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BOOTSTRAP TESTS FOR THE JOINT INDEPENDENCE
- OF VARIABLES
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Abstract. Testing the joint independence of variabtes and equality of covariance
matrlx has long been an mterestlng issue in statistics inference. To overcome the
sparseness of data pomts in hlgh dlmensmna.l space and deal w1th the general cases,
we suggest several prOJectlon pursult type statrstlcs Some results on the hmltmg
dlstrlbutlons of the statlstlcs are obtalned Some propert1es of Bootstrap approx1—
matlon are 1nvest1gated furthermore, for computatlonal reasons an approx1matlon
for the sta,tlstlcs the based on Number theoretlc method is apphcated Several

SImulatlon experlments are performed

1. Intro duction

Suppose that n multlvarlate observatlons Z1,.. ,l z, are collected, and that
= (z(l) (d)) where z(’), j = 1,...,d, are made up of p; components
respectlvely and z -1 pJ = p. A common issue is to test the _]omt 1ndependence
of d sets of variables z(l),.. (d). Several tests based on the emplrlcal measure
have been proposed. When p = 2 and p; = p; = 1, for instance, the chi-square
test is available. In general case, Blum, Kiefer and Rosenblatt (1961) proposed a

nonparametric distance test(B-K-R test) They suggested usmg

(11) - D, fﬁsupl-—ZIz,<t) H ZI (J)<t(-’)|

(teRre j=1 " i=1

where t = (#1), ... ,¢?®)) and z < t means that z() < t0) forj =1,. L P Their
test is under the assumptlon that the underlymg dlstrlbutlon of z has a density

function.

Clearly a similar version of B-K-R test can be applied to treat the problem of
testing the joint independence of z0), 5 =1,...,d. However, when the dimension
p is large, then sparseness problem.of the sample points in high-dimensional space
will be encountered unless the size of sample is gigantic. One can refer to Huber
(1985) and references therewith. - As projection pursuit technique is a very useful

tool for overcommg such a problem of sparseness of sample points; our aim’ in
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this paper is to develop some tests based on the empirical measure and projection

pursuit technique.

On the other hand, in order to determine the critical values, one need to know
the properties of the sampling or limiting distributions of the test statistics pro-
posed. Similar to B-K-R test, accurate expressions of the sampling and limiting
distributions of our test statistics depend on the underlying distribution of z and
are not tractable. In this paper, we use the bootstrap method introduced by Efron
(1979) to estimate the null distributions of the test statistics.

Furthermore, the exact critical value of the test statlstlcs, similar to that of
B-K-R test, may be difficult to obtam because the test statlstlcs proposed are the
supremum and integration of function based on sample over uncountable sets in
the Euclidean space, and may be hard to compute. Instead, one may have to
resort to compute the values over a finite number of search sets. As in Beran and
Miller (1986), a stochastic approx1mat10n can be used. We in this chapter also
suggest another approximation derived by Number-theoretic method (e.g. Fang
and Wang (1994)). This section is organized in such a way: Section 2 presents
the construction of the test statistics. The bootstrap approximation is discussed
in the same section. Number theoretic method is described in Section 3. Section
4 contains some simulation experiments and a real-life example to which the new

tests are applied. Section 5 are Tests of Elliptical symmetry of Distribution.
-2 Construction of Tests and Bootstrap Approximations

2.1 Test statistics and their asymptotic properties

Let F,(t) be the distribution function of z and let F,;)(t\)),5 = 1,... ,d, be the
distribution function of z(/). Asisknown,zV),j =1,...,d, are jointly independent
if and only if Fy(-) = de 1 F2» (). This is the basis of constructing B-K-R test.
In order to construct our tests via prOJectlon pursult techmque we gwe another

version of necessary and sufficient condition of the joint independence of z0)%s,

Define |

1)  S={a:lall=laer), j=1..,4
where the notation | - || stands for the Euclidean norm in RFJ.
LEmMMma 2.1,z .. z(4) are jointly independent of each other if and only if

a7z, Cewy a5z(? are jointly independent of each other for alla; € Sj,j =1, ..., d.



Proof. The necessity is obvious. We now show the sufficiency. Let nr,0)(h;)
and p,()(h;) be, respectively, the characteristic functlons of a] z(’ ) and zU). It
is easy to see that Par 2 (h;) = pui(hja;) for j = 1,---,d. Furthermore let
Parz®),... ar z(a)(hl, - ,hg) and $py,... gy (hy, - hd) be the characteristic func-
tions of (aJz(V), .. z(d)) and (2, ... z(%) respectively. We can also get that

(2.2) . Parz), .. ,A;z(d)(hl; sy ha) = o p@(biay, - hgay).
All we need to do is to prove that, for showing the sufficiency,

d
(2.3) a,... g (b1, -+ ha) = [ ean(by).

When (a]z®) ... a7z(?) are jointly independent for every group of (ag,---,ay),

we then have
d A
(24) goa;z(l),..‘ ,asz(")(hl, sy hd) = H Qoa;z(j)(hj).
. - =1 -

Based on the above discussion, we can derive that

d
(2.5) Pat),... g (11, , haag) = [ eu0n (hja;)

holds for every group of aj,j =1,--- d. Note that h; can be eﬁcoressed as |[h,||
h; /||h;|| where h;/||h; H € S;. Hence (2 3) is showed, which completes the proof

Based on this fact, we can construct the tests for the joint independence of

zU) j = yd. Denote by Fpa,(t;) the empirical distribution determined by
a’zg”), ey }' S;’) and let Fpa(ty,...,%ts) be the empirical distribution based on
azi,...,az,, where az; = (ajz; ( ),. adz(d)) and a = (a1, ... ,aq4). Furthermore

let t = (t1,...,ts) and S = $\®, - - ®Sd A B-K-R type test statistic i is

(2.6) KS, = sup |Kq(a, t)|_\/z Sup | Fna(t) - HFnéj(tj)|.
a€S,te R4 , a€S,teRd. S g=1 .

Two other test statistics are the following Cramer-Von Mises type tests;

(2.7) CVS, = sup (K (a t)) ZHdF,m] (t;),
o y ) a€s j=1 -

and

d d -
(2.8) OV = [ [ (Ka@,0)" TT Fua, t5) T i),
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where p;(-) is the uniform-distribution on Sj.

In view of the construction procedure above the test statistics are based on the
: low-dlmensmnal pro_]ectlon of high- dimensionial data. This is available for over-
comlng the sparseness of data. in h1gh—d1mensmnal space One can refer to Huber

(1985) for details.

In order to present the asymptotic behavior of the test statistics, we define
several centered continuous. Gaussian processes = {W(,at):a€ S t € R%}
and W; = {W;(-,a;,1;) 1 a; € S,,t € R'},j= 1 .. ,d. These processes have the

following properties;

1) each sample path of W(-,a,t) is bounded and uniformly continuous with
respect to the metric induced by the L?(P)-semi-norm on § = {f = I(az < t)::
acS,te R,

2) the covariance functlon of W(-,a, t) is of the form

E{W(,a,t)W(,b,s)} = / I(az < t)I(bz < s)dP

(2.9) | | / I(az < t)dP / I(bz < s)dP

3) each sample path of VVJ ( ,aj,t;) is ‘bounded and uniformly continuous with
respect to the metric induced by the LZ(P(J ))-semi-norm on SJ ={f=1 (a z(J) <
t) a eS,,t eRl} -

4) the covariance functlon of W ( aJ,t ) is of the form |
E{W; (-, a5, 1;)W; (- bJ,sJ)} /I(a 29 <1, )I(b’z(’) < 5;)dPY)
(2100 = Falt )Fb,(sJ)

where P and P(J) are the probablhty measures of z and z(’) respectlvely, and
Fa,(t;) stands for the distribution function of a T2J), »

We now present the asymptotic behavior of the test statistics defined in (2.6),
(2.7) and (2.8). For the simplicity of notation, let :

1) W(-\,;,£)7"=W(j,'a,'t’)' ZHFa,(t)W(,a,,t)

=t t#a

- THEOREM 2.1. Suppose that all Fo,(t; ) j=1,. ‘d, and Fa(t), the distributroh

of az, are continuous with respect to a and t. If z(l), ... ,2'9 are jointly indepen-
dent of each other, then 7
(2.12) . 'KS,= sup |[W(,at)|,

a€S,te R4



(21  ovs, _=>sup / (W(a t))2HdFa](t)
and ..
@ ova= [ [ @0 [Tam 6 Lo,

where the notation”=—>" means the weak convergence. :If the null hypothesis is

false, then the above three statistics tend to infinity with probability one asn — oo.
For simplicity of the notations, we consider d = 2. The genefal case can be

proved in the same way. | -

Proof of Theorem 2.1. Using the mondern theory of empirical processes, we

can show

(2.15) sup  |Vr(Fra(t) — Fa(t))|= sup |W(-,a,t)|, as
a€S,teRrd a€S,teRd

and

(2.16) sup  |Vn(Fa,(t) = Fa, ()| = sup  [W;(,a;,1)], as.
ajGSj,tjERl a;€S;,t;€ER?

where Fy(t) and Fy, (tJ) are the distribution functions of az = (aiz(V), ahz(?)

and of a;-z(j ) respectively, Fpa(t) and Fpa,(t;) are the corresponding empirical

distributions, and W (-, a, t) and W;(-,a;,t;) are the centered continuous Gaussian

processes defined in Section 2 associated with the covariance functions in (2-9), and
(2.10) respectively. Note that

na(t) na1 (tl)Fnaz(tZ) = (Fna(t) F (t)) - Fna1 (tl)(Fnaz(t2) - Faz(tz))
az (t2)(Fna1 (tl) Fal (tl)) |
+ Fa(t) — Fa, (t1) Fay (t2)).

The formulas (212) —~(2 14) are the direct conseqlielicé of (2 15) and (2. 16) when
the null hypothesis is true, namely, Fa(t) — Fa, (1) Fa,(t2) = 0. If the null is false
then /nsup, ¢ |Fa(t) —Fa, (t1)Fa;(t2)} — co. This leads that three statistics in
(2.6) — (2.8) tend to infinity. The proof is finished.

2.2 Bootstrap tests
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In previous subsection, we construct the test statistics and present the asymp-
totic behavior. A serious problem is that neither the sampling nor limiting distri-
bution of the statistics is tractable because they depend on the underlying distri-
bution of z. This problem leads up to that the critical values may be difficult to
be determined. We now apply the bootstrap tests to solve this problem.

Let zg'i), . zsf*) be bootstrap samples drawn from the empirical marginal dlstn-
bution F(J)( ) based on z(J) .. zg), j=1,...,d, and let z;, = (zfi), , Ef)),
that is, Z1s,... ,Zn« is the bootstrap sample drawn from szl F,?)(-). Similar to
the definition of Fpa(t) and Fra,(?;), let Fo(t) and Fy, (¢),5 =1,... ,d, be the
empirical distributions determined by {azi.,.. azn*} and {a’z&), . Tsz*)}

respectively. Define
(2.17) K*(a,t|21,... ,2,) = VR(Fia(t) — H Fro,(t;

The bootstrap test statistics are defined by

(2.18) KS;(21,...,20) = sup |K,(a,t|z1,...,2,)],
a€S,teR?
(219)  CVS:(zs,.. zn)—-sup/ (K2 (@, o, . )2Hd o (6,
) : a€ES , ) :
and
(2 20)

CV A (2, ... z,,)_// K*at|zl, 2Hd a(t)Hd,u,(aJ

The following theorem shows that the test statistics and their bootstrap versions

have the same limit if the null hypothesis is true.
THEOREM 2.2. If the null hypothesis holds, then, with probability one,

(221) KS*z1,...,2,) = sup |W(,at)],
( : S a€S,teR?

(2.22) CVS*(21,...,2s) = sup (W( a, t)) ZHdFaJ(t)
. a€sS i=1
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I o, .
028) VA m) = [ [ (FCa0) [] R, ) [T dus(ar)
i=1 i=1

If the null hypothesis is false, the above three statistics still converge weakly to the
maximum or integration functionals of certain'Gal,ussian pfoceSses, with probability

one.

Proof of Theorem 2.2. First recall that the bootstrap sample (Z1«, ... ,Zns)

is an i.i.d. sample from the distribution J]?_ PY)(. , and the components of z;,
j=1

are conditionally independent of each other, given {zi,...,2,}, where Py )() is
the probability measure based on (zgj ), o2 )) Note that
(2.24)

F:a(t) H t)—{ a(t HFna,(t} {H na,(t)_HFna](t

Now we apply Corollary 2.7 of Giné and Zinn (1991, p.771) to obtain the asymptotic
distribution of the first term in the right hand side of (2.24). To check the conditions
there, first notice that § is a measurable finitely uniformly pregaussian class (see
Giné and Zinn (1991, p.761 and p.778)). Next, let § = {f —g : f,.g € §},
F)2={(f-9)?%:f,gcF}and & = 3U8’ U ({5")2. Then it turns out that

(2.25) sup|HP(-’) (9) — HP(’)(g)|—+0 a.s.
g€® iy “

where PU)(.) is the associated probabﬂity measure of the distribution F,u ('),
since the metric entropy of ® (Giné and Zinn (1986, p.53)) is finite. Consequently
it follows from Corollary 2.7 of Giné and Zinn (1991) that, with probability one,

2
V(Fra(t) = [] Fra; (8)) = W* (-1, 1),
ij=1
where W*(-,a,t) is a Gaussian process with the zero mean and covariance kernel:

, |
E{W*(-,a,t)W*(.b,s)} = H/I(a;.z(n < t;)I(bz® < o5)dPO)
"2 2 L
- HFaJ'(tj) HFbj(sj)a :
i =1

for a = (a;,as),b = (by,b;) with a;,b; € S; and t = (t1,%2),s = (s1,82), with

real numbers ¢;’s and s;’s. Comparing this covariance kernel with the one of W
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in (2. 11) it is clear that, when the null hypothesis is true, W* is just W in (2.11).

Also note that the term 1n81de the second curly parenthesis in (2. 24) equals

Frioy (11)(Frag(t2) = Fraa(t2)) + Fras(f2) (Fra, (f1) — Foay(t1)).

Invokmg agam Corollary 2.7 of Giné and Zinn (1991) and checkmg the cond1—
tions there, we can derive that the bootstrap empirical process associated with
Fra, (t1)Fra,(t2) converges weakly to a process associated with the second term in

(2.11). Then when the null hypothesis is true, we have
(2.26) KX(at|z1,...,2,) = HF (t ) = W(,a, )

On the other hand, if the null is false, the bootstrap empirical process still converges
weakly to W*(,a,t) - Z =1 ﬂ#J Fa,(t:)W; (-, a;,1;). The formulas (2.21) — (2.23)

are the direct consequence of (2.26), which completes the proof.

'3 The Appronmatlons for The Bootstrap Test

In view of the bootstrap test statlstlcs they are the supremum or the mtegratlon

over the Euchdean space. For the computa‘uonal reason, one may have to resort

to compute K (a t|21,... ,25) over a finite number of pomts For glven a} ,
a”e€S;,i=1,...,d, we define
(3.1) KSh(z1,-.. ,2n) = néa},xsule (a, t|z1, zn)l,

st

(32)  CVS:(d,...,2,) = max / (K*(a, t|z1,.. z,,,))zﬂdF;a;
R4
and |
(3.3) CVAL(z,.. z,,)_ dZ/ (K (a, tlzq, .. zn))znd u (1),

where Sf ={a= (al,... ,ag) : a; € {a,--,.‘.’i‘ ,am} € ,S',-;z =1,.. d} On the
above definition, maximum and summation are taken over all different sets of S FOA
stochastic approximation (cf. Beran and Miller (1986)) is, of course, a choice. That

is, let a}, .. i=1,...,d, beiid. unit random vectors distributed uniformly

'117

on S;.- We know.that the uniformity of {a},...,a"} on S; is important for this

kind of approximation. We now suggest a,nother method of choosing {a}, ..., a™
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, the Number-theoretic method (NTM) (e.g. Hua and Wang (1981), or Fang and
Wang.(1994)). It is well known that the Kolmogorov distance for {a},... ,a™} is

evaluated as . -

supl-zf(a € 8) — p(6)] = Op(m "”2)

seA m

Where A= {6(V) veE [0 l]p‘ 1} and 6 1s a set of the form

B(or, - pimr) = {as = feos(fu(ur)), sin( i ) eos( (), .-,

( H 'sin(fj (uj))) cos(2wypi;1), ( H sin(fj (%)) sin(2’1rup;_1)] :

0<y; <v; <1, j:l,...,pi—l} -

and fi(u) = F‘j'—i(u), i=1,.,p- 9. Here Fi(y) is the distribufionfwith
the density function g;(y) = c(j)(siny)?i~'~!, where y € [0, 7] and c(j) being
a normalized constant. In the sense of the Kolmogorov distance, {é.} R Vil 3
chosen by Number-theoretic method will enjoy better uniformity on S; than that

of the above set of random vectors {a . } that is,
sup [—ZI(a € 5) u(d) = O(m _1(108;m)p‘_1)-

Recently, Fang and Wang (1994) gave a systematic study on application of NTM in
Statistics and gave the corresponding algorithm that is so-called TFWW algorithm.
They pick up the good lattice point (glp)fnethpd, one of NTM, to generate an NT-
net on [0,1]7:~! as follows: : For given inteéer m larger than p; — 1, choose an
integer vector h = (hy,...,h,,_1) satisfying 1 < hj < m, h; # h; for j # L.
Denote cx; = {(2kh; — 1)/2m} and ¢ = (ck1,..- yCh(pi—1))” for k = 1,... ,m
and j = 1,...,p; — 1, where {z} denotes the fraction part of z. A choice of
h = (hy,...,hy,—1) can be found in the appendix of Hua and Wang (1981) or
Fang and Wang (1993). We can use the TFWW algorithm to generate the desired

points {a},---,a"} on S; cortesponding to {€1,...,¢m}.

4 Simulations and an Example

To demonstrate the power of the proposed test for the joint independence of
variables, we in this section apply it to several simulated data sets and a real-life
example. In simulation experiments, we consider that z is 6-dimensional and both
z(1) and z(?) are 3-dimensional, that is, z = (z(1),2(®)) . It is expected that our

tests would be also powérful in higher dimensional cases. The first we consider
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z) ~ Uz 2® ~ U; and z and z(? are independent, where Us is 3-dimensional
distribution with i.i.d. marginal distributions each having the uniform distribution
for [0,1]. Several simulated data sets are generated from the multivariate normal
distributions with different covariance matrices. For these distributions, the var-
jous sample sizes, say n = 20 and n = 30, are investigated. In each case, 5 and
7 projection directions are chosen by Number-theoretic method and 1000 replica-
tions are performed. In order to simulate the critical values under the significance
level 1%, 5%, 10%, 500 bootstrap samples are generated for each replication. Let
N (0, Vg?) be the normal distribution with mean zero and covariance matrix Vg)
. The following Vgi)’s are considéred, and Vg") and ng) are concerned with the
real example. The simulation results are summarized in the Tables 2.0, 2.1, 2.2,
and 2.3 below. In the tables, the notation “dir” stands for the number of projective

directions.

1 0 0 0 0 0y
010000
@ {0 0 10 00
Ve 0 0010 0}
0 00 0.10
0 0 00 01
1 05 0.0 0 O
! 05 1 05 0 0 0
v® = 0 05 1 0 0 O
& ~10 o0 0 1 05 0|’
0o 0 0 05 1 05
0 0 0 0 05 1

1 05 0 0 0 O

v 06 1 05 0 0 O

v® 0 05 1 05 0 O
6 0 0 05 1 05 0 |’

0O 0 0 05 1 05

0 0 0 0 05 1

1 05 05 0 0 0

05 1 05 05 0 0

v = 05 05 1 05 05 0
6 ’

05 05 1 05

o
=0



0.5
0.5
0.5

0.5
0.5
0.5

0.5
0.52

0.5%
0.5%

-0.9
0.8
0.7
0.6
0.5

0.5
0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

0.5

0.5% 0.52

0.5%.
0.5*

- 0.9

0.9
0.8
0.7
0.6

0.5
0.5

0.5
0.5
0.5

0.5

0.5

0.5
0.5
0.5

0.5%
0.5

0.5

0.52
0.53

0.8
0.9

0.9
0.8

0.7

1 0.486

0.678 0:857
0.366 0.636
0.448 0.403
0.486 0.417

1 0737

0.737 1
_ | 0.676 0.627
0.476 0.339
0.483 0.392
0.540 0.446.

0.678
0.857

0.681

0.520

0.558

- 0.676
- 0.627

0.441
0.447

0.440

0.5
05 05 0

05 05 0.5 ]

1 05 05|
05 1 05

05 05 1

0.5 0.5 05

05 05 0.5)
0.5 0.5 0.5

1 05 05]°
0.5 1 05

05 05 1

0.5 0.5* 0.5
0.52 0.5 0.5*
0.5 0.52 0.53

1 05 052)
05 1 05
052 05 1
0.7 0.6 05

0.8 0.7 0.6

0.9 0.8 0.7

1 09 08"’
09 1 0.9

0.8 09 1

0.366 0.448 0.486
0.636 0.403 0.417
0.681 0.520 0.558

1 .0.345 0.367
0.345 1  0.820
0.367 0.820 1
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TABLE 2.1 Proportion of rejecting Ho ( dir =5, n =20)

62

distribution K&, _ OV, CVA,

1% 5% 10% | 1% 5% 10% | 1% 5% 10%
N(0, V) 0.012;0.062;0.128 | 0.004;0.044;0.110 | 0.004;0.052;0.108
N(0, V) 0.012:0.063;0.126 | 0.006;0.045;0.114 | 0.005;0.057;0.112
N, VD) 0.013:0.066;0.135 | 0.006;0.047;0.112 | 0.005;0.059;0.119
N(0, V) 0.205;0.464:0.629 | 0.165;0.490;0.649 | 0.196;0.526;0.702
N0, V®) | 0.237;0.539;0.681 | 0.217;0.551;0.713 | 0.263;0.579;0.735
N(0, V) 0.252;0.569;0.710 | 0.236;0.584;0.742 | 0.271;0.593;0.752
N(o, Vi) 0.035:0.146;0.254 | 0.016;0.085;0.186 | 0.013;0.090;0.207
N(0,V®) 0.650;0.867;0.930 | 0.712;0.925;0.963 | 0.691;0.930;0.969
N0, VD) | 0.274;0.616,0.736 | 0.260;0.602;0.767 | 0.257;0.595;0.744

10.179;0.489;0.604

0.165;0.442;0.600

0.184;0.468;0.626

TABLE 2.2 Proportion of rejecting Hy (‘dir =5, n = 20)

distribution KS, : CV, - CVA,
1% 5% 10% 1% 5% 10% 1% 5% 10%
Ujz and Uj 0.012;0.063;0.115 0.010;0.037;0.108 | 0.012;0.047;0.097

TABLE 2.3 Proportion of rejecting Hq ( dir =5, n=30)

distribution | KS. cv, T CVA,

1 1% 5% 10% | 1% 5% 10% | 1% 5% 10%
N0, VD) | 0.010;0.059;0.118 | 0.009;0.044;0.099 | 0.003;0.049;0.108
N(0, V) 0.011;0.061;0.117 | 0.008;0.048;0.104 | 0.008;0.051;0.110
NO, vy | 0.012,0.068,0.126 [ 0.011;0.054;0.125 | 0.010;0.059;0.122
N, VD) [ 0.372,0.645;0.779 | 0.397,0.742;0.866 | 0.431;0.753;0.872
N, VY | 0.479;0.676;0.810 | 0.412;0.750,0.881 | 0.447;0.783;0.894
N, V) | 05280.818,0.871 | 0.564;0.841;0.908 | 0.536;0.815;0.917
N, VY | 0.038;0.156;0.264 | 0.030,0.128;0.236 | 0.020;0.118;0.218
NO, V) | 0.892;0.986;0.992 | 0.970;0.994;1.000 | 0.974;0.994;1.000
N(0, V() 0.530;0.828;0.912 | 0.606;0.865;0.956 | 0.581;0.850;0.932

N(0, Vi)

0.398;0.671;0.794

0.341;0.670;0.828

0.462;0.731;0.826
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TABLE 2.4 Proportion of rejecting Ho ( dir =7, n'=20) - -

distribution KS, CV, CVA,

1% 5% 10% | 1% 5% 10% | 1% 5% 10%
N(0, V) 0.010;0.057;:0.111 | 0.006;0.044;0.098 | 0.006;0.052;0.106
N, V) | 0.010;0.058;,0.113 | 0.008;0.046;0.100 | 0.007;0.053;0.108
N(0, VP 0.014;0.073;0.145 | 0.010;0.053;0.123 | 0.006;0.061;0.131
N0, V) | 0.234;0.545;0.667 | 0.223;0.546;0.701 | 0.196;0.497;0.647
N, v) | 0.338;0.655,0.768 | 0.307;0.664;0.812 | 0.400;0.783;0.892
N0, V) | 0.359;0.682;0.793 | 0.315;0.672;0.816 | 0.477;0.823;0.902
N, VD) | 0.030,0.198;0.323 | 0.016;0.115;0.199 | 0.018;0.128;0.214
N©O,v®) | 0.758;0.938;0.982 | 0.778;0.966;0.982 | 0.806;0.989;0.998
N(0, V) 0.462;0.753;0.854 | 0.334;0.708;0.847 | 0.461;0.797;0.898
N(0, Vi) 0.268:0.541;0.682 | 0.216;0.436;0.611 | 0.311;0.624;0.724

In view of the Tables 2.1, 2.3, and 2.4, we can find that the performances of
the tests proposed are encouraging. At first, the tests hold their level very well.
For the cases of Vﬁf), the powers are poor because two vectors, {z1,z7, 23} and
{z4, 25,26} have very weak correlation. -As the correlation between two sets of
variables increases according as V( ) through V( ) , we enjoy higher power. Another

ﬁndmg is tha,t a little bit surprise, the performance of KS; is the worst among

three tests. In intuition, it would be the most powerful. On the contrary, CVA,

seems to be the most recommendable tegt among the tests here. For the case of
Vgn, the situation is similar to the weak correlation cases. For Vgs)’ the power
is good. On the other hand, the tests have, in natural, higher power with larger
size of sample. However it will involve heavy computational work-load. The cases

where the covariance matrices are V( ) and V( 0) , concern with a real-life example

in which the new tests are employed. The data set pertains to the derivation of
standardization of dress of Chinese men in 1976, and is taken from Fang, Yuan and

Bentler (1992). There are 12 measurements of the body, including z,: above the

walist, T9: under the waist, z3: height, y;:arm length, y,: the front waist length,
(221 y L2, :1,'3)

and z, = (1, y2, ys) are independent. Applymg the new tests to this example, the

y3: the back waist length. We now want to know whether or not z; =

conclusion ”rejected” is obtained. Similarly, put z4: bust zs: walst zg: buttocks,
the front part of chest, ys: the back part of chest, and
All three bootstrap tests reject the null

y4: shoulder length, ys:

23 = (334,375,-"16)., 24 = (y4,y'5,3/6) .
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hypothesis which is that z3 and z4 are independent.: Clearly, the above mentioned

two results correspond to objective reality.
5. Application: Test of Elliptical symmetry of Distribution

5.1. Introduction

It is well known that the class of elliptically’' symmetric distributions( elliptical
distribution for short) has played important roles in statistical theory and applica-
tions. Many kinds of distributions belong to this class. For example, multivariate
normal, t-distributions. A random vector z has a p-dimensional elliptical distribu-

tion if there exist a non-singular matrix ¥ and a constant vector p such that
6.1y  IE Yo in iz —p)

for every orthogonal matrix I, where the notation «2» means that two sides of the
equality have the same distribution. We call ¥ and g the shape matrix and location
vector of distribution respectively. In order to describe conveniently the following

problem, we denote
Fo={P: (5.1) holds for both known shape m_a.t‘rix and location vector};

Without loss of generality, we consider ¥ and g, in Fo, are identical matrix and
zero vector respectively. Thus given a high-dimensional distribution P(-), one is

often required to test the following hYpot_hesis:

(5.2) Hy:P(-)€Fo versus H;:P(-)¢&F,

Throughout this paper, the boldface symbols will represent vector or matrix if no
special mentioning. In the following the notation | - |” stands for the Euclidean
norm. Naturally if = is real-valued, |z| is the absolute value of z. In order to
present in the next section the proposed tests we now introduce two properties of

a spherical distribution which will be the basis for constructing tésts.

LEMMA 5.1. z has a p-dimensional spherical distribution if and only if

|z| and z|z|~! are independent and z|z|~! is uniformly distributed on SP~! =
{a:a€ R? || = 1}. | ‘

For convenience, we present a necessary and sufficient condition for Lemma 5.1.



LEMMA 5.2. That both |z| and z|2|™" are independent each other, and z|z|”"
is uniformly distributed on S?~! if and only if for every @ € SP~!,|z| and a"z|z| !
are independent, and a"z|z|~'’s have the same distribution A( - ) with the density

function

I'(p/2) B
L ks

o)
y?) 2

(5.3) fly) = T : ~1<y<1.

Lemma 5.2 is a direct consequence of the well known résult (e.g. see Watson
(1983) or Fang, Kotz and Ng, 1990, Theorem 2.2.5).

5.2. The Construction of the Statistics

Suppose that we have collected the ii.d. p-dimensional sample {=z;,--- ,z,}.
Denote by P, the empirical measure based on {z;,---,2,}. For convenience P, f
will stand for the expectation value [ f dP, for function f on RP, and I(C) will

mean the indicator function of set C.

Consider PP-sample, a"z;,--- ,a’z,, where @ € SP~!. By making the use of

Lemma 5.2, one can apply the following statistics for (5.2).

Ro= sup supy/alKalat,s)]

aESP—l t,s

(5.4) =sup/n|P,I(|z| < t)I(a” z|z|™' < 5) — P,I(|z| < t)A(s)],
at,s ‘ -

where A(:) is the distribution defined in (5.3), and

(5.5) 7, = /-K',z(a,t,s)dﬂn(t)dA(s)dp(a), |

where H,(t) is the empirical distribution based on {|z|,- - , |z,|}.

5.3. Asymptotics of Statistics

We in this section investigate the asymptotic behavior of statistics which in-
cludes all of the Kolmogorov type statistics and Cramer-von Mises type statistics

in subsection 5.2. We do not consider the other statistics because we meet, unfor-
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tunatély, some technical difficulties in mathematics. These should be considered in '

further research.

For considering the asymptotics of K, and V,,, let W = {W,(a,t,s): (at,s)€

5P~ x R?} be a L*(P)-norm continuous, centered Gaussian process with covariance
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function

R((a 1, 5), 3,11, 1)) =E{W, (a1, s)W (b t1,91)}
S S '=PI(|z] <)I(|z]| < tl)I(a z|z|™1 < )P =)zt < Sl),
(5.6) —HI(|z| < t)HI(|z| < t1)PI(@ z|z|™' < s)PIW z|z|™! < 1),

and sample paths being'uniforrhly bounded, where H(-) is the distribution of |z|.
Denote by B-the Brownian bridge.

THEOREM 5.1. Suppose that the distribution of |z| is coﬁtAinuvous. Then .lrmder H,
in (5.2)

(5.7) K,=K-= sup|W (b,t,s) B(t)A(s)]

68 7 =>V /// (58,9 - (t)A(s))de(t)dA(s)dp-(b).

5.4. Bootstrap Approximation

According to those results presented in subsection 5.3, we see that the distribu-
tions and the asymptotic distributions of the statistics depend on the unknown dis-
tribution P, which is the population distribution of sample, and are not tractable.
Hence bootstrap approximations of the statistics are available for choosing criti-
cal values of the tests. Since we are here testing for the spherical symmetry of a
distribution, a procedure for resampling data is suggested below. Let Uy,---,U,
come from the uniform distribution on the unit sphere which can be generated by
computer and y; = |z;|u;. Let G, be the empirical distribution based on y;'s and y;*
come from G, as the bootstrapping sample. Denote P empirical measure based
on {y},---,¥.} . The bootstrap approximations of the proposed statistics are as

follows.

K:(z,-- -,zn)—supﬂff 1,521, ,2,)]

¢11

v—sup\/'lP* Iy"|<t)( Vi< -Gl <1)

Lal ~1@U < s) = (PrI(ly*| <1)A(s) = GnI(lyl < t)A(s))].
Vi, _"/// (Kr(@,1,8,21, - ,2,))2dGa(t)dA(s)dp(a).

In practlcal 1mplementa.tlon for each set of {Uy,--- ,Un} generated by computer

generate B groups of {yl, .- ,yn} Ca.lcula,te respectlvely, B values of K * and V,’: ;



and then get the corresponding (1 — a)- quantile values, K* and V! say. Repeat
this procedure c times to get {I? hOPEE } and {V2,-- ~;c-}. Finally, use the
sample means MI?* =37 K* and MV* =221V, V. as the critical values.
By making the use of result of Gine and Zinn (1990) we can easily derive the

following result.

THEOREM 5.2. Under the same conditions imposed in Theorem §.1 I},’; (1, ,2n)
and ‘7,:‘ (%1, ,2,) have, in the almost sure sense, the same asymptotic distribu-

tions as those of K, and V,, respectively.

5.5 Simulations

Further insight into the applicability of four statistics, we conduct some simu-
lations using the sample from 3-dimensional distributions. The samples are gen-
erated by Monte Carlo method. The l, points {a;,--- ,a;, } on $? are chosen by
Number-theoretic method. We here, choose the sample size n =100 and [, = 21.
The simulation experiments are performed for the tests K, and V, concerning the

hypothesis (5.2). The critical values of tests. are obtained by the bootstrap approx-

imation. For each case, 500 replications of bootstrap samples are independently

generated for determining the critical values. Furthermore, the basic experiment
was replicated 1000 times for each case. The proportion of the statistic values
exceeded the 95th percentile of the bootstrap statistic values in all cases studied

here were recorded.

Since computation is intensive, we here only conduct simulation experiments
concerning 3-dimensional cases. It is expected that the proposed tests should be

powerful for higher dimensions and for more alternatives.

The simulated results are listed in the tables below. The data sets are generated

from the following different distributions, where
1. N;: the standard normal distribution N(0,I;).

2. T3 the multivariate t-distribution in R3 with the density fur'xctio“r_l
1+ Z&\-(10+3/2)
el + 15 CLR

where c3 is the normalizing constant.

3. E;: |-dimensional distribution with iid marginal distributions each having

the standard exponential distribution.
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4. x?: I—dimensional distribution with iid marginal distributions each having

the chi-square distribution with degrees two of freedom.
5. Us: the uniform distribution on the 3-dimensional unit sphere surface.
6. Bs: the beta distribution with parameters 3 and 1 respectively.

Furthermore, FG means that this distribution has two independent marginal
distributions F' and G For example, x4 B; means that the distribution has the

independent marginal distributions x% and Bj respectively.

For the hypothesis (5.2), we consider that the location vectors g and the shape
matrices A are known in the investigated distributions below. Hence we can make
a transformation to get zero location and identical shape matrix. The simulation

results are presented in the table 5.1.
TABLE 5.1 Proportion of Rejecting the Null Hypothesis (5.2) -

Statistic N3 T3 U3 | X%Bl X% ' Eg B3
K, 0.047 0.035 0.038 1.000 1.000 1.000 1.000
Vo ~0.045 0.032 0.038 1.000 1.000 1.000 1.000

In view of the tables, we can see that the proportion of rejecting the null are
encouraging for the investigated cases here. On the other hand, the Cramer-von
Mises type tests have the better power than the Kolmogorov type tests. On the
other hand, in prectical use, there is a problem how many projection directions are

chosen. This deserves further study.
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