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Characterization of the Domain of Fractional Powers of
a Class of Elliptic Differential Operators with
Feedback Boundary Conditions

RS TR @%‘KI@% (Takéo Nainbu)

1. Introduction

We consider in this paper a system of linear differential operators (£,7) in a
bounded domain {2 of R™ with the boundary I' which consists of a finite number
of smooth components of (m — 1)-dimension. Actually, let £ denote a uniformly elliptic
differential operator of order 2 in (2 defined by

_ LR ,
where a;;(z) = a;i(z) for‘lv <4, j<m,zx¢€ ﬁ, and for some positive 6
> (@€ > 6EPR, V= (&, ,bm) eR™, Ve 2.

i,j=1
Associated with £ is a boundary operator 7y of the Dirichlet type (case I) or 75 of the
generalized Neumann type (case II) defined by

U = u’F, and

m

ou . Bu
=g +ol@u= 3 O | +onl |
3,j=1
respectively, where (v1(£), ..., vm(£)) denotes the unit outer normal at £ € I'. Necessary

regularity on {2 and on I" of coefficients of £ and 7 is assumed tacitly (see, e.g., [1, 4,
8,9, 14]). Let us define the linear operators L; and L, in L?(£2) by

| | Liu=Lu, weD(Ly)={ueH*2); u=0}

and o '
Lyu=Lu, wueD(Ly)={ueH*(R); m2u=0},

respectively. The operators L; and Ly are classical and very standard. Among the well
known properties, their fractional powers are of our special interest. In {3, 5], a concrete
characterization of the domain of fractional powers of Ly and Ls is obtained. A part of
these results played an important role in some problems of boundary control systems [10,
11, 12]: The boundary control problem is reduced to a distributed control problem, i.e.,
a problem with a homogeneous bounday condition, by a simple transformation of the
state. However; they do not provide us a satisfactory means, for example, in stability
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analysis of boundary feedback control systems [13]. The study of £ with feedback
boundary condition and its fractional powers then becomes necessary. The objective of
this paper is to develop the study of fractional powers of linear operators M; and M
introduced just below. As far as the author’s knowledge, basic properties of M; and
M, are not well known, in contrast to the case of L; and Ls.

- Let us define the linear operators M; and M, in L?(2) by

P

Miyu=Lu, ue D(Ml) = {u e H3(2); mu = Z (u, wg) o hx on F}, (1.1)
' k=1
and
P
Myu=Lu, ueD(Mp)= {u ¢ Hz((z) =Y (u, wi) . by on F}, (1.2)

k=1

respectively. Here, (-, -), and (, -),, denote the inner products in L?(£2) and L?(I"),
respectively, p a positive integer depending on the control problems under consideration,
and necessary regularities for the functions wy and hj are assumed in the following
sections. Thus, the boundary conditions for M; and M, are described as a feedback
type. The boundary control system corresponding to, for example, M; is described by

% +Mju=0, t>0, u(0)=ug v (1.3)
in L2(£2), or
Ou
5 +Lu=0 in £,
P
l Z u, wg) o e on I, (1.4)

The operators M; and M, are not a standard type in the sense that the boundary
conditions are composed of terms of local nature (7; and 75) and those of global nature
((-, wx)p and (-, wx)). A particular difference between M; and M, lies in accretive-
ness. In fact, it is easily shown that M (or its right shift M5+ ¢, ¢ > 0, if necessary) is
m-accretive, while M; is not! Thus, different approaches are necessary for M; and M.

Throughout the paper, all norms will denote L?({2) - or £(L?(£2)) - norms. In
Section 2, some well known facts are reviewed and preliminary results for M; and M,
are developed, where basic assumptions and notations are introduced. In Section 3, the
main results and their proofs are stated, where the domains of fractional powers for M;
and M, are characterized in terms of Sobolev spaces. Since m-accretiveness for M; + ¢
is not expected, the reader will find a considerable difference between M; and Mj in
studying their structures. The results turns out to be a striking extension of Fujiwara’s
and Grisvard’s characterization [3, 5] stated in Section 2. Based on the main results,
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an application to robustness analysis of a boundary feedback control system is briefly
stated in Section 4. Finally the concluding remarks are stated in Section 5, where we
discuss versions of the main results occuring due to the replacement of some parameters
in My and M,. :

2. Preliminary results
Let us begin with reviewing the well known spectral property for L; and Lj. There

is a sector ) _o =2 —a, a > 0, such that )__, is contained in the resolvent sets
p(L;), i = 1,2 and that the following estimates hold:

-1 const = .
(A= L)~ “‘1+|AI A€dia, =12 (2.1)

where ). = {A € C; 6y < |arg A| < 7}, 0 < p < m/2, and the upper bar means the
closure of a set. Choose a positive constant ¢ (> «), and set L, = L; +¢, i = 1,2.
Then, fractional powers of the operators Li. and Ly, are well defined. In order to
characterize the domains of L¢, and LS, 0 < 6 < 1, it is assumed in the rest of the
paper that o(¢) appearing in the boundary operator 7, has a suitable smooth extension
to £2. The distance from z ¢ R™ to I is denoted by ((z). Then we have the following
two fundamental theorems of (3, 5]:

Theorem 2.1. Case I (the Dirichlet boundary condztzon) The domain of the
fractional powers LY, is characterized as follows: ‘

6 DUL) = H¥(@), 0<0< ¥
(ii) D(L1/4)—{ueH1/2(9 / |u|2d:v<oo} and

(i) D(LL) = HX(@), ;<0<1,
where the space H,‘;‘O(Q) s déﬁned by
H,YO(Q) = {u e H*(2); 'u,lpz Oonl}, a> 3" (2.2)

The generalized Neumann case is somewhat simpler than the Dirichlet case:

Theorem 2.2. CaseIl (the generalized Neumann boundary condition). The domain
of the fractional powers LY, is characterized as follows:

i) DL8)=H*(0), 0§9<§;
2¢ 4

(i) DL = {we HY/2(9); /Q $|Tgu|2dm<§o}; and

(iii) D(L8,) = {ue H*(2); ou=0 on I}, Z <f<1,

where T is a first order differential operator given by

ToUu = _g_{ + o(z)u. (2.3)
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The proof of Theorems 2.1 and 2.2 is carried out by transforming first a class of functions
in a neighborhood of I" into functions on the half space Rym_l_ and then introducing
operators of extension to the whole space R, e.g., a reflection operator ‘with respect
to the hypersurface {y,, = 0} and operators of restriction to Ry '

When L; and Ly are replaced by M; and Mj, respectively, it is natural to expect
that the feedback boundary condition would appear in the above theorems. In fact, this
expectation is true, and the corresponding results are stated in Section 3. We develop
here some basic properties of M; and M,. Most fundamental is the existence of the
resolvents and their decay estimates. Henceforth ¢ denotes a various positive constant
independent of arguments under consideration unless otherwise indicated. Our first
result is stated as follows:

Theorem 2.3. (i) Casel (the Dirichlet 'boundary condition). Let us suppose that
wy ’s and hy’s in My satisfy the assumption

wi € L2(2), and hie H¥X (D), 1<k<p. S (249)

Then the domain D(M,) is dense.' There is a sector f-ﬁ = _i‘— 8, B > a, such that
>__p is contained in the resolvent set p(My) and that the following estimate holds:

- )7 < il AT 25

(ii) Ca,se IT (the generahzed Neumann boundary condztzon ). Let us suppose that
wi’s and hg’s in My satisfy the assumption

wi e LA(I), and hye HY2(), 1<k<p. (2.6)

Then the domain D(Ma) is dense. There is a sector i—_,, = —i — 7, ¥ > a, such that
2_7 is contained in the resolvent set p(Ms) and that the following estimate holds:

I0=M) 7 € T2 N X 27)

From the control theoretic viewpoint, it is interesting to investigate the adjoint
structures of M; and Mo. In fact we have the following results:

Proposition 2. 4. We assume that the conditions (2.4) and (2. 6) are satzsﬁed in
Case 1 and Case 11, respectively.
(i) The adjoint operator of My is described by

) o . .
Ov
M{v=L" —, h
v = _”+;<3u’ k) e | (2.8)
ve D(M}) = HA(2) N H}(2) = D(Ly),
where L£* denotes the formal ad]omt of L:
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(ii) Assume that wy’s in-Ms belong to H'/ 2(F) in addition. The adjomt opemtor
of My is then described by

Myv = L%,

veD(3) = {ve HAQ); r5v =Y (v, i) pun} (29)
' ’ k=l

where the pair (L*,T5) denotes the fomal adjoint 0f '(L, T2). V

Proof of Theorem 2.3.

Although Cases I and II look similar, we need different approaches. In fact, a
sesquilinear form is available in Case II, while it is not in Case I.

Case I. Let us consider the boundary value problem

(A Lu=0 in and Tlu—ulp-f onrI

for any given f € H3/2(I"). There is a unique solution u ¢ H2(2)NH} ([2) if Xisin p(Ly),
and the solution u'is denoted by Ni()\)f. The solution u is exptessed, for example, as

u = Nl(A)f - le — (A - Ll)_l(/\.‘_ ‘C)lea

where R; denotes a linear operator belonging to £(H3/2(I"); H2(2)) such that [8] °

e ad PRl - .
“Rif o= f, and Ele r_ 0. . (2.10)

The operator R; is not uniquely determined. We need the following lemma regarding
the behavior of Ny (), the proof of which is omitted:

Lemma 2.5. Assumption (2.4) implies that
(N1(Mhj, wk)g — 0 as |A| = oo, Aep(Ly).

For a given f e L2((2), let us consider the problem
B p ) |
u=\=L)7 4+ (u, wk) g N1(W)ha. (2.11)
k=1
If the problem has a solutioh u eH 2(Q), this solves the boundary value problem
A=Mu=f. |

Suppose for a moment that (2.11) admits a solution . Then it is immediately seen
that, for a sufficiently large |\

(w, W)y = (1= B(N) (A= L)L f, w)y (2.12)
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where (-, w) , denotes a px 1 column vector whose k-th component is glven by () Wk) g »
and D(A) the p X p matrix given by

20) = | (s w1700 ).

Note that (1 — &()\))~! exists when |A| goes to oo, due to the estimate in Lemma 2.5.
By substituting this into (2.11), u must have the expression:

u= A= L) + 30 [1= 20 MO - L) S g | Mk (213
k=1 : : : ,

Conversely, it is easily seen that u given by (2.13) satisfies the relation (2.12), which
immediately leads to the equation (2.11). Uniqueness of solutions to (A — Mj)u = f
is almost immediate. The estimate (2.5) with some 3 > 0 is derived from the above
expression (2.13) and Lemma 2.5. :
Denseness of D(M;). Let us choose alke Z_.ﬁ We only have to show that the

relation
(A= M1)7', @) =0 for Vf e L3(®2)

implies that ¢ = 0. We see from (2.13) that

(=200 ™A= L), w)g | (MW, @)

M'd

=((A-L)7 ', 0o +
k

1

= (A=L)7f, @) + 3 a (A= L) U, widyg

M

1

),

M~ 7

= (£, R=L) ™ (o +

k

Il
A

that is . v
A—=L})"~ ((p—l—Zakwk) 0, or <p+ZEk‘wk=0,
k=1
where |
(a1 -+ ap) = ((Nl()‘)hh Plg - (Ni(W)hy, w)g)(l - 45(>\))

Thus we see that

o= (i v+ S,

k=

= (N1(A)hj, @) +Zak Nl()‘)ha’wk>ga 1<j5<p,
k=1
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> (0 0) = (M1, @) - (Ns (g, @) ) + (a1 - ap)B()

= ((Mhs, @) -+ (Ni(Vhps 0) g ) (1= 2(N)
= (a'l “en ap)_ ) .
We have shown that ¢ = 0.

Case I1. The domain D(My) is clearly dense, since D(£2) (= C$°(§2)) is contained
in D(M3z). Let us consider the boundary value problem

A=L)u=0 inf and Tzu:g:/—t-{—a(f)u:f on I

for any given f € H'/2(I"). There is a unique solution u € H2(§2) for A € p(L5), and the
solution u is denoted by Na(A)f, where No()\) € L(H/?(I"); H?(2)). By introducing
an operator Ry such that (8]

_ ﬁ o v 1/2
Ryf| =0, and aVRng_f‘, fe HY2(D), (2.14)

the solution No(\)f is expressed as
No(N)f = Raof — (A = L)' (A = L)Raf.
In ordeﬁ to consider the boundary value problem
(A= My)u={, (2.15)

a sesquilinear form is available in our case. The sesqulllnear form associated with M,
is the form on H'({2) given by

Blugl= Y (s, 22) +Z<b<x> )+ el o)

t,7=1
+ (@), @) p = (0 (s 9) .'

k=1

By setting Bc[u,] = Blu,¢] + c(ﬂ, @), for a‘sufﬁciently large constant ¢ > 0, a
standard argument [9] shows that '

Re B.[u,u] > const |[u||%1,0y, ueH () and
| (o) .

| Belu, ¢]| < const ||ul (g llollm (2)-
Thus, for any f € L2(£2), there exists a unique u ¢ H 1(£2) such that

Bc{ua ‘10] = <f7 ‘10>Q ’ V(P € Hl(‘g)‘
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Let v € H2(2) be the unique solution to the problem
‘ P
Lou=f mnv= Z u, wk
k=1
The solution v is expressed as
v—LZ f+zuwk —C)hs.

Green’s formula implies that, for any ¢ € H'(2),

5.0 = e 1 =(o0= 5t b ), + 5 (o2, 22
k i
_+Z <b¢§—;)i, <p>9 + ((e(z) + ), ©)

Thus we see that

~

B.[v—u,pp] =0 for e H (),

where ]§c denotes the sesquilinear form associated with L. (Ec is a special B, in the
case where w = 0 or by =0, 1 < k < p). Since ¢ > 0 is large enough, we see that

Re B [g, 9] > const “g”Hl(.Q)
forallge H 1(.Q) Th1s shows that :
u=veH*) and Myu=f.

Uniqueness of the solution u wiH be imrhediate due to coerciveness of B.. The operator
My, is a continuous bijection from D(Mz) onto L2(2). Thus the inverse M,.' belongs
to L(L2(£2); D(M,.)), or : '

[ell 22y < const || Macull, for Yue sz(Q).

Let us go back to (2.15). The problem (2.15) is equivalent to the solvability of the
problem
(()‘ + C)M2cl )u - M2c f

in L2(£2). Since M;.! € L(L?(£2)) is compact, we only have to seek the region of A in
which uniqueness of solutions to (2.15) holds (the Riesz-Schauder theory [9, 15]). Now
it is straightforward to find out this region and to obtain the estimate (2.7) in some
sector Y__., (see, e.g., [1, 9]). Since the calculation is very elementary but tedious, we
omit the rest of the proof. The proof of Theorem 2.3 is thereby completed. Q.E.D.
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: -:3. Main results
In Theorem 2.3, we have shown that, if ¢ > 0 is chosen large enough, a sector
obtained as a suitable right shift of Y is contained in the resolvent sets p(Mlc) and
p(Mz.), and the decay estimates for the resolvents (A — My.)~! and (A — My,)~?! are
guaranteed in that sector. Thus fractional powers for M, 1c and My are well defined. In

this section, we extend Theorems 2. 1 and 2.2 to the case of M. and My, respectlvely
Our main results are Theorems 3.1 and 3.2 stated as follows:

Theorem 3.1 (Case I. The Dirichlet boundary condition). Suppose that

wg, 1<k <p, belong to H¢(2) for an arbitrarily small € > 0. Then the domain of the
fractional powers M,0<6< 1, is characterized as follows:
(i) D(MP,) = H20(rz), 0<6< i;

(i) DML = {ueH1/2<m | &

P
@ ‘ Zl U_wk>_Qthk,2d.'E < oo}; and.

(ii) D(MY,) = HF (%), < 6 <1,

where H3](2) denotes the space defined by

1
H2(Q) = {ueHze IF kz_:l u, W) b on r} 20> =

Moreover, we have the interpolation relation _
D(MY,) = [D(My), L*(@)l1-6, 0<6< 1,

where [-,-]1—p denotes an intermediate space lying between two spaces, one of which is
densely embedded in the other.

Theorem 3.2 (Case II. The generahzed Neumann boundary condition).
The domain of the fractional powers M§,, 0 < 6 < 1, is characterized as follows:

(i) D(ML) = HZG(Q) , 0<6< Z;

(ii)r D(M. 3/4) — {u € H3/2(9) /‘Q @) IT_Q’U,’ Ep (u, 'wk TgRghk' dr < oo}
=1
and

(i) D(M3,) = H#(2) = {u € Héo(o); Tou = Z (u, u}'k>F hi on F},
k=1

3
Scg<.
1=

The following result discusses algebraic similarity of M, and M, to operators with
homogeneous boundary conditions: mu = 0 and 7eu = 0, respectively. Originally it
comes from a control theoretic study of M; and M,: -
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Theorem 3.3. (i) For any 0 € RY, ME_ is algebraically similar to (Ly. — Fy)? 4
the sense that

ME, = LY*e(Ly, F)"L“"/‘* ¢, and p<M1c> p((Llc—ﬂ)")

c

u’)here 0 < € < 1/4 and the operator Fy is deﬁned by

, _
CFru= Y (LY, wi) g LA N1 (—0)hk
k=1

ii) For any 0 ¢ RY, ME_ is algebraically similar to (La. — F2)? in the sense that
2c
Mg, = L (Lo - Bo)P Ly "* ™%, and p(Mf,) = p((Lac — F2)”).

where 0 < € < 1/2 and the operator F, is defined by

p -
Fou=Y (Lyl* u, wg) p LY*Na(—c)h.
k=1

As we have seen in Section 2, the approach to M; in this section is also quite
different from the one to M,.

Proof of Theorem 3.1.

First Step (Operator T1). A serious difficulty is that M; is no more an accretive
operator. So, our strategy is to introduce, instead, another operator K defined below
(Second Step) via T3, where T; denotes an operator formally defined by

'U—Tlu—u——Z(u wi) g Rihg. | (31)
, C k=1 :

It turns out that the operator K is accretive if an additional regularity assumption on
wy’s is added (see Proposition 3.4, (ii)). '

By definition, operator T clearly belongs to L(L?(£2)) N L(D(M;); D(L1)), where
both D(M;) and D(L,) are equlpped with the topology of H 2((2) Let us examine its
inverse. Set Tiu = 0. Then

p
(u, wj),Q = Z (u, wk)g (R1hg, wj).(z’ 1<j<p, or
k=1 . : o o :

(u, W) = W(u, W),

where ¥ means the p X p matrix defined by

k—1,...,
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Since R; admits a great deal of freedom of choice, we first assume that det (1 — %) # 0.
In fact, we only have to make a slight modification of R;, if necessary. A general Rj
assuming only (2.10) is considered later in the Fourth Step of the proof.  Under this
assumption, we see that

(u,w), =0, or u=0.

Thus T is injective (namely, its formal inverse 77! exists), and the inverse Tl“1
calculated as

w=T v =0+ Z[a — ), w)n]k Ribe. (32
k=1 )

The operator 77" belongs to £(L?(£2)). Moreover, u = T} v satisfies the relation
(u, W)_Q =(1- W)“l(v, W)_Qk

Thus 75! maps D(L;) onto D(M;) and belongs to £L(D(L;); D(My)). The well known
interpolation theory [8] implies that
Ty e L(D(M;), L3(2)]1_¢; D(LE,)), and

T LD DO4), I hes), 02051, (3:3)

Here we have used the fact that [D(L1), L3(2)]1—¢ is equal to D(L,) due to the m-
accretiveness of Lj.. .

‘Second Step (Operator K). Owing to the First Step, we are able to introduce a new
operator K by :

K =TiMT;', D(K)=D(L;) = H¥Q) n H}(N). (3.4)

The operator K plays a role of connecting M; with L; (see the diagram at the end of
the Second Step). If A is in'p(M7), then A — K has a bounded inverse, and -

A—K) 7 =Ty(A— M;)" 1T e L(Lz(!))).

In view of the decay estimate (2.5), the sector f_ﬁ is contained in p(K) and

-1 const =
— < , .
10 =57 < T30 AeXos

Thus, if ¢ is larger than 8, fractional powers of K. = K + c are well defined. The
operator K is by definition calculated as follows:
K79 = -1 / 9(A K.) ld\ = / ,\-"Tl(/\ M) Ty dA
Co2mi C
=T M1, 6>0, : - (3.5)
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where i = +/—1, and C denotes the boundary of a suitable right shift of the sector

E oriented according to increasing Im A. ‘The operator K enjoys mce propertles For
example, relation (3.5) immediately implies that - ‘ . :

Ty e L(D(MY,); D(K?) and Ty e L(D(KY); D(ML)), osm (36)

The following propos1t10n forms a key result of the theorem, the proof of whlch is
stated in the Last Step:

" Proposition 3.4. (i) If c is large enough, ihe» equivalence relation
D(KJ)=D(L{.), 0<6<1 (3.7)

holds algebraically and topologically. :
(ii) If wg, 1 < k < p, belong to HL($2) in addition, then K, is m-accretive, namely

Re (K., u), > const|lul?, weD(K). (3.8)

Remark. The above (i) is proved independent of (ii). In the case where wy’s belong
to H}(£2), however, (ii) immediately implies the assertion (i), once we observe the
equivalence relation: D(K) = D(L;). In fact, now that both K. and L;. are m-
accretive in this case, a generalization of the Heinz 1nequahty [6] is now applied to show
the equivalence relation (3.7).. - ' : '

According to this proposition, relation (3.6) is rewritten as
.. Lemma 8.5. The operator Ty is a continuous bijection from D(M¥, ) onto- D(L C)
for each 0 < 0 <1, and thus,

Ty e L(D(ME); D(LL)) and Ty e L(D(L); D(ML)), 0<6<1  (3.9)
Although the m-accretiveness of M, is never expected and thus a generalization of the

Heinz inequality [6] cannot be applied, relatlon (3.3) combined with Lemma 3:5 yields.
the last assertion of the theorem

D(ME,) = [D(My), L2<9’)]1_0', 0<6<1l

The above relatiens_are summarized as the following diegram:'

T | v .Tl—l
———— -
[D(MI) 3 Lz(‘o)]l-a D(L?c) = D(Kce) A D(Mloc)

Third Step. We are in a pos1t10n to prove the characterlzatlon (1) to (111) of the
theorem.

Proof of (i) (the case where 0 <26 < 1/ 2) Note that both T-and T1 belong
to L(H?(£2)), 0 < 8 < 1/4. Since T} also belongs to L(D(M%;); H?(2)) and T} to
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L(H?(£2); D(M2)) by Lemma 3.5 and Theorem 2.1, (i), the assertion of (i) is now
immediate. . Loy - R o

Proof of (ii) (the case where 20 =1 / 2). Suppose that
we H1/2(9) and / |T1u|2dx < . (3.10)

Then v = Tju belongs to D(Liéz), due to Theorem 2.1, (ii). We see from Lemma 3.5
that u = Ty v belongs to D(Mllc/z) Conversely, if v is in D(Mllc/z), then v = Thu
belongs to ’D(Ll/ %), again due to Lemma 3.5. Thus u satisfies (3.10).
Proof of (iii) (the case where 1/2 < 20 <2). It is easily seen from Theorem 2.1,
(iii) that o _ _ o
Ty e L(HF(2); D(LY,)) and Ti'e L(D(LY); HA (),

which, again combined with Lemma 3.5, shows that

D(M{,) = HF(2), 1/2<20<2.

Fourth Step (Operdtor Ry). We have assumed so far that det (1 — ¥) # 0 in the
First Step. Let us consider a general R;, say R; assuming only (2.10). Then

It is enough to consider the behavior of these functions in a neighborhood of I'. In-
troducing a partition of unity of I', we can move to the half space R, = {y =
(Y15 +Ym) € R™; gy, > 0} In a neighborhood of {ym, = 0}, the transformed ((z)
behaves like y,,. The transformed (R; — Rj)hg, still- denoted.as the same symbol, be-
long to H? (R}.); are absolutely continuous in yr, for almost all ' = (y1,...,¥m-1);
and satisfy

Ym 6

~ _ / —
(Ry — Ry)h(y', ym) . P

(R1 Ry)hi(y', t)dt

for almost all 4/ ¢ R™~1. Thus, by going back to the original coordinates, it is immedi- ’
ately seen that

/ C( ) |(R1 Rl)hkl d(L‘<OO

which shows that the expression (11) does not depend on a partmular choice of R;.

Last Step. In order to complete the theorem, let us turn to the proof of the auxﬂlary
results mentioned above

Proof of Proposition. 3.4.
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(i) Let us examine what the form of the operator K = T1 M; Tl_:l is. Note that wy’s
belong to H2¢(2) = D(L}f), 0 < € < 1/4. Then K is, by definition, written as '

Ku=Liu~-— Z(Llu wi) o Rihx + Z[(l —¥) "N, W)Q] TiLRyhy
k=1 k=1
; _
= Liu— Z(Li;eu, {jwk)n Ry hy,
k=1
p _
T Z[u — )y, w) Q] Ty LRy + CZ Kuwy, thk
— k=1

= Liu+ Du, wueD(K).
Here, D is an operator subordlnate to L17¢, namely
| Dul| < const ||L1T¢u||, ue D(L};e).

Since D(K.,) is equal to D(L1.) anyway (see the footnote below Propos1t1on 3.4), we see
that the relations

D(KP) c D(LE,), and D(LY) CD(KE), 0<a<p (3.11)
hold algebraically and topologically [7]. Note that

K7 — L% = -1 A™(A = Ko)™'D(A — L)~ dA
271'1 C

w -1 -1 <<
v2m/)\()\ L)' DA -K) ' dr, 0<w<1,

where C denotes a contour of a suitable right shift of 32 oriented according to increasing
Im . For any given v € D(K¥), 0 < w < 1, there is a unique ¢ ¢ LZ(Q) such that
u= K;“p. Thus,

1

K% =L7%p — oni . A"\ = L) 'D(A = K.)"tpd).

According to (3. 11) and the moment inequality for K., the integrand is estimated as
folows:

ID(X — Ko) ™ol < const |IL17(A — Ke) ™ol

S const “Llc—eKC—n “ “Kg()\ _ Kc) const

‘P” > W llell

where 1 — € < 17 < 1. Thus we see that

const

[A"CLE A~ () — Llc)—lD_()\ ~K.) Y| < [ llell
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the last term of which is integrable on C. This means that D(KY) is contained in
D(LY.), and that

tu=p— o [ NULLO - L) DO - Ko pd,
m™ Jo .

and o
| L{ ul| < const |[¢|| = const || K¥ul] .

The converse relation
D(LY,) CD(KY), and |KZu| < const ||LY,ull

is similarly proved. This finishes the proof of (i).
(ii) We first note that the adjoint operator of T3 in L2({2) is given by

» |
Tfu=u—Y (u, Rihy)pwi. (3.12)
k=1 : »

According to the assumption (2.4) on wy, we see that

_ 1
Tiu|[p=0, forueH(2), 6>

Applying Green’s formula, we calculate as

(Keu, u), = (T1 M1 T7 M, u), = LTy, THu)
0

— <—5;T1_1u, T1*U>I" + Blc[Tl”‘lu, 17 ]

= B1[T7 'y, Ty, u e D(K,),
where Bic[-, ] = Bi[-, "] + ¢(:, -), denotes the sesquilinear form on H(£2), and

Bilu, ] = f: <a,-j(z)58% , g—:>g + i <bz(:1:)§—;llz ,cp>n + (c(z)u, v), - A

3,7=1

Note that B is a special case of the sesquilinear form B associated with M (see, e.g.,
Section 2). Thus, if ¢ is large enough, we have the inequalities

Re Bicfu,u] > 8 [ullfysqy, we H'(2) and

|Biclu, ]| < 7 llull (o) llell g (),
for some positive 6 and y. Thus we estimate as
Re (K.u, u), = ReBi [T7 'u, T} u]
= Re By.[T7u, Tyu] + Re By [T ' — T u, Ty u)
> || T ull gy {0 1TFull @) — ¥ 1Ty Mo — Trull ey - (3.13)
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According to the expre'ssienv (3.2) of Ty, we note that

- 5 » o
. ”Tl—lfu, - Tl*u“HL(Q) = Z [(1 — W)"1<u’ W>‘Q]k Rihyg +‘Z (u, thk>9 w
k=1 = T k=1 . : H'(£2)
< Clull- .

Here, C > 0 denotes some constant. It is significant that the above left-hand side is -
bounded from above by the L?(§2)-norm of u. Substituting the above inequality into
(3.13), we see that, for any € > 0, SRR T _

| ' CreN s Cv
Re (Ko, u)g 2 (6= 25~ ) IT¥ullfnqy — 52 lul.

C
Choosing € small enough and then d > —5} we obtain the desired estlmate

Re (K.yqu, u), = Re (Kcu, u), +d(u, u), > const [|u||? ,‘ ue D(K).

Thus, by replacing c by a larger constant ¢ + d, the m-accretiveness of K, has been
proved. The proof of Theorem 3.1 is thereby complete. Q.E.D.

Proof of Theorem 3.2. : »

The proof is somewhat simpler than the proof of Theorem 3 1 since the operator
M, is m-accretive in our case. An operator similar to Ty appears later in the Third
Step. In order to apply this operator, however, we must introduce the operator Ly, — Fp
similar to My, in the First Step. , ‘

First Step (Operator Ly — F3). We shall see that the operator F3 in Theorem 3.3
naturally appears in the following context: Let us consider the following differential
equation in L2(£2):

Z_t + Mau=0, u(0)=ugeL%(R). (3.14)

Problem (3.14) is well posed and generates an analytic semigroup exp(—tMs3), t > O,
due to Theorem 2.3, (ii), and a unique solution u is given by w(t) = exp(—tMaz) ug. For
any fixed 6, 1/4 < 6 < 3/4, set v(t) = L3 u(t). According to Theorem 2.2, (i), v(t)
belongs to D(Lz) and satisfies the dlfferentlal equation

dv

+(La—Fv=0, v(0) =vo = Lyfup, (3.15)
where F} is defined in Theorem 3.3 as
. . . o
Fov = Z (Lgcv1 wk)I‘.LégoN2(_c)hk ) D(FZ) 2 D(LZ)
k=1 '

In fact, (3.14) is rewritten as

0= —cut Le(u- ij (’u',”'l/l)kh..sz(—‘c)'hk) |

- P .
= %;—L —cu+ L2c< Z (u, wk)p Nz(—C)hk>-
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By applying L2 to the both sides, equation (3.15) for v is obtalned Since 0 is less
than 3/4, the followmg lemma is immediate:

Lemma 3.6. The opemtor Ly — F5 has a compact resolvent.’ There isad>0
such that 2_5 is contained in p(Ly — F»), and that

t p——
A—Ly+F) < 28 AT

Since the problem (3.15) generates an analytic serhigroup exp (—t(Lg — F3)), t > O,’ we
see that, for ug € L2({2) and Re A < —§

()\ — Ly + Fz)—l’l)o = _ / et e_t(Lz—FZ):UO dt ' (’Uo = L-Z—co’u,o)
0 ‘ .
= —/ eM Ly e My dt = L3P (N — My) tug,

or in other words. _ , ,
A= My) ' = L5, (A — Ly + Fp) 7 L3? | - (3.16)

for ReA < —6. The right-hand side of eqn. (3.16) is analytic in A € p(Ls — F5). Thus,
(A—M5)~! has an extension to an operator analytic in ) ¢ p(Lg — F»). The extension is,
however, nothing but the resolvent of M, [2]. This shows that p(L2 — F3) is contained
in p(Mz) and that eqn. (3.16) holds for A € p(Ly — F).

" Second ‘Step (Proof of (i)). Choose a constant ¢ > max (6, ) so that fractional
powers for My and Ly, — F» are well defined. ‘According to (3:16), we calculate as ’

L3 M5 = ;Wll g A7L3d (X — Mac) ™ dA
~1
= o= | AP\ = Lac + Fo) 7Ly dA = (Lae — F2)™°L37,
2mi C

where C denotes a contour of a suitable right shift. of 8. Thus,

M;? = L8, (Lye — F)~9L;2. (3.17)
We need to characterize the domain of (L. — F5)?. In view of the definition of the
operator Fy, F; is subordinate to some power of Ly, with exponent larger than 1/2. So
the m-accretiveness of Ly, — F is not expected. Nevertheless, we have the following
result, the proof of which is omitted. '

Proposition 3.7. The equivalence relation D((Lae — F2)¥) =D(LY,), 0 < w <
3/4+ 6 holds algebraically and topologically. : ‘

According to Proposition 3.7, we see that

L8 (Lac — F2)°L32%% = LS (Lye — F3)~ o(ch —~ F)? L3720 ¢ L(L%(2)),
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since 26 is less than 3/4 + 6. Thus the relation (3.17) 1mp11es that for any u € D(L )
M, (_ch(L2c - FR)° ch u)=u, or Mzcu = L (ch F2)9L2c u,
which shows that D(L8,) is contained in D(M¥.), and that |
| ML u| < const'HLe ul|, weD(LS).
As to the converse relation, set v = M U for ue D( ) Then '
u= Lgc(ch Fp)~°Lylv = L0 L33 (Lae — F2)™ 2‘9(132 - Fz)ech veD(L§ c) ,
which shows that D(M$,) is contained in D(L$,), and that
ILScull < const | M.ull, ueD(Mg,).

Therefore, we have shown that D(M$,) = D(L§,) with equivalent graph norms for any
6, 1/4 < 0 < 3/4. We note that, since both My, and Ly, are m-accretive, the same
is true for MJ, and L$, For a fixed 6, 1/4 < 6 < 3/4, a generalization of the Heinz
mequahty [6] is apphed to 9 and L8, to derive that -

D(ME) = D((Mzc)‘"/% = D((LY,)*/°) =D(Ig.), 0<w<8

with equivalent graph norms, which proves (1) of the theorem..
Last Step (Operator Tz). The proof of (ii) and (iii) is carried out as follows: As we

have shown in the First Step, note that D(Mzc/ ) isequal to H 1(.(2) Following 77 in
Theorem 3.1, let us define an operator 75 formally by

p - ~ .
v=Tou=u— Y (u, we)p Rohp. (3.18)
. k=1 : .

We can consider H1({2) as the basic space for T5. According to the choice of the operator

Ry, we note that
P

v|p = U'IP—ZW’ wk)p Roh|p = vl
k=1 o

Thus it is clear that 75 is injective, and 75 ! is given by
u——T2 v—v+Z(v wk thk.
k=1 '
It is easy to see that

Ty ¢ L(D(My) ; D(L2)) N L(D(ME?); D(LL/?)), and
Ty e L(D(La); D(Mz)) N L(D(L3L%) ; D(M3/%)) .
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Since both Mzc and L. are m—accretlve the interpolation theory implies that

T, € L(D(Ms) , D)o ; [D(La) , DILY))
= L(D(My; °%); D(L3;%)),  and 7 (3.19)
ol e L(D(LA) s D(ME “’/2)),_ 0<6<1, (3.20)

(see, for example [8, Theorem 6.1]). Thus we see that, for any u e D(MS$,), 3/4 < 0 < 1,
v = Thu belongs to H?9(2) and mv = 0 by Theorem 2.2, (iii), and that mu =
> he=t (4, wg) o b . Therefore u belongs to H (.Q) Conversely, for any u € H}g([})
v="Thu belongs to H?%(§2) and mv = 0, that i 1s v belongs to D(L§,). Thus u = Ty v
belongs to D(Mg.) by (3.20), which proves (iii) of the theorem. Relation (ii) is smnlarly
proved by means of the operator T, and thus omitted.

We note that the relation (ii) does not depend on a particular choice of R,. In fact,
the proof is essentially the same as the proof (the Fourth Step) of Theorem 3.1.

4. Apphcatlon

In this section we apply one of the main results to robustness analysis of a boundary
feedback control system. The boundary control system is described by

@ + Mou =0, u(0)=up. : (4.1)
When the coefficients in M2 are perturbed the perturbed system is then described by
du
pr +Myu=0, u(0)=u, (4.2)
where
—_ ~ — P '
Mou = Lu, ueD(M,)= {u e H2(0); Tou = Z(u, wk) p hx on F},
- k=1
and

1,J=1

Lu=— Z 6?5 ((1 + n(z))a”(a:) ) + Zb (m)——— + c(m)u

Fou = 'g~ +5(¢)u = Z (1+ n({ aij (f)Vz(f)

1,7=1

+5(&)u

Jjlr r

Thus the perturbation to the principal part of £ is assumed uniform. Throughout the
section we assume, in addition to (2.6), that wy’s belong to H'/2(I"), so that the adjoint
operator M3 enjoys the structure similar to that of M, (see, e.g., Proposition 2.4, (ii)).
The index measuring the difference between M, and Mz is introduced as

1= llkllcagmy + D Ibi = bill oy + €= cllo@, + 16 = ollcrery - (4.3)
=1 ‘



160

The domain D(Ma) differs a little bit from D(Mz), and the comparison of the resolvent
set p(Mg) with p(M3) seems not very simple. However, we assert the following:

Theorem 4.1. If is chosen small enough, there is an operator K, subordinate to
My such that
) =My - Ky), (4.4)

and ~ v
(A= Mp)™! = MG (A — Mp + Kp)"'M50, M€ p(Ma — Kop),-
|Kqull < em)Maull, weD(Ma), e(m) =0 as 70,
wher69—1/4—|—e 0<e<1/4 ’

"The proof of Theorem 4.1 is carried out along the line of [13], and therefore omitted.

(4.5)

5. Goncluding remarks : .
I. Theorem 3.1 has been proved on the assumption that wg, 1 < k < p, belong

to HE(£2) for an arbitrarily small € > 0. If wy’s merely belong to L?({2), what can we
assert? It seems difficult at present to show that

- D(MY,) = [D(My), L*(2)]1-9, 0<6<1

for general wy’s in L?(£2). However, introducing the operator F; in Theorem 3.3, and
applying the method in the First and the Second Steps in the proof of Theorem 3 2, we
can show at least that

D(M?) = H?(0), 0<0< i- .

II. In our previous paper [13], we studied the operator J/\/I\z and its fractional
powers, where M5 is defined by

Mou = Lu, D(M)= {u e H2(0); npu = Z (u, wg)  hx on F} ,
k=1
and wy,’s belong to L2(£2). In Theorem 3Y2 let us replace M, by JT/I\z'V Then M\Zc May+c

is m-accretive, too, if ¢ > 0 is large enough and fractional powers for Mzc are well
defined. Characterization of the domain D( ) 0 <0 < 1is similar to Theorem 3.2:

i) DUR) =), 0<0<;

(11) D(M\s/%) {u € H3/2(Q); /Q @ ngu —; (u,:wk)O‘T()thk‘ dr < oo},
and , o o 22 T

p
(i) D(ME,) = A(2) = {ue H¥(2); mu="" (u, w) g b on '},
k=1
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3
— < .
1 <f0=1

For the proof, we introduce the operator ’fg by

P
Tu=u=) (uwi)g Rohy.
k=1

The basic space for Th is simply L2?(§2). We do not need the First Step in the proof of
Theorem 3.2. It is easily seen that

Ty e L(D(MY,); D(L§,)), and T5'eL(D(LS,); D(ML,), 0<6<1.

By applying this to the modified problem, the above characterization is obtained.

We note that, in [13], another approach is employed in the above (i) (it corresponds

to the First and the Second Steps in the proof of Theorem 3.2). Thus the approach via
T, gives a simpler alternative approach.

w
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