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Weights of % distribution for smooth or
piecewise smooth cone alternatives f
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Abstract

We study the problem of testing a simple null hypothesis on multivariate nor-
mal mean vector against smooth or piecewise smooth cone alternatives. We show
that the mixture weights of the %2 distribution of the likelihood ratio test can
be characterized as mixed volumes of the cone and its dual. The weights can be
calculated by integration involving the second fundamental form on the boundary
of the cone. We illustrate our technique by spherical cone, cone of non-negative
definite matrices, and two other cones which were not treated before. '

Key words: multivariate one-sided alternative, one-sided simultaneous confidence
region, mixed volume, second fundamental form, volume element, internal angle,
external angle, Gauss-Bonnet theorem, Shapiro’s conjecture.

1 Introduction

We first state our problem and then give outline of the paper. In Section 1.2 we prepare
basic material from convex analysis.

1.1 The problem

We consider the problem of testing a simple null hypothesis on multivariate normal mean
vector against a convex cone alternative in the following canonical form. Let Z € R? be
distributed according to the p-dimensional multivariate normal distribution with mean
vector p and the identity covariance matrix N,(u, I,) . Let K be a closed convex cone
with non-empty interior in R? . Our testing problem in the canonical form is

Hy:4u=0 vs. H:peK. (1

The main objective of this paper is to study the null distribution of the likelihood ratio
statistic for K with smooth or piecewise smooth boundary using techniques of convex
analysis and differential geometry.

In addition to (1) consider a complementary testing problem

Hi:pe K vs. Hy: € RP. (2)

t Currently submitted for publication.
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In describing the complementary testing problem we need to use the dual cone K* of
K
K*={y|(y,z) <0, Vz € K},

where (, ) denotes the inner product. =
For z € RP let zx denote the orthogonal projection of z onto K and zg- denote
the orthogonal projection of £ onto K* . Then the likelihood ratio test of (1) is equivalent
to rejecting Hy when
| 2 = l1Zx (3)

is large and the likelihood ratio test of (2) is equivalent to rejecting H; when

’ (4)

is large. We consider the joint distribution of ¥2, and %2, under Hj .

The statistics ¥%; and %2, in (3) and (4) are called chi-bar-square statistics, and
known to have a finite mixture of the chi-square distributions when Hj is true. In this
paper we call the mixing probabilities the weights. Generally, it is not easy to derive the
explicit expression of the weights. Here we list some examples of cones whose weights are
known explicitly or can be easily calculated numerically. The following are such examples
of practical importance:

Xi2 = | Zx-

Ki = {ulm < < pp}
Ky = {plm<p, j=2,...,p}
O L )

K, and K, are defined by the partial orders referred to as simple order and simple tree
order, respectively. For these three cones the null hypothesis is usually p; = -+ = pp,
the hypothesis of homogeneity. However, the testing problems can be easily reduced to
the canonical form in (1). The corresponding weights are given by recurrence formulas. In
particular, the weights for K; are known to be expressed in terms of the Stirling number
of the first kind. The weights for K3 are obtained as the reverse sequence of those of
K . See Section 3 of Barlow et al. (1972), Section 2 of Robertson et al. (1988), and their
references for the weights of these cones as well as the related statistical inference. See also
Bohrer and Francis (1972a, b) and Wynn (1975), in which ¥? distributions are treated
in the context of constructing the one-sided Scheffé-type simultaneous confidence regions.

The cones K;, K, and K3 above are polyhedral, i.e., the cones defined by a finite
number of linear constraints. The following are examples of non-polyhedral cones whose
weights are known:

Ky = A{plm2|pllcosd} |
Ks = {M :pxpsymmetric| M is non-negative definite }.

K, is the spherical cone which is smooth in the sense of Section 2.2 with no singularities
except for the origin. Kj is a piecewise smooth cone in the sense of Section 2.3. In
Section 2.4 we show that the singularities of K35 exhibit a beautiful recurrence structure.
The weights for K; and Kj were given by Pincus (1975) and Kuriki (1993), respectively.
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For the polyhedral cone, the geometrical meaning of the weights is clear, since the
weights can be expressed in terms of the internal and external angles. Compared with the
polyhedral cone, the meaning of the weights for non-polyhedral cones is not clear. In this
paper we clarify the geometrical meaning of the weights in the case that the boundary of
the cone is smooth or piecewise smooth.

In Section 2 we prove our basic theorem relating the weights to the mixed volumes
of K and its dual K*. For smooth or piecewise smooth cones we express the mixed

~volumes as integrals involving the second fundamental form on the boundary of the cone.

We apply our technique to the cones K, and Kj; and clarify the geometrical meanings.
Also, we obtain the weights for two other cones which were not known.

Throughout this paper by “smooth” we mean class C?.

1.2 Preparation from convex analysis

Here we summarize basic results from convex analysis. These results are taken from
Webster (1994). Let U = U, be the closed unit ball and K be a convex set in RP . For
A >0, X-neighborhood of K or outer parallel set of K at distance )\ is defined as

(K)y = K + \U,

where the addition is the vector sum. The Hausdorff distance between two non-empty
compact convex sets K, K, is defined by

p(Kl,Kg) = 1nf{)\ >0 | K, C (Kz))\ and K, C (Kl))‘}

Endowed with the Hausdorff distance, the set of compact convex sets becomes a complete
metric space (Section 1.8 of Schneider (1993a)).

A polytope is the convex hull of a finite number of points. Any compact convex set
can be approximated by polytopes. '

Lemma 1.1 (Theorem 8.1.6 of Webster (1994)) Let K be a non-empty compact con- -
ver set in RP and let € > 0. Then there exist polytopes P,Q in RP such that
PCKCQ and p(K,P)<e, p(K,Q) <.

We deal with convex cones which are not bounded. However uniform convergence on
any bounded region is sufficient for us because we are concerned with the standard normal
probabilities of the cones. Let K be a convex cone and denote K,y = KNAU . In view
of the fact that polytopes are bounded polyhedral sets (Theorem 3.2.5 of Webster (1994))
the next lemma follows easily from Lemma 1.1.

Lemma 1.2 Let >K be a closed conver cone in RP and let A > 0, € ‘> 0. Then
there ezist polyhedral cones P,Q in RP such that P C K C Q and p(K(), Py)) <

€& p(Kpy, Q) <e.

Now we introduce the notion of mized volumes of two compact convex sets K, K»
in RP. Let vp(-) denote the volume in RP and consider v,(vK; + AK) for v,A2>0.
Mixed volumes v,_;;(Ki, K5), i =0,...,p, are defined implicitly by the following lemma.
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Lemma 1.3 (Theorem 6.4.8 of Webster (1994)) vp(vK1+AK3) is a homogeneous poly-
nomial of degree p in v and A with non-negative COeﬁFicients, i.€.,

. ’Up(VKl + )\Kg) .= vI/p’Up 0(K11 Kg) + pr_lA'Up_-_l 1(K1, Kz) + -0+ /\pUO,p(Kh Kg) :
p
= Z (p> Vp z)‘Z'Up—z z(KlaK2)

z 0 L
where vpo(Kl,Kg) = vp(Kl) and ’Uop(Kl,Kg) = vp(K3) .

In the particular case v =1 and K, = U , i.e., when we are con51der1ng the outer par-
allel set of K7, vp_;;(K1,U) is called quermasszntegral of K; and ()v,p {(K1,U) [wp—
is called intrinsic volume of K; , where

7d/2 .
YT TE ) | ®)

is the volume of the unit ball U, in RY. It is also known that mixed volumes are con-
tinuous in K, K, with respect to Hausdorff metric (Theorem 6.4.7 of Webster (1994)).

2 Weights of x? distribution as mixed volumes

In this section we first prove our basic theorem which states that the weights of the
x> distribution are the mixed volumes of the convex cone K and its dual cone K*.
Then we apply the basic theorem to the case of smooth convex cone using the fact that
mixed volumes can be evaluated as integrals involving the second fundamental form on
the boundary of K . Our result for the case of R? is very easily stated and connection
to the classical Gauss-Bonnet theorem will be discussed. We illustrate our result for the
smooth cone with the cases of elliptical cone in R3 and spherical cone in RP . Finally
we discuss the case of “piecewise smooth” cone. Full treatment of piecewise smooth cone
is needed to discuss the cone of non-negative definite matrices in Section 2.4.

2.1 Basic theorem

Here we prove our basic theorem stating that the weights of %2 distributions are mixed
volumes. Since the concept of mixed volumes applies equally to polyhedral as Well as
smooth cones, our Theorem 2.1 covers both cases.

Theorem 2.1 Consider the testing problems (1) and (2). Let Kqy=KNU and K{}, =
K*NU and let vp_i,i(K(l),K(*l)),z' =0,...,p, be the mized volumes of K1) and K
Then under H,

Vp-ii (K1), K1)

Wilp—i

P
P(x31 < a,%3 <b) = Z (p)

]

Gp-i(a)Gi(b), (6)

where w, 1is the volume of the unit ball in R given in (5) and Gy(t) is the cumulative
distribution function of chi-square distribution with q degrees of freedom.
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Proof. Let P,,n=1,2,..., be asequence of polyhedral cones converging to K in the
sense of Lemma 1.2. For a given point =z € RP let zp, denote the orthogonal projection
onto P, . Then it is easy to show that zp converges to zx . At the same time the dual
cone P; converges to K* and the projection zps converges to zg-. Since pointwise
convergence implies convergence in law we have

P(h<axe<h) = P2’ < a2’ <b)
| = Jim P(IZe.I < a1 Z5; I < 1), )

In view of the continuity of the mixed volumes, (7) shows that it is enough to prove our
theorem for polyhedral cones.

From now on let K be a polyhedral cone. In this case the weights of ¥? distribution
is well understood in terms of the internal and external angles. Therefore we only need to
verify that these angles can be expressed in terms of mixed volumes. Let F be a (closed)
face of K and let 3(0,F) and +(F,K) be the internal angle and the external angle.
See the Appendlx for precise definition. Then it is well known that the joint dlstnbutlon
of %3, and X2, is a mixture of independent chl-square distributions

P(x5, < a, X1 < b) = pr—iGp-i(a)Gi(b)'

=0

The mixture weight is expressed as

Y. B0,F)Y(F K),

FeF(K)
dim F=d

where F(K) is the set of faces of K and dim F' is the dimension of the affine hull of
F (Bohrer and Francis (1972b), Wynn (1975)).

Let F* be the face of K* dual to the face F of K. Then dimF* =p—dimF,
and F is orthogonal to F*. Consider the orthogonal sum F @ F* . For different faces
F|, F, , interiors of the sets F, & Fl* , Fo @ Fy are disjoint and R” is covered by these
sets

RP= |J FoF
FeF(K)
(Lemma 3 of McMullen (1975), Wynn (1975)). Then

FE}'(K)
U (FeF*)Nn(vKu + )\Ka))
FeF(K)
= U FnvlU)e (F*n ).
FeF(K)

Therefore : _
vp(VK 1y + )\K{l)) = Z v((FNvU)e (F* N AU)).
FeF(K)
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Because of the orthogonality

Cw(Favl) @ (F nAU) = wFnwvl) xu_g(F*NAU)
V3wyB(0, F) x WP ~%w,_q4v(F, K),

where d = dim F' . Therefore

WK 4 MK =3 5 v, 480, FYy(F,K)
d=0dim F=d
and :
(f) Vp-ii (K1), K(yy) = wiwp—i dimFZ:p—iﬂ((], F)y(F, K) = wip—i X Wp—i,
or

‘ (P) 'Up—i,i(K(lefl))
Wp—i = | .
] w_iw,,_i
Therefore (6) holds for polyhedral cones. This proves the theorem for general cones as
well by the argument given at the beginning of the proof. [

Remark 2.1 The argument of approzimating a non-polyhedral cone with a sequence of
polyhedral cones is also found in Theorem 3.1 of Shapiro (1985).

To characterize the set vK(1) + AK(j) the following lemma is useful.

Lemma 2.1 Let K be a closed convez cone in RP and K* be its dual. Then for
v,A>0, :
vKay + MK = (K + \U)N(K* +vU).

Proof. Note that vKy) = v(KNU) = KN (wWU) and AK{y = K* N (AVU). Now
suppose that £ € KNvU and y € K*NAU. Then z € K, y € A\U and z+y €
K + AU . At the same time z € vU, y € K* and z+y € K*+vU. Therefore
z+y € (K+ MU)N(K*+vU). This implies

(KNvU) + (K*NAU) C (K+AU)N (K* +vU).

To prove the converse let z € (K + A\U) N (K* +vU) . Since z € K* + vU there
exist z and y such that z =z +y and z € K*,|ly|| < v. Write z = 2x + 2k~ and
Yy = Yk + Yk~ . Then

? = [lyxll®

y-||> < |lyll® <2

lzkl® = llz— 2k
= lwl* -1

Therefore zx € K NvU . Similarly ZK* € K*N AU . Hence z = zg + zx~ € (KNvU) +
(K* N AU) and this implies

(K‘+ M) N (K*+vU) C (KNwU)+ (K* N AU).
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In evaluating mixed volumes, the p -dimensional volumes up0 (K1), K1) = vp(K(1)
and vop(Kq1), K(1)) = vp(K(;)) have to be evaluated individually. Other mixed volumes
turn out to be easier to evaluate. Consider

(WK + AK{) N (vK()C N (AKG,)° (8)

where A€ is the complement of A. By Lemma 2.1, z € K,& K* belongs to the set
(8) if and only if ||z — zk|| < A and ||z — zg«|| < v, i.e,, z is not more than X
distant from the boundary surface 0K of K and |zk| < v. Therefore the evaluation
of mixed volumes is reduced to the evaluation of quermassintegrals, or more precisely, the
volume of “local parallel sets” defined below in (9). In the case of polyhedral cones, the
evaluation reduces to the evaluation of lower dimensional internal and external angles.
On the other hand in the case of the smooth cone the evaluation reduces to 1ntegral of
principal curvatures on 0K .

2.2 The case of smooth cone

One of the main objectives of this research is to characterize the weights of ¥? distri-
butions for cones with smooth boundaries. Although the characterization by the mixed
volumes in Theorem 2.1 applies to smooth cones, the definition of mixed volumes is not
necessarily easy to work with for computational purposes. Here we can use the result
that the volume of local parallel set of a smooth cone K can be expressed as an integral
of principal curvatures on 9K . See Section II1.13.5 of Santal6 (1976), Section 2.5 of
Schneider (1993a), or Schneider (1993b). We summarize the result below.

Let K be a closed convex set with boundary 0K . For a relatively open subset S
of 0K the local parallel set of S at distance A is defined as

ANK,S) ={z | zx € S and 0 < ||z — zx|| < A}. 9)

Assume that dK is of class C?. Let H = H(s) be the positive semidefinite matrix
of the second fundamental form at s € K with respect to an orthonormal basis. The
principal curvatures Ki,...,k,—1 are the eigenvalues of H . Denote the j-th trace of
H ,ie., the j-th elementary symmetric function of the eigenvalues of H , by

ter:tI'jH(S)Z z K;il""“;iﬂ j:]-""ap_]-’ (10)
1< << <p—1

troH = ].,

aﬁd let ds denote the (p — 1 dimensional) volume element of 0K . Then we have the
following lemma.

Lemma 2.2 (Steiner’s formula, (2.5.31) of Schneider (1993a))

A)\ K S zp: /Stl'j__lﬂ('S)dS.v ‘ (11)
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- We now apply Lemma 2.2 to our problem. Let K be a closed convex cone with
smooth boundary 0K and tr;H(s) be defined by (10) on OK . Consider the base set

S={s|s€dK and 0 < ||s|| < v},
then A)(K,S) is equal to the set (8) except for the boundary, i.e.,
intAx(K, S) = int((vKq) + AK()) N (vK@)° N (AK{)©).

Note that for each s € 0K , 0K contains a half line starting at the origin in the direc-
tion of s . Therefore the principal curvature for the direction s is 0 and tr,_;H(s) =0.
Other principal directions lie in the tangent space T5(8K NA(IU)) , where | = ||s|| . Fur-
thermore because of the cone structure the integration on K can be reduced to the
product of integration on OK NAU and the 1-dimensional integration with respect to .

Theorem 2.2 Let K be a closed convez cone whose boundary 0K is of class C? except
for the origin. Then the mized volumes vp_ii(Kq), K(y)), 1 <i <p—1,1in (6) of Theorem
2.1 are expressed as .

P . -1

—_— tr;_1H(u)du,
zp—i)/almau ri-1H (u)du

where du denotes the (p —2 dimensional) volume element of 0K N AU .

Proof. Let [ =||s|| for s € 8K . The half line in the direction of s and Ts(OKNA(IU))
are orthogonal and the volume element of 0K NO(IU) is IP~2du . Therefore

ds = dl x (IP2du).

The principal curvatures are inversely proportional to [, i.e., ki(s) = &i(u)/l, where
u = 8/l . Therefore

tr;H(s) = tr; Hw)/lF, 1= ||s|l, u=s/L

Then -

v [p-2 yP=i
/Strj_lH(S)dS = /0 l]—__—l—dl /MmBU trj_1H(u)du = g /3KnaU trj—1 H(u)du.

By (11)

(k.5 =T 2L H(w)d
v (£, = - - tri_ u)du.
P 2500 3) Joxrar "7
Therefore
p : 1 ,
Nvy—i i (Kay, Kiyy) = ——/ tri_1H(u)d
(J)vp 33K Ky) = 5675 forenan 97 ()

and this proves the theorem. : 1
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Remark 2.2 Theorem 2.2 is stated in terms of K . However because of the dualzty of
K and K*, equivalent statement can be made in terms of K*

Remark 2.3 (The case of R® and the classical Gauss—Bonnet theorem)
For p =23 the mized volumes take particularly simple forms. Let

P(X51 < 6, X3, <b) = wsGs(a) + szz(a)Gl(b) + w1G1(a)Ga(b) + woGs(b).
Then clearly

total area of K NoU * total area of K*NoU

w3 = Wo =
A7 ’ 47 ’

where 4 is the total surface area of the unit sphere BU in R®. By Theorem 2.2

1 : 1
wy = / troH (u )du— / ldu
2wiws Jarnau - 47 Jakneu

total length of the curve 0K NoU
: Ar B

and considering K*

total length of the curve 0K* N oU

wy =
41

On the other hand by Theorem 2.2

1 B
U= /oKnoU ro(u)du,

where k(u) = tr H (u) is the geodesic curvature of the curve dK NAU on OU . Since
the Gaussian curvature is 1 on OU , the classical Gauss-Bonnet theorem states

2r = . ea of K .
s /o ow k(u)du + (total area of K NoU )

Therefore .
o . L i

which is a particular case of Shapiro’s conjecture that ¥-F_(—1)'w; = 0 (Shapiro (1987)).
Remark 2.4 Shapiro’s conjecture is known to hold for polyhedral cones. Because of the
continuity of mized volumes Shapiro’s conjecture holds for smooth or pzecewzse smooth

cones as well.

Example 2.1 Elliptical cone in R3

K = {(Hl,ﬂ2aﬂ3) I /J‘lz Z (Ha'z)2 + (——)27 1 2 O}a a’ab > 0.
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This is a special case of Remark 2.3. Using a local coordinate system, 0K N 9oU is

expressed as
{s(6) € R* | 0< 0 < 2r},

where

1
1
s(0) = acosf |.
(©) ‘/1+a260520+b25m29(bsinO)

The total length of the curve 0K NOU is

/027r ”% |d6 = £(a,b),

where

d9,

f(a,b) = / 2r v/a?b? + b2 cos? @ + a?sin” 0
7 Jo 1+a2cos?6+ b2sin’6
and therefore we have w, = f(a,b)/4m, wy = 1/2 — f(a,b)/4r . The dual of K is

K* = {(1m1, 2, pi3) | 1 > (apa)® + (bss)?, pa < 0},
and hence we have wy = f(a™),b)/dr , wy =1/2 — fla=t,b1)f4m

Example 2.2 Spherical cone in’ RP (Pincus (1975), Akkerboom (1990))

s
K={p= (b1, ) | 1 2 |lpsll cos v }, 0<T/J<'2‘-

This is the spherical cone K, mentioned in Section 1.1. Let
F(z) = F(z1,...,7p) = a3sin®y — (23 + - - - + z3) cos’ ¢. (12)
Then the boundary 0K of K can be written as
0K = {z | F(z) =0, z; > 0}.

By our Theorem 2.2 we consider a point s € 9K, ||s|| = 1. Because of spherical symmetry
with respect to za,...,z, we take s® = (cost,sin%,0,...,0) as a representative point.
The values of tr;H(u) are the same for all v € 0K N U . The outward unit normal
vector at s’ is easily seen to be ,

N, = (—sin,cos9,0,...,0).
Consider the rotation of coordinates (x1,...,%p) = (t1, ..., Up)

Uy = —sin¢ I +COS’¢ Ta,
Uy = cosY x1 + sinyY xo,

U; = Ty, i=3,...,p.
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Note that wu, is the coordinate for the direction of s°. Substituting the inverse rotation

Ty = —sint u; +cosvY uz, Ty =cosy u; +siny up into (12), K can be written as
F = zisin®¢—zjcos’y — (g3 + - + z2) cos® ¢
= —ulcos2y — ujuysin2¢p — (uZ + -+ + ul) cos’ (13)
0.
The particular point s° expressed in the new coordinates is u° = (0,1,0,...,0). Now
we want to calculate the elements of the second fundamental form ' '
62’lL1 .
— 1, >2. 14
Fupu, 92 (14)

Recall that s° itself is the principal direction with zero principal curvature and u, is
the coordinate for this direction. Therefore actually we only need to calculate (14) for

i,7=3,...,p. (Or one can easily verify that derivatives with respect to u, areindeed 0.)
Now regard (13) as an equation determining u; in terms of us,...,u, . Taking partial
derivative of (13) with respect to u;, i > 3, we have ' '
OF 0 0 .
0= B, = —2(%1—u1 cos 29 — BZ: ug sin 29 — 2u; cos? .
Differentiating this once more we obtain
Bzul » Bul 8u1 62U1
0= -2 08 21) — 2————cos 29 — sin 2¢) — 26;; cos® ¥,
6’&5an vie ¢ auz 6uj w 6uz~8u]~ Uz Sin 1/) i€ 1/)
where §;; is the Kronecker’s delta. Evaluating this at u® we obtain
1 1
H(®) = diag (0, ——,...,—— ).
(w) ' g( tany tanz/)l)
p-2
Therefore ) .
p—24 A
tr; H(u®) = —
r] ('LL ) ( ] ) tan’ w

As mentioned earlier this value is the same for all u, ie., tr;H(u’) = tr;H(u), Yu €
0K NoU . Furthermore

OKNOU = {z | z; = cos v, :c%—}----—i—xf,: 1 — cos® 9 = sin® )}
Therefore the (p — 2 dimensional) total volume of K N AU equals the total surface
volume of sphere of radius sinty in RP7!, i.e.,
vp—2(0K NOU) = vp_5(8(sinpU,_1)) = (p — 1) sin® 2 ) wp_;.

Combining the above results the weights of ¥? distribution are

p .. * _ 1 p— 2 1 B -
(Z_)’l}p~z,z(K(l)a K(l)) - ’L(p _ Z)(’L _ 1) —tani‘l ” X (p ]_) $1n Y Wp-1
— ! ) ] »
(p 1?-'wp_1 Sinp—z—l w ,COS‘L—I w (15)

il(p —1)!
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Further manipulation of (15) shows that

LK K 1(p—2\B&L) o
’lUp—iz(p)Up ( @ ):1<p 2)——( 2 2)) sin? "1 ¢ cos’ ! 9,

1 WiWp—g 2

which coincides with the result giv;eil by Pincus (1975). "

Remark 2.5 After completing this paper in a form of discussion paper, we found that
Lin and Lindsay (1995) derived essentzally the same result as Theorem. 2.2 using the for-
mula in Weyl (1939). They also calculated the wezghts for the spherical cone as an exam-

ple.

2. 3 The case of p1ecew1se smooth cone

Here we con51der an 1ntermed1ate case. between the polyhedral cone and everywhere
smooth cone, namely a cone K whose boundary 8K consists of both smooth surfaces
and edges. To fix ideas let us consider a generalization of Example 2.2.

Example 2.3 Let K be defined as

K={peR|um>|ullcosyy and py > |ullcosys},

where

cos? 4 cosP ey < 1, 0 < < % i=1,2, p>3.
In this example K K n K2 where

Ki={nlm> ||.U||C031/%} i=1,2,

are cones of Ezample 2.2. Note that OK “is no longer smooth at the common boundary
0K, NOK, . At a point s of 0K, NOK, , the outward unit normal vector is no longer
unique and contribution to the mized volume from s € 0K1NOK, can not be expressed as
an integral with respect to the volume element of the p—1 dimensional surface of OK .

Let K be a convex set. For each point s on the boundary 0K of K, the normal
cone N(K,s) is defined as .

N(K,9)= (| (0.2 =) <0, vz € K) (16)
(see Sectlon 2. 2 of Schnelder (1993&)) Define o
m(aK_) = {s € 0K | dim N(K,s) =m}, m=1,...,p.
Then , a2
0K = D1(9K) U --- U Dy(9K).

In Example 2.3, Dy(0K) = relint(dK; N 0K>) , and D(0K) consists of 2 relatively
open connected components relint(0K;NOK) , relint(0K>,NIK) , where relint(-) denotes
the relative interior. D,(0K) = {0}, and other D;’s are empty. With Example 2.3 in
mind, we make the following assumption on convex-set K and we call such K piecewise
smooth.
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Assumption 2.1 D, (0K) isa p—m dimensional C? -manifold consisting of a finite
number of relatively open connected components. Furthermore N(K,s) is continuous in
s on Dp(0K) in the sense of Lemma 1.2.

Let s € Dp(0K) . In a neighborhood of s we take an orthonormal system of vec-
tors e1,...,€p_m, Np_m41,...,Np where e;,...,e,_,, constitute an orthonormal basis
for the tangent space T;(D,,(0K)) and Np_my1,..., N, constitute an orthonormal ba-
sis for the orthogonal complement Ty(D,,(0K))* of T,(D,(0K)). Clearly N(K,s) C
Ts(Dm(0K))* .

Let

Hijo, 4,j=1,...,p—m, a=p-—m+1,...,p,

be the element of the second fundamental tensor with respect to the chosen coordinate
system. For a unit vector v in Ty(Dy,(0K))*

P

v= ). N, |v]| =1,
a=p-m+1 '
define »
H,;j(s, ’U) = Z ’l)aHija.
a=p—m+1
Furthermore let
ter(S,’U)—_— Z ﬂil(s’.v)...h"i‘j(siv)7 j=1,...,p—m,

1<ii<-+<i; <p—m

where £,(s,v),...,Kkp—m(s,v) are eigenvalues of the (p—m) X (p—m) matrix H(s,v) =
(Hij(s,v)) , i.e., the principal curvatures against a particular normal direction v at s.

We now generalize Lemma 2.2 to the case of piecewise smooth convex set. We use the
same notation as in Lemma 2.2

Theorem 2.3 Let K be a precewise smooth closed convez set satisfying Assumption 2.1.
Let dsy_r, denote the (p—m dimensional) volume element of Dp(0K) and let dvg,—1
denote the m — 1 dimensional volume element of the surface OU,, . Then

B(M(K,S) = 3 3 ¥

‘]- tI‘j_mH(Sp_m, 'Um—l)dvm——l] dSp_m.
m=1j=m

/San(aK) [ /N(K,sp_m)naU
(17)

For a sketch of the proof see the Appendix. From Theorem 2.3 we obtain the corre-
sponding result for our problem.

Theorem 2.4 Let K be a closed convex cone satisfying Assumption 2.1. Let dup_m—1
denote the (p—m—1 dimensional) volume element of D,,(0K)YNOU, m=1,...,p—1.
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Then the mized volumes v,—;i(Ka), K(yy), 1 <1 < p—1, in (6) of Theorem 2.1 is
expressed as , -

p . 1
(Z) Up—i,’i(K(l)a K(l)) =

i(p— 1)

v mzz:l /D - [ /N P tr;_m H (u-p‘_m_l,vm'_l)dvm_l] dtp—m—1.
(18)
Proof. It is easy to show that |
- N(K,s) = N(K,u), IL=|s|l, u=s/l.
As in the proof of Theorem 2.2 ‘
trj_,,;H(s, v) = trj_pmH(u,v) /™.
Therefore in (17)
t7j—mH (Sp—ms Vm—1)dUm—-1

1

[—m /N(K,up_m_l)ﬁaU

~/N(K,sp_m)ﬂ(9U
t‘rj—mH(up-—m-—la vm—l)dvm—l .
Moreover

dsp—m = dl X ("™ “dup_m_1).

Therefore for S = {s|s € dK and 0 < ||s|]| < v}

T —mH (Sp—m s Vm—1)dUm—1 | dSp—
/;an(aK) [/N('K’,s,,-m)ﬂBU rJ‘mv (Sp my Um 1) Um 1] ‘SP m

v R . . R
= 'l"‘j“ldl/ / ' 8 —n H (Up—m—1, Um—1)dVm—1 | Uy —
/o Dm(aK)ﬂaU[ N(K tp—m—1)N0U j-mH (Up-m—1, Um .1) 1]. p-m-1

Vp _j

: P __'j /Dm(aK)naU [/N(K,up_m_l)naU trj—mH (Up—m-1, vm—l)dvm—l]—dup-—m—l.-

It follows that
4 p )\.7 I/p_j

UP(A)\(K7 S)) = Z Z

X tl"_mH —m— ,’U _ d’um_ du —m—
/Dm(aK)naU [/N(K,up_m_1)naU J (Up m—1;Ym 1) 1] D 1

and this proves the theorem. =~ — . ]
Example 2.3 (continued)

Using Theorem 2.4 we evaluate the weights of ¥> distribution. First we consider
D,(8K) = relint(80K; N 0K) U relint(0K, N OK) . Note that relint(0K; NIK) = K1 N
intKs . Therefore

relint(0K; NOK) N AU = {z | z1 = cos ¢y, Tz > costhy, ||z|| = 1}.
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Now consider the following ratio of volumes

vp—2({(z2,...,2p) | T2 > cos o, 22+ - +‘m12, = sin? 1})
Vp—2({(z2, ..., zp) | 23+ -+ T = sin ), })

This is obviouslj equal to the following incomplete beta function
L 1 o1 =
G u (1l —u) 2 du. _ (19)

- 5 cos? 92/ sin? 91

The contribution to the weights from 0K; NOK NOU is just (15) multiplied by [, with
% =, . Similarly the contribution from 0K, NOK NOU is (15) multiplied by [, with
Y = 19 , where ' »

1 1

= — u-
/62 2 Jcos? 11/ sin? 1g

M

(1 - )" du. (20)
It remains to evaluate the contribution from 0K;NOK, . Consider a representative point

8% = (cos 1y, cos 1y, 7,0, ..., 0),.

where
T= \/1—— cos? 1y — cos? i)s. (21)
The outward unit normal vector to K; at s° is
) Cos P9 T
ny, = | —siny;, ———, ———,0,...,0).
' ( ¢1’ tan; tant; ' )
Similarly the outward unit normal vector to K, at s° is
oS U1 . T
ng = |———, —siny, ——,0,...,0).
2 (tan‘wz v2 tan i, ‘ )

The normal cone N(K,s%) is the non-negative combination of these two vectors
N(K,s%) =an; +bny, a,b>0.

The inner product of these two vectors is

1

ng) = ————.
(m1, m2) . tant); tan 1y

Let
T .COSTy , O).

Csindy singy
Then Np_1, N, form an orthonormal basis of Tyo(D2(0K))* . Now consider the rotation
of coordinates based on N,_;, N, and s°: '

Npy=mn;, N,=(0,

ol . Cbs P2 T
Uy sm wl tan ¢, tan 1
—_ T cos P2
U2 - 0 sin 11 sin % Z2

u3 cos Y COS Yo T T3
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and u; =7;,i=4,...,p. s° in the new coordinates is u® = (0,0,1,0,...,0).

Now consider (12) for K; and Kj:
0 = F=aisin®y; — (2§ +23)cos® ¥y — (uf + -+ +ul) cos® ¢y, (22)
0 = F=ajsin’¢y — (af +23) cos” P — (uf + - - - + ul) cos® . (23)
In (22) and (23) .’171,$2,.'I73‘ are functions of wui,up,u3. We regard (22) and (23) as a
system of equations for determining wu;,us in terms of wus,...,u,. Furthermore as in

Example 2.2 we can ignore differentiation with respect to us and we differentiate (22)
and (23) with respect to us,...,u,. At u°

ouy Ou, )
0= = —= > 4.
Ou; 'u® ou; |u°’ ¢=
Therefore - P
IIJJ' . .
— = >4, 7=1,23.
au,- w0 07 124 ] ) 33

Using this it can be easily shown that 0 = 8%F,/(8u;u;), i, > 4, evaluated at u°

reduces to

62u1

0=-2 Sud, cos ¢y sin ¢y — 26;; cos® ¢y | (‘24)
and that 0 = 9%F,/(0u;0u;) evaluated at u® reduces to
2 2 2
rZe e o e s
Solving (24) and (25) we obtain
_82u1 1 _82u2 _ costy
Ou?  tan’ Oou?  Tsiny;

All the other second order derivatives evaluated at u° are 0.
Let

1 T
6o = -, — < <.
0= arecos ( tan ¢ tan 1/)2) 2 0 7T

Then v € N(K,s°), |jv|| =1, can be written as

v = cos ONp_; + sin N, 0< 60 <6

Therefore
H(Soa ’U) = dla‘g(oa ‘h(ﬂ, d}l? ’402), ey h(9, /(pl; ¢2),)’
p-3
where . y
. . COSn
h(8 = [/
(0,11, 12) = cos P— + sin 07 S,

and we obtain

ter(s()’ ’U) = <p ; 3) h(07 wl, 'l/)2)j‘
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Therefore

) 0 -~ (p-—3 bo Y
Frmpr 6w = (7 7%) [*hopwwyan )

The value of (26) is the same for all s € dK; NdK, N AU , and
Up_3(8K1 N 8K2 n 8U) = (p — 2)Tp—3wp_2.

Therefore the contribution from 0K; N0K, to the mixed volume (’;) Vp-ii(Kq), K, {1)) is
obtained as

i(p — 1)
Summarizing the above calculations the mixed volume is

(p—1)!
al(p —9)!

p"‘3 ‘ 1 0o - . : )
(i—Q) ' /o h(B, 1, o) 2d9><(p—2)7p‘3wp-2.

wp-1(61 sin? =1 4y cos Ly

+ (5 sinP =1 ap, cost o)

(-1(p-2)! ,_ 6o ~
™ e ) O,

where 7 is defined in (21) and f;, 8, are defined in (19),(20). Note that the last term
vanishes for ¢ =1, and that it can be expressed using the incomplete beta functions.

p * .
<i>vp—i,i(K(1)7 K(l)) =

2.4 The cone of non-negative definite matrices

In this subsection, we treat the cone of non-negative definite matrices, which is a typical
example of the piecewise smooth cone. This cone is needed to discuss multivariate one-
sided alternatives for covariance matrices (Kuriki (1993)). By deriving the normal cone
and the second fundamental form at the boundary of the cone, we reveal “recurrence
structure” of the singularities. |

Let S, be the set of p x p symmetric matrices. We identify S, with RPP+1/2 by
the map ' o

W = (wzj) € Sp <~ (wu, ooy Wpp,s \/5’(1)12, ey \/511),,_1,,,) S Rp(p+1)/2
and the corresponding inner product

(W, W) = tt WiW, =Y Wi Waii + Z(\/i'wlij)(\/ngij) (27)
i i<j
for W1 = (wlij) y W2 = ('inj) € Sp .
Let K be the cone formed by the p x p non-negative definite matrices, i.e.,

K={WeS,|W >0},

where > denotes the Lowner order.
Define :
Srp={W €S, |rankW =r},
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and
S_,JTI,:S,,,,DK.V: {(WeS,|W >0, rankW =r}.

Denote the spectral decomposition of W, € S+ as Wo HyoAoHyy' , where Ay =
diag(li, .-, lo) with lip > -+ 2> o > 0 and Hy, is a p X r matrix such that
Hy/Hy = I, . Let Hy be a px (p—r) matrix such that Hy = (Hio, Ho) is pX p
orthogonal. It is straightforward to show that the normal cone (16) of K at Wy € S
is given by
) N(K, Wo) ='{—H20YH201 ‘ Y € Sp_r, Y > O} (28)
We see that this normal cone is a lower dimensional replica of the original cone K . The
dimension of the cone (28)is (p — r)(p —r +1)/2, which is 1 iff » =p—1. In other
words, S;’_u, is the smooth surface and §f, r=0,...,p— 2, form singularities of
0K . o :
Now we will derive the second fundamental form at W, . In order to do this we intro-

Xn X12) of S, in the neighborhood

duce a local coordinate system X = (z;;) = ( Xl x
12 A2

of Wy as

Ao+ X1 X12> (HmI)
X1o' Xoo/) \Hyo' )~

We note here that for a p X p orthogonal matrix H , the transform W — HWH'
is orthogonal and preserves the inner product (27), because tr(H WL H)(HW,H') =
tr W, W, . So, the new coordinate system X ,i.e., (Z11,.. x,,,,,\/_ Tio, ..., V2 22, 1p) , IS
also orthonormal. ‘ _ ‘ _

Here we can take 8/0z; (r+1<i <p), 0/0(V2zy) (r+1<i<j<p) as
an orthonormal basis of N(K, W), and therefore, 8/0z; (1 <i <), 0/0(v/2z:;)
(1<i<r, i<j<p) as an orthonormal basis of N(K,Wo)* = Tw,(S,5) -

In the neighborhood of Wy, W € S/, is equivalent to v

@9W=m+mﬂmeqm;mm(

X2 = X12' (Ao + X11) " X125

because Ag+Xi; is positive definite in the neighborhood of Wy . Fix W = —HayoY Hyy' €
N(K,W,) . Then, the second fundamental form with respect to the normal direction w

becomes
62 tr (YX 22)

O((zia)1<i<r, (V28ij)1<ir, i<j<p)? W
The (k —r,l —r) -th element of Xy is

T = (Xi2'(Ao+ X11) ' Xu2)k—rer

H(W,, W) =

(29)

T

= (zw - $rk)(Ao+X11)_1(f

),r+1§k§l$p (30)
Ty

Differentiating (30) twice with respect to (zi)i<i<r (\/ixij)ISigr, i<j<p» and putting
X;; =0 and X = O, we see that the non-vanishing terms of (29) are only

82 Tkl

8(V2z)0(V2z 1) Iwo

5ij 1+ 6“

e 2
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1<i1<y3<r, r+1<k<I<p.So

82 tr (YX22) _ _6&
0V 2zw)0(V2zz) lwe o ¥

with Y = (yx) , and other contributions are 0. Now we have established the following.

Lemma 2.3 The non-vanishing part of the second fundamental form at Wy = HygAoHy' €
S, with respect to the direction W = —HyY Hy' € N(K,W,) is

H(Wy, W) = (% ) =As ' ®Y. .
Here Hy = (Hyo, Ha) is p X p orthogonal, and ® denotes the Kronecker product.
Let A = diag(ly,... ,l~p_,) be the eigenvalues of Y . Concerning the m -th trace
trnH =t (A @ Y) = trp(Ag ™t ® A),
the following lemma holds.

Lemma 2.4 For A = diag(l;)1<i<r and A= diag(ii)lggp_,

det(AYP"tr(ATT @A) = Y det(li% )1<ij<r det([g")lgi,zgp_z ’
(2:0) Micicjr(li = 1) Micicj<p-r (b = 1j)

where the summation Y(q,q) 1S over the set of integers

(qh -y qr, ql: ey qp—r) S Qr,p(_m + T‘(p - 7‘) + T‘(T‘ - 1)/2)
with

. r
Qr,p(n):{(q17"'aqr7ql,"'76p—r)e7rp|‘11>"'>qrv q-1>"'>6p—r, ZQJ=TL}

and m, denotes the set of all permutations of {p —1,p—2,...,0}.
Proof. Define the generating function by

r(p~r) -
®(z) = Y (=1)mz" P det(A)P "tr, (AT @ A).
m=0
Then _ |
®(z) = det(A)’ " det(z], ® I, —A‘1®/~\)
= (&™) HH(z——) HH(lm—l
i=1 =1 j=1 =1 j=1 .
((.’Eil)p_l tee xll 1\
- e : o
= et | @LET e Ul @ —a) G -T). (31)
Iy o1 1<i<j<r 1<i<j<p—r
\ 7oL 1)
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By the Laplace expansion of the determinant in (31), and by comparing the coefficient of
the term (—1)™z"®-")~™ _ we prove the lemma. _ ]

To evaluate the mixed volumes by virtue of Theorem 2.3 or 2.4, we have to know the
concrete forms of the volume elements of S,, or S,, NOU .

Before proceeding we prepare several facts on Stiefel manifolds. Let V,, = {H1 :
px r|H/H; = I.} be the Stiefel manifold. Let Hy be p x (p —r) such that H =
(Hy, Hz) = (h1,...,heyBrqr, ..., hp) is p x p orthogonal. Then the differential form for
the invariant measure on V,, is

dH, = /\ /\ hy'dh;.
i=1 j=i+1
The integral over V,, is
21',/Tp1'/2

r(r— d —i+1
dH1 = E(—I-)—/—z—)', Fr(g) =T ( 1)/41=I11F(%—)

Lemma 2.5 (Theorem 2 of Uhlig (1994)) Let

Vrp

W= HIAHll € Sr,p,

where A = diag(li)i<i<r, b > -+ 21, and Hy € V,, . Then, the volume element of
Srp at W is '

dW,, = or(r=1)/4+r(p—7)/2 H (1; —l Hlp T H dl; dH,.

1<i<j<r =1 1=1

Corollary 2.1 The volume element of S,,NOU is

dU,p = 2/=0/r @02 T (1 — 1) T] 17~ dpe (1) dH,

1<i<j<r i=1 |
where dp, (1) is the volume element of the surface of the unit ball {I | > +---+1.2 =1}.

Remark 2.6 In Uhlig (1994), the inner product of S, is not defined explicitly. If we
adopt (27) as the inner product of S, and regard S,, as a subspace of S, , the constant

or(r=1)/4+r(=1)/2 s pecessary in the ezpression of the volume element which does not
appear in Theorem 2 of Uhlig (1994).

Remark 2.7 As mentioned in Muirhead (1982) and Uhlig (1994), we have to be careful
because the sign of each h; is not uniquely determined. If we integrate with respect to
dH; over the whole V., , we have to divide by 27 .

Now we can evaluate the weights. In this case, the double integral in (18) reduces to

Lp(i) = [, 2 oo | Lo oy HAR) dUp e |dUns, (32)

P"'P T



31

where H(A,A) = A ®A. Note that S}, NoU = ac+><v,, with
oLy ={(l,...,l.) | L= >1>0, L,>+---+1,2=1}.

From Lemma 2.4 and Remark 2.7, the integral (32) is separated into two parts as

Lol =6 ¥ [, detlh®)icnisrdin®) [, detli)icnsp sy +(0),

(9,9) por
where the summation Z(m) is over
(ql’ «e5qr, 615 ey (71)—7‘) € QT,P(_i T+ p(p + 1)/2)’ (33)

and c, = 2PP~V/4xp(P+1)/4/TTP_ T'(k/2) . Then, the mixed volume in (18).is

_(=-)Yp(p+1)/2 —i—1}! _
Up(p+1)/2—ii = {p(p n 1)/2}! Z I’r,p('l)

where the summation ), is over
re€Ry(i) ={r|0<i-(p-r)lp-r+1)/2<r(p—-1)}, (34)
since try H(A,A) =0 for m’' > r(p —r) . From Theorem 2.1, we obtain the weights as

(p+1)/ 2) Up(p+1)/2—i,i
. } Wi Wp(p+1)/2—i
1 %) plp+1)/2—1 op(p—1)/4
= - ’ —I'(=+1)T
’t{p(p+ 1)/2 — i} ( )r( 2 ) k=1(k/2)
x> / det (i 1<k j<rdpn (1) - / . det([f 1<k j<p-rdpp (D), (35)

T (9.9 Lp—r

D
Wp(p+1)/2—i = (

where the summations >, and Y, are over (34) and (33), respectively. We can easily
see that the weights (35) coincide with Theorem 2.1 of Kuriki (1993).

Remark 2.8 We conclude this paper by making a brief comment on the Weyl’s tube for-

mula (Weyl (1939)) and Naiman’s inequality (Johnston and Siegmund (1989), Naiman (1990)).
We have obtained the expressions for weights by evaluating the volume of the local parallel

set, whose definition is similar to the Weyl’s tube. In fact, our proof of Theorem 2.3, the
extension of the Steiner’s formula, is essentially equivalent to the method in Weyl (1939)

(see the Appendiz). Unlike the Naiman’s inequality, we can restrict our attention to the

local parallel sets which are defined by the projection onto the convex surface, and therefore

the problem of overlapping does not matter.

A Appendix

Internal angle and external angle
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Let F be a face of a closed polyhedral convex cone K in RP. The internal angle
B(0,F) of F at 0 (the origin) is defined as

NnF
B(0, F) = M_)’
. . Wq
where v, is restricted to the affine hull L(F) of F. Let C(F,K) be the smallest cone
containing K" and L(F), and let F* = C(F,K)*. F* can also be written as

F*={y|y€ K* and (z,y) =0, Vz € F}.

Therefore F* is the face of K* dual to F' of K. The external angle y(F,K) of K

at F' is defined as .
U_P:S{(U_OE-_) = 6(0 F*)
p—d

where v,_q is restricted to the affine hull L(F*). See McMullen (1975) and Section 2.4
of Schneider (1993a) for more detail.

’Y(F’K)z

Sketch of the Proof of Theorem 2.3 ‘

Let s € D,(0K) and consider an infinitesimal spherical neighborhood B(s) C
D, (0K) of s of radius A . The essential step of the proof is evaluating the infinitesimal
contribution v,(Ax(K,B(s))) of B(s) to vy(Ax(K,S)). The rest of the proof is just
integration similar to the proof of Theorem 2.2 or Theorem 2.4. Note that we only need
to evaluate terms of order O(AP™™) .

Now fix y € N(K,s), I =||y|| < A. Define

B(s,y) = (y + Dm(0K)) N Ax(K, B(s))

where y+ D, (0K) is Dn,(8K) translated to go through the point P =s+y. B(s,y)
is orthogonal to N(K,s) and hence v,(Ax(K, B(s))) can be evaluated as

(K BE) = [ vm(Bls,y))dy

N(Ks)OAU

where dy is the standard volume element of R™ .
For v = y/l and let G = G, be the associated Weingarten map. By definition of
G, ,
B(s,y) = P+ Uyep(s)(s' — s +1Gy(s' — 8)) +0(8).
With respect to an appropriate orthonormal basis around s, the elements of G, are the
elements of the second fundamental form H(s,v) . Hence

vom(B5,0) = det(Tym + LH(5,)) tyom(B(s)) + o{27™) |
(14 ltr H(s,v) + -+ + P"™trp_n H(s,v))Up—m (B(s)) + o(AP™™).

The rest of the proof is integration similar to the proof of Theorem 2.2 or Theorem
2.4 and omitted. '
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