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NONLINEAR SCHRODINGER EQUATIONS
IN FRACTIONAL ORDER SOBOLEV SPACES

| T. 0ZAWA (1) '}% 180)
Department of Mathematics, Hokkaido University

In this note I describe some recent work on nonlinear Schrédinger equations, done
jointly with M. Nakamura [27, 28]. We consider the nonlinear Schrodinger equations
of the form '

i0yu + Au = f(u), (1)

where u is a complex-valued function of (¢,2) € R x R*, §, = 8/8t,A is the
Laplacian in R™, and f is a complex-valued function, a typical form of which is the

single power interaction

fu) = Auftu | (2)

with A€ Rand 1< p< oo.

There is a large literature on the Cauchy problem for the equation (1) and on
the asymptotic behavior in time of the global solutions [2, 4, 5-9, 12-17, 22, 25,
and references therein]. The Cauchy problem for (1) has been studied mainly in
the Sobolev spaces H™ of integral order m, especially m = 0,1,2, while there
arises a new interest in the treatment of the Cauchy problem in the Sobolev spaces
H* = (1— A)~*/2L?(R") of fractional order s with 0 < s < n/2. In [5], Cazenave
and Weissler proved that the Cauchy problem for (1) with (2) has global solutions
in H* for the data ¢ € H* with ||(—A)*/2¢; L?|| sufficiently small, provided that

p=1 +4/(n —2s) and [s] < p—1, where [s] is the greatest integer that is less than
or equal to s. In [14], Kato generalized the results in [5] in some directions. In [7],
Ginibre, Ozawa, and Velo proved the existence and asymptotic completeness of the
wave operators for (1) with a class of interactions including (2) on small asymptotic
states in H’, provided that 1+ 4/n < p <1+4/(n — 2s) and s < min(2,p). In
[22], Pecher proved that the Cauchy problem for (1) with (2) has global solutions
in H* for small data in H*, provided that 1 +4/n < p < 1+ 4/(n — 23) and
1 <8< min(4,p+1) or4 < s < p+ 2. In connection with the H* theory for
(1) with (2), a homogeneity argument indicates that the power p in (2) is critical
[resp. subcritical] at the level of H* if and only if p = 1 + 4/(n — 25) [resp.



p < 1+4/(n — 2s)].: To sum up with this definition, the critical case is studied in
 [5, 7, 14] and the subcritical case is studied [7, 14, 22].

The purpose of this paper is to study the H* theory for (1) with a class of
interactions including (2) in more detail both in the critical and subcritical cases
in the framework of low ehergy scattering. We prove the existence and asymptotic
completeness of the wave operators for (1) on small asymptotic states in H* in the
critical case with s < min(n/2,p) as well as in the subcritical case with s < p.
Moreover, smallness assumption is shown to be necessary only for the L? norm of
the fractional derivative (—A)*®/2¢ of the data ¢ € H*, where 5o = n/2 -2/(p—1).

Here, when p is not an odd integer, an additional assumption such as s < p
is required to keep the smoothness of f compatible with the behavior at zero.
Concerning the number so, we notice the following simple facts: (1) s = 8¢ in the
critical case. (2) 8¢ < s in the subcritical case. (3) p is critical at the level of H*°.
(4) 0 < 89 < m/2.

As we see above, as rega:rds the H’-theory with 0 < 8 < n/2, the power behavior
of the nonlinearity determines the order of the Sobolev space where the smallness of
the data is imposed to ensure the existence and uniqueness of global H*-solutions.
This is the right phenomenon, as is usual with other nonlinear evolution equations
with dilation structure, such as the heat equﬁ.tion with single power interaction and
the Navier-Stokes equations.

In contrast, when s > n/2, no spéciﬁc behavior of the nonlinearity is required
of the H*-theory for (1) at least locally in time. In fact, when s > n/2, for
the existence and uniqueness of local H*- solutions one has only to assume that
f € C*(C; C) with £(0) = 0, where differentiability refers to the real sense and k
is the smallest integer greater than or eqﬁal to s. The proof depends on the usual
Sobolev embedding H* C L™ for s > n/2 in an essential way.

The case 8 = n/2 may therefore be regarded as the borderline in two aspects:
(1) No power behavior of interaction amounts to the critical nonlinearity at the
level of H™/2. (2) Poinwise control of solutions falls beyond the scope of the H™/2-
theory, so that any argument similar to that of the H’-theory with s > n/2 breaks

down even for local theory without specific behavior of interaction.
In addition to the critical phenomena described above, H"/2-solutions deserve
attention as finite energy solutions for n = 2 and as strong solutions for n = 4.
We prove the existence and uniqueness of global H™/2-solutions to (1) with

small Cauchy data under the nonlinearity of exponential type. This is reminiscent
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of Trudinger’s inequality, which replaces the Sobolev embedding in the limiting case
on the basis of the exponential estimates in terms of functions in the critical order
Sobolev space H™/2,

To state the results precisely, we use the following notation. For any » with
1 <7< oo, I" = L"(R™) denotes the Lebesgue space on R™. For any s € R
and any r» with 1 < » < oo, H! = (1 — A)~*/2L" denotes the Sobolev space
defined in terms of Bessel potentials. For any s € R and any »,m with 1 <7 m <
00, B} ,,, denotes the Besov space defined as the space of distributions u such that
{2%7]|¢; * u; L7||}s24 € £™, where {;} is a dyadic decomposition on R™. For any
s € R and any » with 1 < r < oo, H! denotes the homogeneous Sobolev space
defined as the space of classes of distributions » modulo polynomials such that
(—A)*/?u € L”. For any s € R and any »,m with 1 < »,m < oo, B,‘,m denotes
the homogeneous Besov space defined as the space of classes of distributions u
modulo polynomials such that {2*7||9; xu; I7||}52 _ , € £™, where {4;} is a dyadic
decomposition on R™\{0}. We refer to [1, 10, 24] for general information on Besov
and Triebel-Lizorkin spaces and their homogeneous versions. For simplicity, we put
H*=H;, H* = H;,B} = B} ,, B,‘ = 1.3,',’2. For any interval I C R and any Banach
space X we denote by C(I; X) the space of strongly continuous functions from I to
X and by L9(I; X) the space of strongly measurable functions » from I to X such
that ||u(-); X|| € LI(I). Let U(t) = exp(itA) be the free propagator, namely the
one parameter group which solves the free Schrédinger equation. For any » with
2 <7 < o, we define §(r) = n/2 — n/r. Concerning the space-time integrability
properties with respect to U(:), it is convenient to call a pair of exponents (g, )
admissible if 0 < 2/q = é(7) < 1, which is understood to be 0 < 2/q = §(r) < 1/2
when n = 1. The Cauchy problem for the equation (1) with data u(te) = U(to)d

at time ¢y will be treated in the form of the integral equation

oft) = Ut ~to)alto) =i [ Ut~ ) (ulr))dr ®)
— U(t)p— i(Gu F0))(2),

where the second line is understood to define the integral operator G;,. The first
line of (3) is formally equivalent to (1) with Cauchy data u(te) given at finite time
to, while the second line will be used to describe the Cauchy problem for (1) with
data ¢ at time o = 0 as well as at {;g = too. The integral equation (3) will be
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studied in the spaces X* and Y* with s > 0 defined as

xX'=C(®;HE)n ()| IYR;B}),
0<2/g=6(r)<1
Y'=CR;H)n (]| LYR;H)).
‘ 0<2/q=6(7)<1
Note that X* C Y. For the nonlinear interaction f behaving as a power p at
zero, we introduce the following assumptions (A); and (B), with integer k with
0<k<p '

(A f € C*(C;C) and fU)(0) = 0 for all j with 0 < j < k. There exists a
constant C such that for all z;,2; € C

C’(Izllp""l + IZzlp—k_l)lzl —_ z'zl if P> k+ 1,

(*) (5.} — §(4) <
| (z1) — F¥(22)] < { Clz _z2|p—7¢ f p<k+1.

(B)r f € C*(C;C) and fU)(0) = 0 for all j with 0 < j < max(k —1,0). There
exists a constant C such that for all z€C

1#M(2)| < Clapr™.

Here f(9) denotes any of the j-th order derivatives of f with respect to z and Z
and |fU)| denotes the maximum of the moduli of those derivatives. Note that (A)j
implies (B); and that (A), [resp. (B)i] implies (A); [resp. (B);] for all j with
0 < j < k. Single power interaction (2) satisfies (A4)x with 0 < k < p (see [11]).
With the notation above we now state the main results in this paper. Theorem
1 is devoted to the critical case and Theorem 2 is devoted to the subcritical case.

For any s,p,e with s > 80 =n/2—2/(p—1) > 0, > 0, we define
B.={¢ € H||$; H"®|| < e}.
Theorem 1. (I) Let s and p satisfy

0<s<n/2,
s<p=1+4/(n—-2s).

Let f satisfy (A)[,). Then there exists ¢ > 0 with the following property.
(1) For any data ¢ € B, at time to = 0 the equation (3) has a unique solution
ue X’
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(2) For any data ¢, € B, at time t; = +oo the equation (3) has a unique solution
v € X’ such that |

[u(t) — UE)bs: H*l| — 0 as ¢ — +oo (4)s
(3) For any data ¢_ € B, at time tg = —oco the equation (3) has a unique solution
u € X°* such that | ‘

lu(t) - U@)$p-; H*|| — 0 as ¢t — —oo. (4)-
(4) For any ¢ € B, at time to = 0 there exists a unique pair of asymptotic states
¢+ € H® satisfying (4)+, where u is the unique solution given by Part (1).
(II) Let an integer s and p satisfy

0<s<n/f2,
s<p=1+4/(n—2s).

Let f satisfy (B),. Then all the conclusions of Part (I) hold if X* is replaced by
Y* throughout the statement of Part (I).

Remark 1[2, 6, 15]. The power p = 1+ 4/(n — 23) comes out as a critical one
in H* in the sense that ||u; H*|| is invariant under the dilation u — u, if and only
if s = n/2 —2/(p— 1), where ux(t,2) = A~/ P~y(A~2¢, 1" 12) with A > 0 and
the dilation above leaves (1) with (2) invariant. Another characterization is given

as the power which makes the estimates of the form
1Gaf(u); L(R; Hy)|| < Cllu; L4(R; B)|IP

with any admissible pair (g, #) invariant under the dilation v +— u,, where u)(t,z) =
u(A72%, A7 12) with A > 0.

Remark 2. In part (I) of Theorem 1, the ‘assumption s < n/2 is required to
- keep the critical power finite, while the assumption s < p is required to keep the
smoothness of the nonlinearity f compatible with a power behavior such as (2) at

zero when p is not an odd integer. The condition
0 < s <min(n/2,1+4/(n — 2s))

is equivalent to:
(a) s€(0,n/2)ifn <7,
(b) 3 € (0,5-(n)) U (s4+(n),n/2) if n > 8, where

s:(n)=(n+2£(n’ —4n— 28)1/%) /4.



Compare those two conditions (a) and (b) with those given in [14]. The restriction
- 8 < p may be partially removed by taking into account the regularity in time

direction in more detail(see [22]).

Remark 3. Theorem 1 shows the existence and asymptotic completeness of the
wave operators Wi defined on B. as the maps ¢4 — u(0) = ¢. The scattering
operator operator S is then defined on B.as S = W_:l o W_. Note that smallness
assumption is imposed on the data only through the fractional derivative of critical

order n/2 — 2/(p — 1), which is equal to s in the critical case.

Remark 4. The existence and asymptotic completeness of the wave operators
has been proved in [25] for (1) with (2) with p = 1+ 4/(n — 2),n > 3, on small
asymptotic states in H!. A part of the result in [25] was then reproduced in [17].
Part (1) of Theorem 1 (I) is proved for (2) with [s]+1 < p =1+ 4/(n — 25) and
0 < 8 < n/2. Related results were proved by Pecher [19, 20] for the nonlinear
Klein-Gordon equation in H' with p=1+4/(n —2) and = > 3.

Theorem 2. (I) Let s > 0 and p > 1+ 4/n satisfy

00 if 8>n/2, |

<p<
ssPp {1+4/(n-—2s) if 8<n/2.

Let f satisfy (A)[,). Then there exists ¢ > 0 with the following property.

(1) For any data ¢ € B, at time to = 0 the equation (3) has a unique solution
v € X*. Moreover, there exists a unique pair of asymptotic states ¢+ € H*
satisfying (4)4.

(2) For any data ¢, € B, at time ty = 400 [resp. ¢_ € B, at time to = —oo] the
equation (3) has a unique solution w € X* satisfying (4); [resp. (4)-].

(II) Let s > 0 be an integer and let p > 1+ 4/n satisfy

1) if 8>n/2,

<
s"'p<{1+4/(n—2s) if s<n/2.

Let f satisfy (B),. Then all the conclusions of Part (I) hold if X* is replaced by
Y* throughout the statement of Part (I).

Remark 5. Theorem 2 shows the existence and asymptotic completeness of the
wave operators on B, for (1) in the subcritical case. Note that smallness assumption
is imposed on the data only through the fractional derivative of critical order n/2 —
2/(p — 1), which is less than s in the subcritical case. For the Cauchy Problem in
both critical and subcritical cases the observation of this kind is made by Kato[14].
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Remark 6. The assumptions of Theorem 2 cover for instance the case where
n=3,p=1+4/(n—2)=5,s =2,8 =1 [25], and therefore the result of Theorem
2 gives a partial answer to Question 4 of Kenig, Ponce, and Vega[15] under the
smallness assumption on ||¢; H!||. Related results were proved by Rauch[23] for

the nonlinear Klein-Gordon equation with n = 3, P=258=2,8 =1

To describe the nonlinear interaction f with an exponential growth at infinity
as well as with a vanishing behavior as a power at zero, for A > 0 we introduce the
following assumptions (C),, with m > 1 and (D), with m > 0.

(C)1 : f € CY(C;C) and f(0) = 0. There exists a constant C such that for all
ze€C

()] < OMNT e,
(C)m form >2: f € C™(C;C) and f(0) = 0. There exists a constant C such that
foralze Cand 2<k<m

If'(2)] < CeM*’|z),
1F®(2)| < ceMl’.

(D)o : f € C(C;C) and f(0) = 0. There exists a constant C such that for all
21,22 € C

£(z1) = f(z2)] < O |z [* + X2 |z *) |21 — 24,
(D) for m > 1 : In addition to (C)m, f(™ satisfies the estimate for all z;,z, € C
£ (z1) = F(z2)] < O(N + Mol 21 — 2.
We solve the equation (3) in the Banach space Z defined by
Z=C®;H"*)n (| LYR;HM?) if n is even,
o 0<2/q=6(z)<1 '
Z=C®;H”*)n (| ILYB;B’NBM?) if a isodd.
0<2/q=6(7)<1

Theorem 3. Let n > 1. If n is even let f satisfy (C),/; for some A > 0. If n
is odd let f satisfy (D)n-1)/2 for some A > 0. Then there exists ¢ > 0 with the
following property. |

(1) For any data ¢ € B, at time to = 0 the equation (3) has a unique solution
u € Z, where B, is the ball in H™? with center 0 and radius e. Moreover there
exists a unique pair ¢ € H"/? satisfying (4)+ with s replaced by n/2.



(2) For any data ¢, € B, at timety = +oo the equation (3) has a unique solution
u € Z satisfying (4)4 with s replaced by n/2.

(3) For any data ¢_ € B, at time tg = —oo the equation (3) has a unique
solution u € Z satisfying (4)— with s replaced by n/2.

Remark 7. The assumptions of the theorem above cover for instance the nonlin-

earities of the form

f(u) = :t(eAl"I’ —1-Au/ )u for n=1,
Fu) = +(eM*’ —1)u for n=2,3,
f(u)= (e’ —1) for n >4,

with A > 0, which need not be the same as that of (C) or of (D) -

Remark 8. In the framework of pure H’-theory the nonlinearity is required to
behave as a power uP at least p > 1+ 4/n at the origin. On the other hand,
the nonlinearity is required to have the differentiability of order greater than or
equal to n/2 at the origin. To take those requirements into account, it is sufficient
to suppose that the nonlinearity should behave as a power u® for n = 1,4® for
n = 2,3, and u? for n > 4 to keep everything smooth. This is the reason why we
have iniposed additional power behavior at the origin of the nonlinearity. Although
there is a room to reduce the order of power behavior at the origin to the minimal
value 1+ 4/n, that is outside the purpose of this paper since we intend to keep the

exposition not too technical.

Remark 9. To our knowledge there is no other work to treat the Schrodinger
equation with nonlinearity of exponential growth in the H*-theory with s < n/2.

In view of Trudinger’s inequality the growth rate as Azl
g 4

at infinity seems to be
optimal at the level of H n/2 Note that the L®-norm is out of control of the

H™/2-norm even when the latter is infinitesimally small.

Remark 10. The theorem above proves the existence and asymptotic complete-
ness of the wave operators W : ¢4 — u4(0) = ¢ on the small asymptotic states ¢4
in H/2,

- We now give a brief sketch of the proofs. As usual the method depends on a

contraction argument on (3) in X = X*,Y* or Z with metric on LY(R; L") for an
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admissinle pair of exponents (g, 7) in which the Strichartz type estimates for the free
propagator fit naturally. For that purpose we prove that all the norms appearing
in the definition of X are reproduced by the right hand side of (3) and that the
metric on L(RR; L") is contracted. At a technical level we need the following key
estimates. We use Lemma 1 for the proof of Theorems 1 and 2, while Lemma 2 is

required to estlma.te the exponentlal functlons from Theorem 3.

Lemma 1. Let p and s satisfy 1 < p < oo and 0 < 3 < p. Let £,r, m satisfy
1<f<r<oo,l1<m<oo,1/t=1/r+(p —kl)/'m. Let f € Cl¥)(C; C).

(1)When s is not an integer, assume in addition that »,m > 2 and s < p and that
f satisfies (A),). Then |

I£(u); Bill <Cli; BSIP s B2l if m < oo,
1) B <Clhus B+ 1ws =12 fus Byl it m=co.

(2)When s is an integer, assume that f satisfies (B)[,]. Then

[1£(u); HE || < Cllu; L™ P~ u; By |-

Lemma 2. Let 1 < » < oco. Then there exists a constant Co > 0 such that for
any q with r < g < oo the following estimates hold.

s L[| < Cog/+ =D/ Frm/3| 1=/ ; 17 |5,
s BYI| < Cogt >+ =D/ o Fro/2[1= ) a; BY 7.

- The proof of Lemma 1 follows closely that of [7; Lemma 3.4] in the sense that we
make use of an equivalent norm on Besov spaces in terms of modulus of continuity
with the second differences, though actual proof is rather involved because of higher
derivatives of functions. Lemma 2 follows from [18; Inequality (2.6)] and convexity

inequalities between Besov and Sobolev spaces. See [17, 18] for details.
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