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The log utility and the paradox of Petefsburg |
$k - B fEBEE— (Michikazu Sato)

Summary. There is an objective meaning of the log utility if we consider
that one continues betting a constant per cent of one’s money. We point
this out in a general case, and consider mathematically and numerically

what happens if one continues betting in the paradox of Petersburg.

1. Introduction

A meaning to use the log utility of the amount of money is usually explained
by subjectivé satisfaction. Today this is often explained in textbooks on
deéision theory and Bayeéian statistics. Bernoulli [1] proposed ﬁhe log utility
to solve the problem by :Montmort 2] called the paradox of Petersburg
today. It is often believed that Bernoulli [1] is the original of this paradox,
but Bernoulli [1] quotes Montmort [2], though the author has not got the
origiﬁal of Montmort [2]. There is, however, an objective meaning of the log
utility. This is an easy fact, but the author has not found it in literature.
In Section 2, we shall make a setup and point out this fact in a general
case when we continue betting, also note its limitations. In Section 3, we
shall consider mathematically what happens‘v if we continue betting in the
paradox of Petersburg. In Section 4, we shall consider it Iiumerically by

giving graphs. In Section 5, we shall give somel remarks.
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2. The log utility in a general case when we continue betting

We shall make a following setup and point out an objective meaning of the

log utility in a general case when we continue betting.

Assume that Peter has y ducats (y > 0) first, though the value of
y is not essential as will be seen. He agrees to Paul that when he pays
Paul b ducats, Paul will give him bX ducats, where X is an unknown
nonnegative random variable. Let 0 < p < 1 and assume that b = py, that
is, Paul uses 100p per cent of his money to bet. The meaning of p < 1 is
that he keeps out of debt to bet. On speculation in stocks, it essentially
means that he does not make credit transaction. After this bet, he has
y—py +pyX = y(1 —p+pX) ducats. Then the increment of his log utility
in this bet is given by U := logy(1 — p + pX) — logy = log(1 — p + pX),
which is independent of y, where we define log0 = —oo. A radix of log, say
c(> 1), is not essential. We assume that log means natural logarithm (i.e.,
c=e) for cdnvenience of a mathematical approach. Its merit in practice
is that U = —p + pX holds when X ~ 1. If we change c, then the new
U is a constant and positive multiple of the old U. When X is very largé,
there is a merit to choose ¢ = 10 in practice because if we do so, he has
10Yy ducats after this bet. Let p be the increment of his mean utility
(moral expectatlon) of this bet, that is, p := E[U], assuming its existence
(p0551bly :i:oo) Those who agree to the log utility consider that this bet is
favorable if 4 > 0 and unfavorable if u < 0. If he continues bettlng 100p
per cent of his money, where p is a constant it is really so. If we explam'
this fact premsely, it is as follows:

Let X;, X5, X3,... be 1ndependerit random variables with the same
distribution of X. First, Peter has y ducats. He pays Paul py ducats and
Paul gives him pyX; ducats. Then he has Y¥; := y(1 — p + pX;) ducats.
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Second, he pays Paul pY; ducats and Paul gives him pY; X5 ducats. Then
he has Y :=Y1(1 —p+pXs) = y(1 —p+pX1)(1 — p+ pX3) ducats, and so
on. After betting n times, he has Y, := y(1—p+pX1)(1—p+pX3)--- (1 —
p+pX,) ducats. Since logY;, = logy+log(1—p+pX;1)+log(l—p+pXs)+

-+ + log(1 — p + pX5,), applying the strong law of large numbers, we get
the following results. If x > 0, then lim, . Y, = oo with probability 1.
If u <0, then lim,, ., Y, = 0 with probability 1. Moreover, assume that
02 = Var[U] exists and 0 < o < co0. Fort > 0, by Chebyshev’s inequality,

we get

Y, ’ 1
P [exp(/,m —tovn) < m < exp(un + ta\/ﬁ)] >1- 2 for any given n.

Its right-hand side is, for example, 0.96 for ¢t = 5. In addition, for any ¢, by

the central limit theorem, we get

P[%>exp(un—ta\/—] ~1————/ exp(———)d:l:

for a sufficiently large n,

where we can get the value of its right-hand side by a table of the normal
distribution. For example, it is approximately 0.98 for ¢ = 2.

We should also recognize limitations to use the log utility. When n is
given, rather than to consider y, it is better to consider v := un — toy/n or
A := max{v,nf}, where ¢ is the maximum value satisfying log(1—p+pX) >
§ with probability 1, and ¢ > 0 is taken appropriately to consider safety.

3. Paradox of Petersburg—a mathematical approach

We shall consider mathemafcically what happens if Peter continues betting

in the paradox of Petersburg.
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Assume that J = j with probability 277 for j = 1,2,3,..., and
X = k27 , where k is a positive constant. (Originally, Montmort [2] and
Bernoulli [1] consider the case that Paul gives Peter 2/~ ducats with prob-
ability 279. ) It is well known that E[X] = oco. However,

p=EU]=3 27 log(l—p+kp2),
j=1 |

and we see that this is finite, but generally difficult to calculate its exact

value. On the following theorems, see Appendix A for proofs.

Theorem 1. For p =1, the following assertions hold.

(i) p = log4k. | - '

(ii) If k > 1/4, continuing this bet, he increases his money to infinity with
probability 1. | o | |
(iii) If k < 1/4, continuing this bet, he decreases his money to zero with

probability 1.

Note that Theorem 1 (i) is essentially obtained by Bernoulli [1]. Next,
denote ¢ := 1 —p, and for p € [0,1), let r := kp/q and n := Ellog(1 +r27)].
We use 71 to evaluate not only p but also 0. To evaluate p, we get the

following theorem.
Theorem 2. Forp € [0,1), the following assertions hold.
p=n+logg,
: Jo . '
n=log4+ 22_"9 log(r +277) + pj, =0,
j=1

where

9—Jo max{log, —(jo +2)log 2} < pj, < 2770 log(r 4 g—do=1),
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Next, we shall consider maximizing p = u(p; k) by moving p.

Theorem 3. The following aséertions hold. o ,

(i) There exists p1(p, k) := (0/0p)u(p, k) for p € (0,1] and it strictly de-
creases with respect to p € (0, 1]}.

(ii) p1(0+, k) := lim i1 (p, k) = oo.

(iii) The function u(p, k) is continuous and strictly concave with respect to
p € [0,1]. | |

(iv) For each k € (0,00), there exists a unique p = py = po(k) that mazi-
mizes u(p, k). | |

(v) po(k) =1 for k € [1/3, ). |

(vi) 0 < po(k) < <1 for k € (0,1/3).

3(1 — 2k)
(vii) The function po(k) is continuous and strictly increases with respect to

ke (0,1/3).

(viii) po(0+) == %{%po(k) =0.
Next we shall examine o2.

Theorem 4. The following assertions hold.

(i) If p=1, then o2 = 2log® 2, which is independent of k.

(ii) If p € [0,1), then 0? = o%(r) = Var[log(1 + r27)], which is a function

of r =kp/q.

(iii) 02(00) := lim 0? (r) = 2log® 2, which coincides with the value in (i).

(iv) There ea:is?zﬁfs_);%’ (r) for r € (0,00) and it is positive.

(v) The function o(r) is continuous and strictly increases with respect to

r €[0,00). |

(vi) The function o2 (kp/q) is continuous and strictly increases with respect

topel0,1]. | |
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At the last part of Section 2, We. noted limitations to use the log
utility. Here, £ = £(p) = log(q + 2kp) holds. We shall consider max-
imizing v = v(p,k,n,t) = u(p)n — to(kp/q)v/n and A = A(p,k,n,t) =
max{v(p, k,n,t),nlog(q + 2kp)}. On this point, we obtain the following
theorem. For further details, we shall consider numerically in the next

section.

Theorem 5. For any fized k > 0, n = 1,2,3,..., and t > 0, the
function v(p, k,n,t) with respect to p € [0,1] takes its mazimum value at
p=p = pl(k,h,t) (say), and it satisfies p1 < po. In particular, if po < 1,
then the strict inequality p1 < po holds. If k < 1/2, then the function

Ap, k,n, t) with respect to p € [0,1] takes its marimum value at the same
point p = p;.
To evaluate o2, we get the following theorem.
Theorem 6. Forr € [0,00), the following assertion holds.
02 = C - 772’
where n = n(r) := E[log(1 + r27)] is evaluated in Theorem 2 and
¢ =¢(r) = Ellog?(1 +r2)) -

Jo : ‘
=6log?2+) 277 {jlog 4+ log(r +277)Hog(r +277) + 5jo 2 0,
i=1

279 max{(jo + 2) logr, —(j§ + 4jo + 6)log 2} log 4 < 5,

([ 2=90[(jo + 2) log 4log(r + 2790~1) 4 min{log? r, (52 + 4jo + 6) log? 2}]
Zf’r <1 —9Jo—

277°[(jo +2) log 4log(r +27%7") + max{log" , log?(r +27%~1)}]
ifr>1—27J0"1

<
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4. Paradox of Petersburg—a numerical approach

We shall give numerical results. Figures 1 to 14 are log-linear plots of
¢ = o(p,k,n,t) := exp A(p, k,n,t) with respect to p € [0,1]. The axes
origin is (0, 1) in each figure because it is important whether (p, k,n,t) > 1
or not. We denote 10 A m := 10™ in figures. For each t = 0, 1,2,3,4,5,
the curve of ¢(p, k,n,t) is the (¢ + 1)th highest. For example, in Figure 2,
there are only three curves because the cases t = 2,3,4,5 coincide invthis
figure. If we do not truncate the curves under (p, k,n,t) = 0.5, then they
do not coincide. Note that £ =1/3 is the case that k is the smallest value
that satisfies po(k) = 1, and k = 1/4 is the case u(1,k) = 0. There is not
a special meaning for £k = 1/8. See Appendix B for the way to obtain the
figures. We see that, to maximize ¢(p, k,n,t) (or A(p, k,n,t)) with respect
to p € [0,1], for t = 1,2,3,4,5, we should take much smaller p than po,
in particular, if n is not so large. It is danger to bet in the paradox of
Petersburg not so large times. For safety, Peter h_a,s to continue betting
hundreds or thousands of times. We should, however, recognize that, if he
really does so, then ¢(p, k, n,0) = exp un for an appropriate p is extrerhély
large. If he really owns such a huge amount of money like y exp un ducats, it
worries him about the great confusion of economy and that even he cannot
live on. This is also a limitation of the log utility. In practice, however, Paul
will go bankrupt before Peter owns such a huge amount of money. Peter
will have y + M ducats with probability 1 where M is the largest amount
of money that Paul can pay, if he continues bettlng 100p per cent of his
money satisfying u(p, k) > 0.
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Figures 5-6
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Figures 7-8
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~_Figures 9-10
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Figures 11-12
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Figures 13-14
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5. Some remarks

We shall give some remarks. When Peter continues betting a constant
amount of money, he increases his money to infinity with probability 1 if
he can borrow any large amount of money. If he canndt, however, he may
go bankrupt before increasing his money. When Peter continues betting a
constant per cent of his money, there is no possibility of Peter’s bankruptcy.
There is, however, a problem that how they manage a smaller amount than
the smallest unit of money. If they manage each time of their bet, Peter may
decrease his money and 100p per cent of his money may become smaller
than the smallest unit of money. In particular, if & is ‘small, then he should
take a small p, so this problem is important. To avoid this problem, they
should manage as follows: He continues this bet for a long time without
paying or receiving money in practice. After stopping it, he pays or receives
money in practice, with managing only at last a smaller amount than the
smallest unit of money. Then there is no problem.

Next, assume that X = k22’ instead of X = k27. Then p = E[U] = 0o
for p € (0,1]. Therefore, continuing this bet, he increases his money to

infinity with probability 1, and we cannot determine p by the log utility.
Appendix A

Proof of Theorem 1. Since U = logk + Jlog2, we have E[J] =
> 5212775 = 2, hence (i) holds, so (i) and (iii) follow. O

Proof of Theorem 2. Cléarly n > 0 by definition. We have

pu=Ellogq(1+r27)]
=log g + E[log(1 + r27)]
=n+logg



o0
n= Z 279 log(1 + r27)

j=1
oo
" =§:2‘j log 29 (r 4+ 277)
j=1 -
o0
=log4+ Y 277 log(r+277)
Bt ‘ g
=log4 + Z 279 log(r +279) + p;, (say).
j=1

We can evaluate p;, as follows:

o0 B
pj, = 2790 Z 2-9 log(r + 279077) = 279 log(r + 62777 1)
where 0 < 0 < 1,

hence
279 logr < p;, < 279 log(r + 9—Jjo—1y,

and
pjo 2279 Z 977 log 27907
j=1

oo
=—277(log2) ) ,27(jo +4)
=1

==27%(log2) | o) 277 +) 277
| j=1 j=1
= —277°(jo + 2) log 2.

From the two inequalities above, we have

2790 max{log r, —(jo + 2) log 2} < pj, < 2790 Jog(r + 277" 1). O

106
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Proof -of Theorem 3. We have

o0 s
. k29 —1
= E -3 -
ik j=12 1+ (k29 —1)p
1 » 1
== —-J — :
p;2 {1 1+(k2j~1)p}

forp € (0, 1], where the first line of thé equation above can Be justified by
its locally uniform convergence. We get (i) from the first line. Regarding
the summation as the integration by the counting measure and using the
monotone convergence theorem, we get (ii). We shall show (iii). To prove
the continuity, it is enough to show that u(p, k) is continuous at p = 0. We
get this by Lebesgue’s dominant conversion theorem, because if k27 —1 > 0,
then 277 log(1 — p + kp27) is positive and increases with respect to p. The
strict concaveness follows from (ii) and the continuity. We get (iv) from
(iii). By calculation, we get p1(1,k) = 1 — 1/3k, so (v) follows. Assume
that k € (0,1/3). We have pp > 0 by (ii) and (iii). We get p1(1,k) < 0 by
calculation, so pp < 1. Hence p, satisfies p;(po, k) = 0 by (i), and

j;‘ kpod? + o2’ ; (kpo +0/2)47  3(kpo + q0/2)

where g := 1—pg. Solving this inequality with respect to po, we get po(k) <
1/{3(1 — 2k)}, and 1/{3(1 — 2k)} < 1 is straightforwardly shown. Hence
we have (vi). We shall show (vii). If k < k' <.1/3, then p;(po(k), k') >
p1(po(k), k) = 0, so we get po(k’) > po(k) by (i), hence po(k) strictly in- |
creases with respect to k € (0,1/3]. We shall show its continuity. For
any sequence {k,} in (0,1/3] that converges to k € (0,1/3], we have
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> e 1/ {kmpo(km)4? + qo(km)27} = 1, and there exists a subsequence
{ki,, } such that {po(ks,,)} converges (to p, ¢ := 1 — p, say). If p = 0,
then, since po(k) is positive and strictly increases with respect to k, we get
k= 0, which is a contradiction. Hence p # 0, and we may assume that
po(ki,,) > p/2 and k;, > k/2. Therefore, k;_ po(ki, )4 + qo(k; )2’} >
(k/2)(p/2)47. Hence we can use Lebesgue’s dominant conversion theorem
and get 32, 1/{kp4? 4+ q27} =1, so p = po(k), that is, lim,,_,c0 po(k;,, ) =
po(k). Hence we have (vii). We shall show (viii). Assume that 1/3 > k; >
k2 > -+ and iy oo km = 0. Then, %%, 1/{kmpo(km)4’ + qo(km)2'} =
1, and {po(km)} decreases with respect to n, so it converges (to p, ¢ := 1—p,
say) Since kmpo(km)4j + o (km)2? > qo(km)2? > q(j(kl)Zj by Lebesgue’s
dominant conversion theorem we get > oo =11/ q2 =1,s0¢= 1 and p=0.

Hence we have (viii). O

Proof of Theorem 4.  If p = 1, then U = logk + Jlog2, E[J?] =
> i212775% = 6, so o? = (6—2%)log®2 = 2log®2, and we get (i). If
0 <p <1, then U = log g+ log(1 +r27), so we get (ii). We have 02(00) 1=
im0 02(r) = limyp1 {Eflog”{1 + p(27 — 1)}] — u2(p,1)} = Ellog?2”] —
#?(1,1) = 2log?2, where the third equality is justified by the monotone
convergence theorem, so we have (iii). Denoting 7 := E[log(1 + r27)], we
have o%(r) = 3222, 277 log?(1 + r27) — n?(r), hence

' (r) =i2—j L - log(1 +r23 r)z _3
T+

2 4 2~
00 f; 1
=; 2 o - {log(1 + 7"2’) -n(r)}

for r € (0, 00), where the first line of the equation above can be justified by

locally uniform convergence of the sums. Since we can take j; = ji(r) €
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[1, 00) satisfying n(r) = log(1 + r271), we get

02,(T) 00 _ 1 1 ' ] |
Py (7555~ s ) DosC1 +729) - )
& |
P —J 927\

+ S J; 277 {log(1 +r27) — n(r)}.

The second sum is 0 by the definition of 7. In the first sum, we have

1 1 :
- — : 7y _ >
('r +9-7  pr+ 2_,31) {log(1+727) —n(r)} >0,

where the equality holds if and only if j = j;. Hence o2/ (r) > 0 holds for
r € (0,00), so we have (iv). It is easy to show that o2 (r) is continuous with
respect to r by Lebesgue’s dominant conversion theorem and the continuity
of n(r). From this and (iv), we get (v). By (v) and using (iii) at p =1, we
have (vi). 0O ' |

Proof of Theorem 5. By Theorem 3 (iii) and Theorem 4 (vi), the function
v(p, k,n,t) is continuous with respect to p on the compact set [0,1], so
it takes its maximum value. We see p; < py by Theorem 4 (vi). We
shall show that the strict inequality holds if py < 1. By Theorem 3 (v)
and (vi), 0 < py < 1 holds. We may assume p1 > 0. Then‘, denoting
vi(p, k,n,t) = (0/0p)v(p, k,n,t), we get v1(p1,k,n,t) = 0. If pp = py,
then, ‘denoting To = kpo/qo, we have 0 = 1, (pl,k,n, t) =1 (po,'k,n, t) =
p1(po, k)n—kto'(ro)/n/q3 = —kta'(ro)v/n/q?, so o'(rg) = 0 and 02 (rg) =
20(ro)o’(ro) = 0, which contradicts Theorem 4 (iv). We shall show the
last part. It is enough to prove A(pi,k,n,t) > A(p, k,'n, t) for p € [0,1].
If AM(p1,k,n,t) # v(p1,k,n,t), then, we get V(pl,k,n,t)' < Ap1,k,n,t) =
nlog(q1 + 2kp1) < 0= A(0,k,n,t) = v(0, k,n,t), where the first inequality

follows by the assumption and the definition of v and the second one follows
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by k < 1/2. This is a contradiction because A(p, k,n,t) takes its maximum
value at p = p1. Hence A(p1,k,n,t) = v(p1,k,n,t) holds. If Ap, k,n,t) =
v(p, k,n,t), then A(p1, k, n, t) = v(p1, k,n,t) > v(p, k,n,t) = /\‘(p, k,n,t). If
X(p, k,n,t) # v(p, k,n,t), then A(p1, k, 7, t) = v(p1, k,n,t) > v(0,k,n,t) =
A0,k,n,t) = 0 > nlog(q + 2kp) = A(p, k,n,t). Hence A(p1, k,n,t) >
A(p, k,n,t) holds anyhow. Therefore, we have completed the proof. 0O

Proof of Theorem 6. By Theorem 4 (ii), we get 02 = ¢ — n?. Clearly ¢ > 0
by definition. We have |

oo

¢=> 279 log(1 +r2’)
e |
=Y 277 {jlog2 +log(r + 277)}?
=~ |

e e .
=6log® 2 + (log4) Z 277 jlog(r+277) + Z 279 log?(r +277) -

j=1 j=1

{ do
—=6log? 2 + (log4) Z 279 jlog(r +277) + pg.i)

J=1
jo ' .
+ Z 279 log?(r +277) + pgi) (say)
j=1 ’ :

=6log? 2 + Z 279 {jlog4 + log(r + 277)} log(r + 277) + pj, (say).

We can evaluate pg-z) as follows:

o0
o) =277y 27 (jo + ) log(r + 279 77)
- 3=l

o0
=jopjo +277° Y 279 jlog(r +277°77)
=1



=j0pj0 + 2-j0 . 2log(r + 0(1)2—.70—1) where 0 < 0(1) < 1,
hence
279 (jo + 2) logr < pjy) < 279 (jo + 2) log(r + 2777,

and

N : w ’ .
1 . o i A

pgo) >j0pie + 2 Jjo Zz i jlog 2o~
j=1 ,

=jopj, — 277 (log 2) Z 2775(jo + 5)
=1 -

S : . n 1% 00
—jops, — 2 (10g2) [ 4o > 275 + Y 279?

> — 279 (jo + 2) log 2 — 277°(25g + 6) log 2
= — 279(52 + 45y + 6) log 2. .

From the two inequalities above, we have

277 max{(jo + 2) logr, — (j2 + 4jo + 6) log 2}

< p$) < 2790 (jo + 2) log(r + 279071),

We can evaluate p(2) as follows:

Jo
oo

pg-i) = 2770 Z 279 log?(r 4 279077) = 2790 log?(r 4 9PV 2—Jo~1)
j=1

where 0 < 6 < 1,

hence .
0< Pﬁ) < 27J0 max{log2 r,log?(r + 2~Jo=1)1,

111
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and if r + 2779071 < 1, we get

' oo
pg_i) 52_j° Z 9—J 10g2 9—Jjo—j
j=1

—277(log?2) > 277 (jo + §)?
j=1

=2770(log? 2) 222 J+23022 33+22 ij
=270 (j2 +4_70+6)-10g 2.

From the two inequalities above, we have

0<p(2) J 2 jo min{log? 'r,(yo+4]0+6)log 2} ifr <1-—27do—1
do = | 2790 max{log®r,log?(r + 279071)} if r>1— 2790~ 1

Since pj, = pg )log4 + p( ), we can get the inequality on p;,, so we have

completed the proof. 0O
Appendix B

We shall explain the way to obtain the ﬁgures. The author has used
Mathematica for Macintosh. Let |

q:=1-p,

'r:=—l-cc—12Z if p#1,

‘ JO i ‘ . . - . )
7 :=log4 + Z 279 log(r +277) + 277 log(r + 2_30—1),
j=1
n:=max{0,

log4 + ZZ I log(r 4+ 279) + 2770 max{logr —(Jo + 2) log2}},
j=1 v
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— . Jlog4k ifp=1,
K {n+logq ifp#1,

log 4k ifp=1,
{Q+logq ifp#1,

jo
¢ :=6log?2 + Z 277 {jlog4 + log(r + 277)} log(r + 27)
=1 |
277°[(jo + 2) log 4log(r + 27%~1) 4 min{log? r, (52 + 4jo + 6) log” 2}]
n : 1f7'<1—2"° 1
279[(jo0 + 2) log4log(r +277071) + max{log® r, log?(r + 2790-1)}]
ifr>1—2"J-1

Jo
¢ :==max{0,6log?2 + Z 277 {jlog4 + log(r + 277)} log(r + 279)
j=1 |
+ 279 max{(jo + 2) log 7, — (2 + 4jo + 6) log 2} log 4},
{ \/§log2 ifp=1,

i BV /TP

V2log 2 ifp=1,
&= { \/max{(),g——ﬁ2} ifp#1,
A :=max{Bn — tay/n, nlog(q + 2kp)},
A :=max{pn — t5+/n, nlog(q —I- 2kp)}.

Thenn << p<p<E(<(<o<o<FadA<A<2X
follow by Section 3. The author has made Mathematica draw curves of N’s
and A’s with respect to p, letting jo = 20 in Figures 1 to 10, and j, = 30
in Figures 11 to 14. Then, for each k, n, and ¢, the curves of them look
coincident, so we can regard them as the curve of \. Mathematica can
compute infinite sums numerically but the author has avoided it because
Wolfram [3] (p. 832, see also pp. 689-690) notes, “You should realize that
with sufficiently pathological summands, the algorithms used by NSum (a

numerical sum) can give wrong answers.”
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In this way, we get graphs of A’s. By making adequate ticks, they
become log-linear plots of ¢’s. For this purpose, the author has ’selecte‘d
adequate values for the vertical coordinate, not M. athematica aﬁfomatically
selected. For each of them, say (¢ =)o, the author has made a tick of g to
the place of (A =) log o on the vertical coordinate. In some figures, curves
are truncated. For exa,mplé, in Figure 2, the curves under ¢(p, k,n,t) = 0.5
are truncated. This is also done by the author, not automatically. The
a,uthor has made ticks and truncation considering that the reader can easily
see ri'in-lport_ant ,parts‘ of graphs, in particular, whether ¢ > 1 or not, and

avoiding misunderstanding.
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