.

Remark 1.4. In the above, as the mapping space M, we consider the space of all
C'> mappings, but it is also possible to consider the space of C*>° mappings with
several constraint as M ( for example, the space of immersed plane curves with a
fixed winding number [2], the space of plane fronts with a fixed Maslov index (3], the

space of algebraic projective plane curves [15], etc ).

Now let us consider a special case where N is a connected closed surface and P
is the 2-plane R%. Elements of M — T, i.e., C* stable maps f, can be characterized
as follows : f admits singularities only of type (1) fold, (2) cusp (3) double fold (
bi-germ of fold types whose contours are transverse to each other ). Besides, generic
1-parameter local bifurcations of multi-singularities, N x R, § x {0} — R2,0, S being
a finite set, can be also classified. The classification ( for uni-germs, the case where
S is a single point ) is due to Arnold [1], Rieger [10], and Rieger-Ruas [11]. These
bifurcations of apparent contours and images are dipicted in Figure 1 below, and

normal forms are given in Table 1 on the end of §5.
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Figure 1
~ Generic 1-parameter bifurcations of map-germs of the plane to the plane
The brack lines are the apparent contours and the darked areas are the images.

The main result is the following theorem :

Theorem 1.5. The submodule of H'(M — T',Z) consisting of local Vassiliev type
invariants of order one are generated by the following three invariants :

Ic . =C+ S,

Ip:=S+2CF+2FFt +2FF~,

Ir:=2FF~ 4+ CF.

Theorem 1.6. The submodule of HY(M — T';Z3) consisting of local Vassiliev type

invariants of order one are generated by the following three invariants :

Ic;g = C’7 ID;Q = S, IF;Q = CF

Remark 1.7. (1) The choise of fj is of course not unique, and there is no standard

way to choose it. (2) The value of the invariant I¢ is equal to a half of the difference
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between the ( geometric ) number of cusps of f and one of the distinguished map f.
Also the value of the invariant s is equal to the difference between the ( geometric )

number of transverse double folds points of f and one of f;.

§2 PRELIMINARY : MULTI-GERMS AND A-EQUIVALENCE

In this section, we quickly review the most fundamental notions in Singularity

Theory, which will be used later. For the detail, see, e.g., [16], [6], [8], [9], [4], [5].

Multi-germs, deformations and A-equivalences.

Two maps f and g between N and P is said to define the same germ at a compact
subset S of N if there is a neighborhood of S on which f coincides to ¢g. Usually we
are concerned with the case when S consists of finitely many points and f(S) is one
point, and we shall simply write the germ of f at S like as f : N,§ — P,y. In
particular, we often say it @ multi-germ if S is not one point. A deformation of a
multi-germ f : N,§ — P,y with a parameter space R® centered at 0 means a germ
F:NxR*Sx {0} — P,y satisfying that F(z,0) = f(z). We often write F,(z) to
be F(x,p). Let 7 : N x R®* — R* denote the projection onto the parameter space.

Map-germs f : N,S§ — P,y and ¢ : N',S'" — P',y’ are called A-equivalent if
there exist germs of diffeomorphisms ¢ : N, — N'.S" and ¢ : P,y — P'.y' such
that go o = p o f. Deformations F of f and G of g with the same dimension of
parameters are called A-equivalent if F and G are A-equivalent as map-germs by the

diffeomorphism-germs letting the following diagram commute :

(N xRS x {0}) 2= (P xR®(y,0) —— (R%0)

& I

(N x R, " x {0}) 22 (P' xR*, (4/,0)) —=— (R®,0).

Two deformations F' and G of f with the same dimension of parameter spaces are

called f-isomorphic if F and G are A-equivalent by a triplet (R, L, #), where R and

L are deformations of identity maps :dy and idp, respectively.

‘Let F: N xR*,S x {0} — P,y be a deformation of f and ¢ : R.0 — R*0 a
map-germ, then we define the indeced deformation ¢*F : N x RY, S x {0} — P,y, by
g*F(z,w) = F(z,g9(w)). A deformations F of f is called versal if any deformation
G of f is isomorphic to a deformation induced from F. An versal deformation of a
germ f is called miniversal if the parameter space has the minimal dimension in all

versal deformations of f.
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For a germ f : N,S — P,y, let 6(f)s denote the set of C™ vector fields along
f, i.e., germs of C> maps ¢ : N, S — TP such that ((z) € TPy,)(x € N). We set
- O(N)s =0(1n)s, O(P)y = 60(1p)gy} and let tf : (N)s — 6(f)s and wf : O(P)y, —
6(f)s be defined as tf(§) = Tf o€ and wf(n) = no f. The extended tangent space
TA.f is given by

TA.f :==tf[0(N)s] +wflB(P),] CO(f)s,

and the diminsion of the quotient space 6(f)s/T A, f is called A.-codimension of f.

When A.-codimension of f is finite, letting {g;} be a R-basis of §(f)s/TA. f and
set F':= f+3 . u;g; by using a local coordinate systems of P. Then the deformation
F becomes a versal deformation of f. Besides, it also holds that for any versal
deformation F of f, the set of the derivatives 0;F(:= g—z(m, 0)) with respect to the
parameter coordinates form a basis of 8(f)s/T Acf. A germ f: N, S — P,y is called
A.-finite if dim6(f)s/TAcf < oo. It should be noted that every A.-finite multi-
germ is finitely determined, that is its A eqauivalent class is determined by its jet of
finite order, and hence it is represented as polynomial map-germs whose images are

in general position.

Coorientability.

Definition 2.1. An A.-finite germ f : NS — P,y is said to be non-coorientable
if for any miniversal deformation F' of f there is a triplet (R, L, $) which makes
an f-isomorphism from F to itself where ¢ is a germ of an orientation-reversing

diffeomorphism of the parameter space.

Note that the (non) coorientability of A-finite germs are preserved under A-

equivalence, thus we can say that an A-class is coorientable or non-coorentable.

Multi-jets, Transversality and Stability.

Let N be the set of ordered r-tuples of distinct elements of N, denoted by
X =< 1, -+ ,Z, > With 7; # z; for i # j. Let 7y : J(N,P) — N denote the
projection, where J!(N, P) is the bundle of I-jets. Define ,JY(N, P) = (x}) ' [N(],
where 7%, : J(N,P)" — N" is the r fold Cartesian product of 7y with itself. A
C*> mapping f : N — P defines a C* section ,j'f : N — _JY(N, P) sending
<z, 3 > to < JUf(2y),- -+, 5 f(2r) >, which is called the multi-I-jet extension

of f . Here are various characterizations of C* stability of mappings :



61

Theorem 2.2. [Mather; V] Letr > p+1 and | > p, where p 1s the dimension of
P. Let f be a proper C>® mapping from N to P. Then the following conditions are
equivalent :

(1) f 1s C stable;

(2) f is infinitesimally stable, 1.e., tfIO(N)] +wf[6(P)] = 6(f)

(3) r3'f is transversal to every A-orbit in JYN,P);

(4) For any point y € P and any multi-germ fs of f at any finite subset S of

7Y (y) consisting of r or less than r points, we have

0(f)s = TA.fs +mg'0(f)s.

Let F: N x W — P a C* mappings, which is considered as a family of C> maps
from N to P with a manifold W of parameters. Such a family F defines a family of

C™> sections

T NT W o JYN,P),  JLF(x,p) =T Fp(%).

Theorem 2.3. cf. [Mather, V] Let F : NxW — P a smooth family with o parameter
manifold W of dimension s. Then the following conditions are equivalent :
(1) ,jLF 1s transversal to every A-orbit in ~JYN,P);
(2) For every p € W and every finite subset S of N consisting of r or less than r
points, such that F,(S) 1s a single poini, we have

G(f)s = T'AGFP + {61F|u=pa te 7asF|u=p}[E-’;-

A parametrized version of Thom’s multi-transversality theorem are stated as fol-

lows :

Theorem 2.4. cf. [Mather, V] Let © be a A-invariant subset of JYN,P), and
F:-NxW — P a C® mapping as a family of C* maps from N to P. Then F' can
be approzimated by those families G : N X W — P that the pammetrized jet extension
LG N x W — JI(N, P) is transversal to ©.

§3 VASSILIEV CYCLES OF ORDER ONE FOR A-CLASSES

In this section, we describe a formal set-up of the first degree part of the so-called

Vassiliev complex for simple A-equivalent classes of multi-germs of €' mappings (
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of. [12], [4] ). We assume that the pair of dimensions (n,p) satisfies that there are

finitely many A-classes with A,-codimension less than or equal to 2.

For each coorientable A-equivalent classes of multi-germs with A.-codimension 1,

we take a miniversal deformation of a multi-germ representing the class :

F,'ZR"XR,S,‘X{O}—)RP,O, (i:l,---,l).

For each A-class of multi-germs with A.-codimension 2, we also take a miniversal
deformation

G;:R"xR?* S, x {0} - R?,0, (j=1,---,0').

We can assume that every F; ( resp. G ) is presented at each point of S; ( resp. S;
) as a polynomial map-germ. We fix the orientation of the parameter space R of each
germ F;, by which the corresponding class are cooriented. We also fix the orientation
of the parameter space R? of each germ Gj1), although the corresponding class is not

nacessarily coorientable. We simply write (F}):(z) = Fi(z,t) and (G;)p(z) = Gj(z, p).

Then we set as a formal way

CI(AZ’:; := the R-module generated by {Fy,--- , Fi},
C*(Anp) := the R-module generated by {G;,--- ,Gr} ,

We should remark that for each F; the A-class of the induced deformation ¢* F;, where
¢:R,0 — R,01is a germ of an orientation-reversing diffeomorphism, is identified with

—F; as an element in C'(A2™). We don’t require such identification for G;.

Next we shall define an operator ¢ : C 1(./4;’,?1‘5) — C*(A, ). To do this, for every
pairs of F; and G; we define an integer [F; : G,] as follows. Simply, we write ' and
G instead of F; and Gj. Let G : U x W — RP? be a representative of the germ G, U
an open néighborhood of the source points S C R™ and W an open neighborhood of
the origin in R2. We let Wr(G) denote the set consisting of p € W satisfying that
there is a point y € R? near 0 and a subset Sp C é; 1(y) such that the multi-germ
Gp : U,Sp — RP,y is equivalent to F. If Wg(G) is empty, define [F' : G] to be zero.
Otherwise, by the multi-transversality theorem, taking U and W sufficiently small
if nessacary, the closure of Wpr( é) is one dimensional semialgebraic set in W whose
closure contains the origin ( since the closure of a A-finite orbit in a multi-jet space
becomes a semi-algebraic set ). In particular, it turns out that there is € > 0 such
that for any 0 < € < ¢, the circle S}, centered at the origin with radius € is transverse
to Wr(G). According to the fixed orientation of the parameter space of G, we let

the circles be anti-clockwise oriented. Since the class equivalent to F; is oriented,



63

the stratim Wr(G) has cooriented. Thus an intersection index of S! and Wz (G) is
well-defined, and we denote it by [F : G]. Obviously the integer is independent of the
choice of the representative G, and if we take another orientation of the parameter

space of G, the index has opposite sign.

Now we can define a R-homomorphism
l’
6:CY (A R) = C*(Anp;R), by &F = Z[Fi enern
j=1

Definition 3.1. Let ¢ be a non-trivial element of CI(AZ':;,) such that éc = 0, then we
call c a Vassiliev cycle of order one for A-equivalent classes of multi-germs with the

pair of dimensions (n,p) .

In the next section, for such a Vassiliev cycle we will define an invariants of isotopy

classes of generic maps.

§4 INVARIANTS OF ISOTOPY CLASSES OF C*™
STABLE MAPPINGS TO EUCLIDEAN SPACE

In this section we treat with the case that P = RP. As in the previous section
we here assume the pair (n,p) to satisfy that there are finitely many A-classes with
Ae-codiension less than or equal to 2. As in §1, we let M denote the mapping space
C>(N,RP), T the subset of all non-generic ( C* unstable ) mappings, and f; a fixed

generic mapping in M —T.

First, since the target space is a linear space RP?, it is easily seen that the mapping
space M(= C>°(N,RP)) is contractible. In particular, any generic fna.pping f can be
joined to fy by a smooth homotopy 7 : N x I — R? with 7(z,0) = fo(z), 7(z,1)=
f(z), for instance, which can be acheived by fo +t(f — fo). For t € I we simply set
t: N — RP to be the map sending z to 7(z,?). It is convenient to regard a smooth
homotopy as a continuous path in the mapping space M with Whitney C*® topology,
and when we distinguish them, we will often write 7 : I - M (i.e.,7(t) :=1¢ ).

By using the parametrized transversality theorem, we can assume 7 to satisfy that
there is a finite subset A of I such that

(1) at each point t outside A the map 7¢ is a C*° stable mpping ;

(2) at each point t of A there is a point y of R? and S C 7,71 (y) so that the germ |

1; : N, S — RP y is A-equivalent to an oriented class in C I(Afl’:;;).
For a smooth homotopy 7 satisfying the property, we say roughly that the path 7 is

transverse to the discriminant I' . For such a path 7, we define an integer €;(7) to
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be the number ( taking accounts of sign ) of events of local bifurcations of type F;
moving along the path 7. Namely, if the germ 7 at S x {t} is equivalent to the normal
- form of the class F; compatibly on the orientation of parameter lines, we count +1,
and otherwise —1. Summing up the signs at all events, the amount is just €;(7). It is
reasonable to regard €;(7) as the intersection index of the strata of type Fi in I' and
the path 7.

Let ¢ € ker§, a Vassiliev cycle of order one, and assume that c is written as a
linear form Y7_, A;F; where F; are generators of C 1(A?f};) and \; € R. Forc, f and
T, we define an integer I.(f;7) by

I(f;7):= Z Ai€i(T).
i=1

Lemma 4.1. The value I.(f;7) 1s independent of the choice of T.

Proof of Lemma. Take another path 7/ : I — M from fo to f transverse to the
discriminant T. Then we have a continuous homotopy 7 : N x I — RP which is
defined by n(z,t) = 7(z,2t) for 0 <t < 1/2 and n(z,t) = 7'(2,2-2t) for 1/2 <t < 1.
The homotopy 7 is smooth off ¢ = 0 and 1, and we can slightly modify 7 to be a
C> mapping over N x I using the partition of unity if nessesary. Since defines a
continuous loop in M and M is contractible, there is a C> mapping = : VX D? - R?,
where D? is the unit closed disc in C centered at the origin satifying that Z(z, e2™) =

n(z,t).

By the transversality theorem, it can be assumed that the parametrized jet exten-
sion of Z is transversal to all A-orbits of A.-codimension less than or equal to two.
Hence there is a Whitney stratification W of D? satisfying the following properties :

(1) for any point p in the top strata of dimension 2, =, : N — RP is C™ stable;

(2) each 1-dimensional stratum consists of such points p € D? which satisfy that

" there is a point y of R? such that the germ =, : N, 5 — R?, {y}, S C = (y)
is A-equivalent to a class (F}), in C 1(.4,",’:1'.,‘)7 and such a stratum is denoted by
W ;

(3) for each point of the 0-dimensional strata {p1,--- ,ps}, Ep, : N X pp = RP
has a (multi-) singularity equivalent to a class in C*(A, ), denoted by Gj(x)
(k=1,---,s).

We take small disjoint k& discs B(px) (k = 1,--- ,s) centered at py in the interior

intD? transverse to the stratification W. Let 9D? and every 0B(px) be anti-clockwise
oriented. Tt can be easily verified that the intersection index of dD? and W, is equal

to the sum of the intersection indices dB(px) and W, over all k = 1,--- ,s. Hence,
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by definitions, we have that €;(n) = >, £[F; : Gjx)] where the sign & depends on
the fixed orientation of the parameters of Gj(xy. Thus,

I(f;7) - L(f;m) = Z Ai(ei(r) = Q(T'))
— ZA €(n) |
= Z/\ Z:}: [Fy : G
= Z:tz/\ [Fi : Gj)

= z + (the coefficient of é¢ with respect to G )) = 0.

This completes the proof.

In the same way of the above proof, we can see that the integer I.(f;7) depends
only on the isotopy classes of f and fy. So we shall write it by I.(f; fo) or simply
I.(f). This defines a homomorphism I : keré — H°(M —T; R). In particular, we

can show that the following proposition :

Proposition 4.2. For each cycle c € ker 8, I.. is an 1sotopy tnvariant of local Vassiliev
type of order one described as in §1. Furthermore, when dim N is greater than 1, every

order one local inariant can be expressed as I. for some c € ker é.

The second assertion comes from the fact that the subset of M consisting of C*°
maps of N to R? which have singularity of type F; ( the closure of the strata of I'rey

corresponding to the class F; ) is connented.

§5 A-CLASSES FOR MAPPINGS FROM THE PLANE TO THE PLANE AND THEOREMS

From now on we treat with C* mappings from a closed surface N to 2-plane R?.
The lists at the end of this section show all A-equivalent classes of multi-germs from
the plane to the plane with A4.-codimension less than or equal to 2. The clssification
of uni-germs is due to Rieger [10] and Rieger-Ruas [11], and we use their notation for
uni-germs. For 1-parameter deformations, we consider A-equivalent classes of oriented
deformations. In the list, every multi-germ N, S — P,y, S = {pk}x, is described as
the set consisting of k£ germs R",0 — RP 0 taking local coordinate systems of N

centered at p; and a local coordinate system of P centered at y.
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Coorientation.

As to the coorientation, we define the orientation of the parémeter line as the
direction such that the number of cusp points and double fold points increase for
uni—germs and bi-germs, and the number of sheets covering the “vanishing triangle”
increases for triple fold points, Ty and 73. Figure 1 in §1 depicts local bifurcations of

apparent contours and shadows ( the image ) of the map in these direction.
Vassiliev complex.

The module Cl(Agj:j; Z) ( and C'( A7} Zy) ) is generated by ten elements
Cy,S,CF* FFt FF; FF, Ty,
and C?(Ajz 2;Z) ( and C*( A, 3;Z3) ) is generated by

[6%], (421, [115), 123, 1131, €4, 5,Qe, FFT ,FR™ ,FF, ,CC,FC,CFx 4, .

Proposition 5.1. The coboundary operation 6 : C'( 3:’2‘2) — C*Ay9;Z) is de-

termined as follows ( in the case coefficients in Zy, these equalities valid modulo 2 )

6Cr =47+ 45, 6C- = —-[47] - [45] - 2[115], &S =2[11s],
SFF* = —[115)4+ FC, 6FF; = —Q;, SFF = Q- + FC,
§CFT=Cy+C_+S—FC, 6CF~=-Cy-C_—-S§-FC,
6Ty = ~FFy - _ FF,” +CF, + CFs,
§T- = -S+FF, +FF, +CF+ CF,.

This proposition follows from direct computation. Solving the equation éc = 0,
we have Theorem 1.5 which is introduced in §1. In the case of coefficients in Z,,
considering the equalities in (2) of the above Proposition modulo 2, we get Theorem

1.6.



Table of the Classification

Stable-germs

Type normal form f(z,y)
regular (z,y)
fold (z,y*)
cusp (z,y° + zy)
doublefold (z,y%), (11'27 y')
1-parameter deformations
Type versal deformation F(z,y,a)
C*(42) (z,y° £y(2* — a))
S. (5) (z,y* + 2y — ay?)
CF* (2,93 +zy), (ty'” —a,z')
FF* (29" +a), (2,2 +y")
T01T1 (I‘+y2’L‘ ,_y2 +a')7(fclvy’2)7 (:Fl"ﬂay")
' 2-parameter deformations
Type versal deformation G(z,y,a,b)
45 (2, 4% £ 2y + az?y + bry)
6+ (z,2y +4° £y + ay® + by?)
11 (z, 2y + y* +¢° + azy + by)
12]’21 (2% + y® + ay,y* + 2% + bx)
II‘zl,’; (¢® —y? + 2° + ay, zy + ba)
C* - C*and (z'* + b,y')
S S and (z'* + b,y')

Qs (z,2° —az +y*), (2',£y"” +1)
F"F+ (x7x2 +y2),(m',y'2 +a), (1,!!2 +b,y")
F~F0_, FF, (z,2? £ y?), (2, Fy'’ + a), (" +b, y'")
cC (z+a,y° +zy), (v° +2'y', 2" +b)

FC (¢ +a,4® +2y), (2",9° +az+b)
C~FEI,62 (z,v° +zy), (' + ay'’r — ey’ + a),
(61, € = ﬂ:l) (:CH + 62y112’ " + €2yu2 + b)
f‘g,fl T0,1 and (wm + ym2’ —z" 4 ym2 + b)
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