OOoo0O00oOooon
1009 0 1997 0 1-21 1

The Linearized Boltzmann Equation with an External Force
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§ 1 INTRODUCTION
The nonlinear Boltzmann equation with an external force describes the
evolution of the density of rarefied gas acted upon by the external force. We
admit that the force dépends on the space variable and the velocity variable.
We assume that the gas particles are confined in a bounded domain Q CR® by

being reflected perfectly from the boundary @ . The equation has the form,

of/at+Af= Q) ~ (NBE)

where we denote by f = f(t,x, £ ) the unknown function which represents the
density of gas particles that have a velocity & €R’ at time t=0 and at a point
x€ Q. Q= Q(*,*) denotes the nonlinear collision Operator”, and A is a

differential operator defined as follows:
A=E-V +F -V, C (1.1)

where F = F(x, £ ) denotes the external force. We assume that F = F(x, &)
has the form,

Fx.6) =~V ¢(x) +bxe), 12

where ¢ =4 (x)is a sufficiently smooth, real-valued function of x€ Q, and b
= b(x, £ ) is a sufficiently smooth, 3-dimensional-real-vector-valued function
of (x, £)€ Q XR® such that



£-b(x, &) = 0 for each (x, £) € Q XR® (1.3)

Under the assumption of cut-off hard potentials in the sense of Gradl'z, we
linearize (NBE) around the equilibrium state M=e~ $(®0) 1§12, Sybstituting { =
M+M"%u in (NBE), applying (1.2-3), and dropping the nonlinear term, we

obtain the linearized Boltzmann equation with an external force,

odu/ ot = Bu, (LBE)
B=—A +e (—v+K), | (1.4)
where v = y(§)is a multiplication operator, and K is an integral operator.

v and K act only on the velocity variable & , and have the following
properties'

Lemma 1.1. (i) There exist positive constants v ;, j=0,1, such that v ;=
v (&)< vy (1+ &) for each & ER®

(11) K is a self-adjoint.compact operator in LZ(R 53).

(iii) (— v *K) is a nonpositive operator in L2(R 53) whose null space is
spanned by & e 1¢174j =123, e 14174 and | £ e~1¢ /4 where we denote
the j-th component of § by §,j=1,2,3,ie, §=(§,6,¢9).

The purpose of the present paper is to study decay of solutions to the
mixed problém for (LBE) with the perfectly reflective boundary condition. In
order to study this subject, we need to investigate the structure of the
spectrum of the operator B. We can prolong solutions of the following system

of ordinary differential equations in time by the law of perfect reflection:
dx/dt=¢&, d&/dt=F(x,¢&), (SODE)

and the continued characteristic curves of A is described by these prolonged



solutions (cf. p.'3913). Noting that spectral properties of A are deeply
connected to the continued characteristic curves of A and that the operator B
is stron‘gly influenced by A, we can reasonably conclude that spectral
properties of B must be closely related to the behavior of the prolonged
solutions of (SODE). Therefore we need to investigate the behavior of the
prolonged solutions of (SODE) (cf. § 1, pp. 742-746°, pp. 754-756°, and p.
12739,

However it must be noted that the behavior of the prolonged solutions of
(SODE) is very complicated; it is difficult to observe the solutions globally in
time. Hence it is advisable to simplify the behavior of the prolonged solutions
by imposing some assumptions. We note that the complexity of the behavior of
the prolonged solutions depends largely on geometry of the boundary surface
0 Q . For example, as the geometry of © Q becomes more complex, the
solutions of (SODE) are prolonged by being reflected from 0 £ in a more
complicated manner. Hence the behavior of the prolonged solutions is also
more complex. Conversely, as the geometry of 0 () becomes simpler, the
behavior of the prolonged solutions is also simplified. For these reasons we
will impose the following assumption, in addition to the assumption that Q- is
bounded:

Assumption .90 is a 2-dimensional piecewise linear manifold.

We note that the solutions of (SODE) considerably changes at the time
when the particle x = x(t) collides with 8 Q (svee § 7 for the details). In order
to prevent the characteristic curves of A from beihg very largely influenced
by the external force when the characteristic curves collide with 2 ), we

will impose the following assumption:
Assumption F. For almost all (X,Z)€F,,

(G B NKE) + (7 FC,)EKE —2(0(X)° B)NCEONLN(),



Ay JFCoNXE) = (r FCo DX E —2(n(X) E)nX))//n(X).

~ Here We :denoté by y . the trace opefafors along the ch»aracterisﬁti:c curves
of A onto ’ | |

F.=(X,E) € F(@ Q)XR% £n(X)-E>0.  (1.5)
- We denote by n = n(x) the outer unit normal of @ Q atx EF(2 Q)= O\
E(9 Q), where E(Q Q)= {x€ 9 Q; x is contained in an edge of @ Q}. By
virtue of Assumption F'and Assumption ), we can simplify the behavior of
the prolonged solutions (in Remark 7.5 we will fully discuss the roles of these
assumptions).. The main result of this paper is Main Theorem in § 3, which is
as follows: the semigroup generated by B decays exponentially in time. -

Under the spatial periodicity condition, we have already investigated
decay of solutions of (LBE) in-the case where b(x, §)= 0° Hence, it seems to
be promising to attempt to apply the method in [4] also to the problem of this
paper. However, if we try to do so, then we immediately encounter the
difficulty which is caused not only by the fact that the external force depends
on the velocity variable but also by the fact that there is a possibility that
some continued characteristic curves of A tend to follow 2 ) (see p. 3913).'
’I_‘he’possibility presents a great difficulty in attacking our problem (we will
discuss this difficulty in § 7 fully). .

 §2 PRELIMINARIES
(1) Assumptions. We impose the following two assumptions on the
external force in addition to Assumption F (see (1.2)): |
Assumption ¢ . sup|d° ¢ (x)/ dxd x| <+o0,i,j= 12,3, where we
xeQ ‘ ’

denote by x; the i-th component of x,1 = 1,2,3, i.e., X = (X3,X,,Xy).

Assumption b. (i) suwp |9b(x, &)/ 9x], sug 19b(x,6)/0 & | <+oo j

xeQ B xeQ Kir

=1,2,3, for eachr=1, where we denote by &, the i-th cdmponent of §,1i=



1,2,3. | , , .
(ii) V. b(x, &) =0 for each (x, £ )€ Q XR®.

(2) Function spaces. By B(X,Y) (C(X,Y), respectively) we denote the
set of all bounded (compact, respectively) linear operators from a Banach
space X to a Banach space Y. For simplicity, we write B(X) and C(X) as
B(X,X) and C(X,X) respectively. By E,, a 20, we denote a Hilbert space of
complex-valued functions of (x, § ) € Q XR? With the following inner product
(recall Remark 2.1, (ii)): | o

u(x, £ )v(x, £ )(1+E(x, £))"dxd &, (2.1)

(U,V)a f QXRa

whefe Ex &) = ¢ (x) + & /2. Define I, = ((uu) )" Write iIIl' Il as the
norm of operators of B(E ,). Write ‘||" I et as el e Ml :respec‘tively for
simplicity.

(3) The domains of operators. We denote the domain of an operator L
by D(L). Let us define the domain of A (see (1.1)) as follows: D(A) = ju =
u(x, §) € E,; Au€E,, and u = u(x, £ ) satisfies the perfectly reflective

boundéry condition,
(y (s, )X, EB) = (7 —u(*,* NX,E —2(n(X)" E)H(X))A, (PRBC)

for a.e. (X,E)€EF.,}. See (1.5) for n(X) and F .. We define the domain of the
operator, | ‘ '

A=—A+e f(— ), (2.2)

as follows: D(A) = ju = u(x,§) €E_; Au €E , and u = ux, &) satis‘f‘ies
(PRBC) for a.e. (X,E) € F,}. Applying Remark 2.1, (ii), we deduce that

K=e *K€ B(E,.E,.) for each a 20, ©(2.3)



in the same way as Lemma 2.1, (iv)4. Hence, we can define D(B)=D(A) (see
(1.4)). ' '

(4) The purely imaginary point spectrum of B. Noting that Q is
bounded, and applying Assumption {2, we see that {) has no. axis of sym-
metry. Making use of this fact, and performing calculations similar to those in
Theorem 4.1°% we can obtain the following lemma (see (2.1) for E(x, £)):

vLemma 2.2. The intersection of { # € C; Re ¢ = 0} and thé point
spectrum of B is equal to {0}. The null space of B is spanned by e 8% and

E(x, £ )e "&8V2

We denote by P the projection operator (in E;) upon the null space of B. It

follows from the lemma above and Remark 2.1, (ii) that
PEC(E, E,) for each a,p 0. - (2.4)

§ 3 MAIN THEOREM
We denote by E, | the set of all functions of E, which are perpendicular
(in E;) to the null space of B. In what follows throughout the paper, we denote
some positive constants by ¢, and we use the letter ¢ as a generic constant
replacing any other constants by c. The following theorem is the main result

of this paper:

Main Theorem. For each a = 0, the operator B generates a strongly

continuous semigroup in E_, which satisfies that, for each u,€E, |,
e®u,€E, |, lle®u, |, = cll u,|,exp(—cagt), for each t=0,

where Cggls a 'positivg éonstant independvebnt of tand u,



In order to prove the Main Theorem, we will apply the following lemma,
which will be proved in § 5 (see (2.2) for A):

Lemma 3.1. (i) For any ¢ =0, the operator A generates a strongly
continuous semigroup in E,, which satisfies (see Remark 2.1, (ii), for c,,),

e, =< exp(—c,;,t), for each t = 0.

(ii) Let @, c,;, and C be constants such that « =20, ¢,;>¢;,>0, and C >
0.If f = f(t) is a continuous function frOm [O,+CV>°)t to E, such that (see (2.3)
for K) | | |

Il f(t) |, =Cexp(—c,4,t), for each t = 0,
then ’ |

I f; e TYAK £(s)ds .+ = cCexp(—cj,t), for each t=0.
(iii) Write p=y +id, y,0 €R.If B = y+c¢,,> 0 and f EE,, then,
[0 = ds, [T (e —A") idS S ol £17/8.
In addition to the lemma abové, we need the following key lemma:

Lemma 3.2. L =L(x)=(K—P)( —-A)-_1 is an énalytic operator-valued
function of 4 € D={g €C; Repy =—c,,/2}, and satisfies that L*( 1) EC(E)
for each g € D and that || L) Il = 0 as | ¢ |>+, x €D.

Proof of the Main Theorem. It follows from Lemma 3.1, (i), that ( u«
—A)—1 is an analytic operator-valued function of ¢ € D. Hence we can set the

resolvent equation,

(0 —B) "= (u—A) " Hu—A) " (1-L(g) Lip) (3.1)



where ¢ € .D and B = B—P. We consider the - operator B in place of B, in
order to remove the null space of B (cf. p. 18334). By (2.3-4) and Lemma 3.1,

(i), we easily see that B generates a strongly continuous semigroup in E _,
which is represented in terms of the inverse Laplace transformation of (3.1).
‘Applying Lemmas 3.1-2 and Lemma 2.2 in the same way as pp. 1833-1834"

we obtain the theofem.

Remark 3.3. (i) In pp. 1833- 1834" we do not need to directly apply the
spat1a1 per10d1c1ty condition. Hence w1thout the aid of the condition, we can
apply Lemmas 3.1-2 in the proof above. For the same reason as § 6 we
consider the 4-th power L (/1) in Lemma 3.2. Cf. pp. 433- 434°,

(ii) We can decompose L( ) as follows: L(p) = Lg(g) + Lp(p), where
L(p) = K(p —A) ' and Lp(p) = —P(pu —A)" . We can easily derive
Lemma 3.2 from the following (3.2-5):

Le'(p) € C(Ey for each p € D, - (32)
L' (el = 0 as || —> +o0, 4 € D, (3.3)
Lp(p) €C(E) for each px €D, (3.4)

()l = 0 as || = +00, y €D. (3.5)

Making use of (2.4) and Lemma 2.2, and performing calculations similar to,
but much easier than, those in proving (3.2-3), we can obtain (3.4-5). Hence
we will prove (3.2-3) only. (3.2-3) will be proved in § 6-9.

- §4. THE SOLUTIONS TO (SODE)
By (CP) we denote the Cauchy problem for (SODE) with the initial data,

C(x%,£)0) = (X,E) € (QXRHUF_. (4.0)



See (1.5) for F_. Recall Remark 2.1, (iv). In the same way as pp. 1284-1285°

we can prolong the solution of (CP) by the law of perfect reflection (cf.
(PRBC)), i.e., by S S | c

(x(s0), & (s+0)) |
= (x(s—0),¢ (s—0)—2(N(x(s—0))* £ (s—ONN(x(s—0), (4.2)

where x(s = 0) EF( 9 Q). See §1 for F(2 Q). We denote the prolonge‘d
solution of (CP) by '

(x,€) = ((tX,E), & (£LX,B)). (4.3)

We can decompose 0 XR3 into four disjoint subsets as follows: @ ) X
R’= EUF,UF,UF_, where E=E(3 Q)XR’ and F, = {(x, £ )€ F(3 Q)XR>
n(x)-& =0} For E(0 Q),see §1.If(x, &) = (x(tX,E), £ (tX, E)) does not go
into EUF,, and if x = x(t,X, E) does not collide with F( 2 Q) an infinite
number of times in a finite time interval, then we can prolong the solution of
(CP) globally in time tER in the same way as pp. 1284-1285°

- §5. THE OPERATOR A

Proof of Lemma 3.1. Applying the conservation law of energy (see
(2.1)),

EX,BE) = Ex(—tX,E),§ (—tX,E)), (5.1)

and Lemma 4.2, (ii), we easily see that A (see (2.2)) generates a strongly
continuous semigroup in E_ for each a £0. The semigroup e has the form,

(étAf(-,?))(X,E) = f(x(—t,X,E), £ (—tX,E))e(t, X, E), | (5.2)

where e(t X,E) = exp( —J(: e FEOSEED (£ (—5,X,E))ds). Remark 2.1, (ii),
implies that
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e(t,X,E) = exp(—c,,t), foreacht = 0. : (5.3)

Applying (5.3), (2.3),' Lemma 42 (ii), and (5.1), we can obtain Lemma 3.1 in
the same way as Lemma 3.1* and Lemma 3.3".

Restricting the domain of integration of the Laplace transformation of (5.2)
within a Lebesgue measurable set M & [0,+ o), we define the following

operator:
R M, NX,BE)= ftEM R(p X ENx(—X,E), & (—t.X,E))dt, (5.4)

where R(p tX,Z)=e(tX, Z)exp(— pt), u €D. See Lemma 3.2 for D. We can

obtain the following lemma in the same way as Lemma 3.2, (i)4: :

Lemma 5.1. If 8 = Rep +c¢,;> 0 and M € [0,+0), then

IR(u MINS [ e Pl

§ 6. DISCUSSION ON (3.2-3)
We will seek estimates” which imply (3.2-3). Consider operators of the

following form:
G(pe,T) = Mie” **kR(x [0,TD), (6.1)

where u4 €D, 1=T<+o00, and k,€QR 53), j=1,..,4. See Lemma 3.2 for D.

Here we denote by Q(R :) the set of all the one-rank operators of the form, (ku

(-, " Wx, &)= (u(x, * ). * ))g( &), where the brackets (+,*) denote the inner

product in LR ;). f=f( £) and g=g( &) are infinitely differentiable functions of

¢ €R® which have compact supports. By _ImilAj we dénote the product A A _;
p

=+ A,A, for operators A; j = 1,.,m. Making use of Lemma 1.1, (ii), and
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Theorem V113", we deduce that the operator K can be approximated in B(E)
with a finite sum of operators of Q(R 53). Applying this result and Lemma 5.1,
we can derive (3.2-3) from the following (G.1-2):

G(u,T) € C(Ey for each p €D and TE[1,+0), (G.1)
G T =0 as | 2] — +0, 4 €D, for each TE[1+).  (G.2)

Hence, werhave only to show (G.1-2), which will be proved in §9.
We write (x,,§ ;) € Q XR® as the variable of G( p, T, ie., we write G
(g . Thu = (G(p,Tu( -, )x, & ,). In the same way as p. 1837°, we can

extract the integration kernel of G( ¢ ,T) as follows:

G, Du( -, - Nx, &)= [ , Gulxo, § 9dtd 7, (6.2)

0<t<T|y,<r, i=1,..,

G=G(u X4 & 5 7 ots 7 2tz 7 2te 7 1ty)
i

i=

e ¢(xj)kj( €57 )R(p bx;, 7)), (6.3)

' XjEX(_tj+1,Xj+1, 77j+1), gJ = g (_tj+1vxj+1v 77j+1)9 j = O"'-)S, (6'4)

where dt = dt;>--dt, and dy = d# ;--*d » , Recall (4.3). By k( &, 7, we
denote the integration kernel of k;€ Q(R Z’), imlhod e, (kf( -, - Nx, &) = [
k(& 7 )ix,7)d»,;i=1..4.1r>0is a constant so large that supp k(*, *), j
= 1,..,4, can be contained in {&; | § [=rX{7y; |y |=r]

§ 7. ESTIMATES FOR ] = J(t,X,E)
The purpose of this section is to obtain estimates for J=J(t,X,E). See (4.4).
By x;, €, X, E; we denote the j-th components of x, §, X, E, respectively,
j=1,2,3. We denote the (i,j) component of ] = J(tX,Z) by my = my(t,X,E), i, ]
=1,..6,ie,if1=1,j = 3, then my(tX,E)=0 x(—tX,E)/ X, f1=i=3
and 4< j < 6, then my(tX.B) = Ox(—tX,B)/9 5, , f4 <i<6and1
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= j =38 thenmy(tX,E) = 0 §,_y(—tX,E)/ 90X If 4=1i, =6, then my(t.X,
BE)=0 & ,_—tX,E)/ 0 E,_; We denote the i-th row vectors of ] = J(t,X,E)
by J, = J(t.X,E), i.e., we define J, = J(tX,E)=(m,,....myq), 1 = 1,...,6.

Let b, j = 1...,N, be linearly independent vectors in R", n,N € N. We
orthogonalize these_ vectorsk, ie., We define b, , , j = 1,....N, as follows (we do

not normalize them):
byy = by bupy = b= X (bbb /b §= 1 N—1.

Lemma 7.1. Let 1 < r,T < +oo. If t€[0,T] and (X, E) € D(r) satisfy
(4.6-7), then, fori =1,...,6, ' '

6 %exp(—5c,,t) < 11 X, E) = | JEX,E) = 6 %exp(c,,t).

Remark 7.2. (i) It does not follow from Lemma 4.1 that the integer m of
(II) is essentially bounded in ) X R®. In fact, there is a possibility that this
number goes to infinity as (X,Z) moves, i.e., that the trajectory of x = x(—t,X,
=) tends to follow the boundary surface 9 Q. See p. 391° Hence we need to
prove that the inequalities of Lemma 7.1 hold uniformly for m. Therefore we
have to carefully inspect the change of J] = J(t,X, Z ) before and after x = x(
—t X, E) collides with F(9 Q), i.e., the difference between J(t'(X,E)+0,X, E)
and J'X,2)—0,X,E),n = 1,..,m. -

(ii) Considering the methods employed in prolonging solutions of (CP) (see
8§ 4 and pp. 1284-1285%, we easily see that if t = t and t = s satisfy (4.7),
then

(—tX,B)=x(— 7 x(—s,X,E), § (—s,X,5)), (7.1.1)
E(—tX,B)= &(— 7 x(—s,X,E), §(—s,X,8)), (7.1.2)

where 7 =t—s. Therefore we can regard (x(—t,X,2), £ (—t,X,Z)) as function
of t and (x(—s,X, B), € (—s,X, E)). Hence we can define the following
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Jacobian matrix:
JtsX,B)=0 (x(—tX,B), & (—tX,BE))/d(x(—s,X,E), & (—s,X,B)). (7.2)

From (4.4) and (7.2), we easily obtain J(t,X, 2)= J(t,s,X, E)(s,X,2). Lett {
t'(X,E) and s 1 t(X,E) in this equality. Then we have

J(tn(X',E)JrO,X,E) = UK EN'X,E)—0X,E),n=1,.m, (7.3)

where U'(X,E) = Jts,X,E),n= 1,..m. We will prove that U"(X,

-k
tll"(X.E),Isl%t"(X,E)
=), n = 1,.,m, are orthogonal matrices.

First we will prove that UI(X, Z ) is an orthogonal matrix. In order to
obtain the concrete form of Ul(X, =), welett l_ tl(X, E)ands ? tl(X,E) in

(7.2). Hence we assume that t and s satisfy
0<s<t'(X,2)<t<t(X,E). (7.4)

For simplicity, we write (X, E) as (x(—s,X,E), § (-S,X,VE )), and we wﬁte ¢
and ﬁ as tj(X,E) and tj(_)_(_,g) respectively, j = 1,2. We easily see that t—s = ﬁ
j = 1,2. Hence, it follows from (7.4) that

0<t<z<t, (7.5)
where 7 = t—s. Moreover we deduce thatift}t ands 1 t’, then
r 40, and (XE) = (X,E"Y with X,E)ET'X,E),  (7.6)

where T l(X,E ={x,¢&)=(x(—s,X,E), & (FS,X,E)); s satisfies (7.4)}, that is,

r 1(X,E) denotes a characteristic curve of A which connects (X,E) and

(X E'TY) = (x(—t'X,B), & (—(t'—0),X,E)). (7.7
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Substituting (X, Z) and (7.1.1-2) in (7.2), and considering (4.4), we obtain

Jts.X,E) =) 7 X,E). From (7.5-6) we see that tllti'n'}t] is equivalent to

ot <1<t (x,s)..)}i;?ll =10) (X.E)el'( XE). Hence,

UYX,E) (. XE). (7.8

= lim
140t <1< (X B) (X' ,E) (X E)el (X E)

Let us calculate the right hand side of (7.8). In order to simplify the
calculations, we will introduce a 3-dimensional rectangular coordinate system
(x1,X5,X5) in such a way that the origin coincides with X', that the X,X; plane
(x; = 0) includes the face of @ Q which contains X', and that n(X1)= (1,0,0).
See §1 for n=n(x). By x, &, E jl_o, X, and E; we denote the j-th components
ofx, £, B'7°, X, and E, respectively, j=1,2,3. We denote by F(x, £ ) the i-th
component of F(x, € ),1 = 1,2,3. We define p;, i=1,2,3, as follows: p,=—1,

p:=1,and p,=1.Define 2= & (—(t'+0)X,E).

Lemma 7.3. Ifz | 0 with (7.5), and if (X,E)~> (X',E" ") along T' (X, E),

then J'( 7. X2) converges to a 6 X 6 matrix as follows:
ox(— 1 .X,E)/9X,0€&(— 1 XE)OE; > p;dy i,i=123,
ox(— 1. XE)O9E;—0,ij=1.23,

9 &(—1 XE)IX,
— (FXLE™)— o FXLEVYY/ENT® 1=1,2,3, (7.9)
. , o | .

d&(— 7. XE)oX,—>0,i=123, j=23.
Applying Assumption F to (7.9) of this lemma, we have

& (—17XE)0X,—~0, i =1,23. (7.10)
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It follows from Lemma 7.3 and (7.10) that Ul(X,E) is an orthogonal matrix.
Performing the same calculations as above, we see that UX, ), n =

2,...m, also are orthogonal matrices. Applying these results to (7.3), we have

NEX ENVOX EN = X, E)— 0X,E)l, n = 1,..,m. Combining these

equalities and Lemma 4.2, (i), we see that
e, X, 2I=1J(0,X, 2 )le%2t, for each t=0.

Making use of this inequality, Lemma 4.2, (ii),'almrd the following inequalities
and equalities, we can obtain Lemma 7.1:

1 X E) < | LeX BN 1 IEX BN, i = 1,..6,
I X B T (X, B) = [det(t X, B, OX,E)l = 6"

§ 8. ESTIMATES FORJ] = J(w,)

The purpose of this section is to calculate the rank of J= J(w,) (see (6.6)).
In this section we will prove Lemmas 8.1-4. By making use of Lemma 8.j, we
prove Lemma 8.j+1, j=1,2,3, respectively. The main result of this section is
Lemma 8.4, which will be employed in § 9 to prove (G.1-2). .

Let u;, j=1,...,N, be vectors of R", mNEN. Let ¢ > 0. By U(ul, LUy e:) we
denote the set of all vectors of R™ whose distance from the subspace spanned
by u;, j = 1, .,N, is greater than or equal to €. Let T be a positive constant.
Write Q (r,T) as the set of all vectors of the followmg form: w,= (x4, 7 ,t)E
O XR? X[0,T], where |y J=r; I is the positive constant defined in (6.2). If

wy €0 (e ,17T) =lw,~ (x, 7 o) €EQ(T); 7,€U(0; ),

then we can obtain estimates for the rank of the (Jacobian matrix 8(x3)/ A(7p 4

t,) as follows (we can regard x, in (6.4) as function of w );
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Lemma 8.1. Let ¢ ,T > 0 be constants. We can choose one column:
vector from the Jacobian matrix 0 (x5)/ 9( 7 4, ty) for w € Q ( €,F,T) almost
everywhere so that the essential infimum (in & ( € ,I,T)) of the norm of the
chosen column vector is positive, i.e., there exists a Lebesgue measurable,
integer-valued function G = G(w ,) which satisfies the following (i-ii): .

(i) G(w,) € {1,..,4} for almost all w, € 0 (e ,rT),

(ii) ess inf { [a(G(w ), w ) ; w, € Qe .,r, T} > 0.

We denote by a(k, w ,) the k-th column vector of a(xs)/ O(74t) k=1,.4,

ie.,
alk,w )=(0/0 7 4,)(X51.X32%33), k = 1,2,3, a4, 0 )=(0/0t)(X;3,,X32,X33),

where by Xx;;, 7;; we denote the j-th components of x;, 7, € R, j =123,

respectively, i.e,, X; = (X,X;2X9), ;= (7072 7i3-

Let €, T >0. Write Q4r,T) as the set of all vectors of the following
form: w3 = (X4 7 pts 7 3ty), where x, €Q, |9 =T, 77JER3, 0=t=T,j=34.
We define

DerT) =1{w,= (X7 oty 75t € Q4r,T);
wy = (X4’ ’7 .4ft4) € @ 4( € :r’T)’ ’7 3 e U(a(G(CU 4)} w 4)9 € )}1

where a( *+ ,w,) and G = G(w 4) are those in Lemma 8.1.If w4 € Qg( er T,
then we can obtain estimates for the rank of 9 (x,)/ d( 77 oto 7 3,t3) as follows

(we can regard X, in (6.4) as function of w 5):

Lemma 8.2. Let ¢ ,T > 0. We can choose two column vectors from the
Jacobian matrix O (x,)/ 0 ( 7 4t 7 3t for w,€ Q4 e 1, T) almost everywhere
so that the chosen column vectors é_.ré uniformly linearly independent for
almost all w ;€ § 4 € ,5,T), i.e., there exist Lebesgue measui‘able, intéger-
valued functions H; = H(w 3), j = 1,2, such that, for almost all w; €O 4 ¢,
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ryT)) : . . N
(i) H_)( w 3) & ’1 ,...,8‘, ] = ]_,2, and Hl( w 3) #: Hz( w 3),

(ii) b(H(w 3),w 3), j = 1,2, are uniformly linearly independent.
We denote by b(k, w ;) the k-th column vector of © (x,)/ O (7 4t, 7 3t), k =
1,.8, ie., |

bk, ws) = (8/0 7 4,) (X1 %5055, k = 1,2,3,

b(4,w3) = (9/9t)(x,,,%55.X,3),

b(k,ws) = (8/3 74, (Xe1X52%,2), k = 5,6,7,

b(8,w4) = (3/0ty)(Xy1,%52,%53).

Let € ,T > 0. Write Q ,r,T) as the set of all vectors of the following
form: w, = (X4, 7 oty 7 3ts 7 2ty), Wherex, €Q, 17 | =T, 77j€R3, OétjéT, j
= 2....,4. Define : ' ‘

Q 2( € ,r,T) = iw 2= (X4, n wts n 3,t3, 7 2,t2) S Qz(r)T);
W3= (X7 4ty 738) €D (e 1T), 7,€EUDBH(w,), ws), bH{ws), ) )l

where b( * ,w 5) and Hj=Hj(w3), j=1,2, are those in Lemma 8.2. If w,E€ Q (¢,
r,T), then we can obtain estimates for the rank of O (x)/ @ (7 yty 7 3ts 7 2ty

as follows (we can regard x; in (‘6.4) as function of w,):

Lemm’a 8.3. Let ¢ ,T > 0. We can choose three column vectors from the
Jacobian matrix 9 (xy)/ @ ( 9 4ty 7 3t 7 b)) for @ , € & 4 € ,r,T) almost
everywhere so that the chosen column vectors are uniformly linearly
independent for éhhost all w 5 €n o « I, T), ie., there ex;lst Lebesgue
measurable, integer-valued functions I = I( w ,), j = 1,2,3, such that, for
almost all w,EQ (e ,I,T),
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() (wy) € 11,12} for j = 1,2,3,and [(w ) F [(w,) ifi Fj, i,j~

1,2,3, ' -
(ii) c(I( w 9), @ p), j = 1,2,3, are uniformly linearly independent,

where we denote by c(k,w ,) the k-th column vector of 9 (x,)/ (7 4ts 7 3ts

7oty k=1,.12.

Let ¢, T>0. Write Q,=Q ((r,T) as the set of all vectors of the form (6.5),
wherex, €Q, |7 |<r, 5,€ER’, 0 <t,< T,j = 1,..,4. Noting that if » € O,
(e ,1T), then w;; € O;y(e 1, T), j=2,3, we can decompose Q (r,T) into four

4
disjoint subsets as follows: Q(r,T) = N(e¢ ,r,T)U(gJZSj( e I, T)), where
P

S e r.T) = {w; = (X4 7 4ty 7 3ts 7 os 7 1,t) € Q(r,T);
= (X7 oty €8 (e, T

SB( € ’roT) = "w 1 = (X4, '7,4’t4’ 77 3st31 77 Z’tZ' 77 1rt1) € Ql(l',T), )
w 4 = (X4, v 41t4)e @ 4( € vr1T)’ w 3 = (X4, 77 49t41 77 3vt3)e Q 3( € 9rrT)h

Si(e 1. T) = {w; = (X4 7 pts 7 3ts 7 2t 7 18D € Q4(F,T);
w 3 =(x4’ 77 4vt4y 77 3vt3) S Q 3( € ,r’T)a w 2 = (X4, 7 4’t4; 77 3vt3’ 7] 29t2)E Q 2( € yr,T)L

N( € ,f,T)E{w 1= (X4, 7 ‘4,t4» 7] 3,t3, ; aba, Ui 1,t1) €0 1(rvT);
Wy = (X 7 4l 7 3la 72t € 0o (e T

We denote by 7 ; , the k-th component of 7, k=1,2,3, j=1,....4. Write ¢ (i), i
=1,.15,as 5;,j= 1.4, k=123,t,, {= 2,34, respectively. We do not

need t,.

Lemma 8.4. (i) Let j = 2,3,4. There exists;‘a positive constant c&‘; such
that, for each e, T >0, x,, t,, kE{1,...4}, and 7, 1€{1,..4\{j}, |

3, : a—j -1
meas {7 ;ER @ =(xy 7 4ty 7 3ty 9 2ts 7 1t €S € LT} Sl el
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where we denote the Lebesgue measure of 'a set YCR® by meas Y.

(ii) Let ¢ , T > 0. Then, there exist Lebesgue measurable, integer-valued
functions K; = K(w,), i = 1,...,6, such that, for almost all 1EN(e 1, T),

(1) K{(w ) € {1,..,15} for i = 1.6, and K{w,) ¥+ K(w,) ifi # i 1L,j=
1,..,6,

(2) essinf | det(d(xq &)/ (L (K@) & (Kl D)) > 0.
weN(er,T) : S .
§ 9. PROOF OF (G.1-2) |
Decompose G( ¢, T) as follows (see (6.2-3)): G(u ,T) = é‘.l Gl e, p T,

where

Gle ,,Q L Tu(s ’.))(,X4’ )= f ¢kGu(xo, 8 odtd g,

k=1,.4.By ¢ = ¢ dwy), k = 1 4 we denote the characteristic fupctions
of N(e,r,T), S (¢ ,r,T), k = 2,3,4, respectively. The lemma bélow implies that
G(p,T) is decomposed into the principal part G( €, u ,r,T) and the negligible
parts G ( e,z I, T), k = 2,3,4. Applying this lemma and Theorem VIL12, (a),
p. 200" we can easily obtain (G.1-2).

Lemma 9.1. () | G e, u L. DI = cg, e ' k = 2,3,4, for each ¢ >0,
g €D, and T 6[1,+'00), where ¢y, is a positive constant which depends on T,
but is independent of €, g, and T. ‘

(ii) If 1=T<+o0 and e >0, then

(1) Gye,p I T) € CLYAOQXR?) for each p €D,

2)NIG(e,p,r, T — 0 as|puf>too, u €D.
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