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$0$ Introduction

It is a most interesting phenomenon that, in many cases, solutions of parabolic
equations are given by kernels (so-called heat kernels) which can be estimated by
the Gaussian kernel. Investigations in this direction go back at least to the sixties.
We refer to the monographs $0\dot{\mathrm{f}}$ Davies [Dal], Robinson [R] and Varopoulos, Saloff-
Coste, Coulhon [VSC] for the history and more information. Besides their intrinsic
interest there are many different motivations to establish Gaussian estimates: they
concern H\"older continuity of the solutions, Harnack’s $\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\dot{\mathrm{t}}\mathrm{y}$, the construction of
stochastic processes among others.

But more recently, it turned out that Gaussian estimates imply very important and
interesting properties of the underlying semigroup. In this article we give an account
on such implications. They concern spectral properties, regularity of the Cauchy
problem and functional calculus. One of the most important results is that Gaussian
estimates for a holomorphic semigroup on $L^{2}(\Omega)$ imply holomorphy of the semi-
group in $L^{1}(\Omega)$ . Whereas the other parts of the paper are surveys, we include a
complete simple proof of this fact in Section 4 and 5 (which is somehow dispersed
in the literature, otherwise).

It is striking that Gaussian estimates can be proved by quadratic form methods
for elliptic operators with various boundary conditions under very mild regularity
assumptions on the coefficients and the underlying domain. We give an account
on such results in the second section adding some elementary special examples, as
illustrations. Thus, as a concrete result, this paper contains a $\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{e}_{k}\mathrm{t}\mathrm{y}$

.
$0.\mathrm{f}$ examples
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of holomorphic semigroups on $L^{1}(\Omega)$ generated by symmetric and non-symmetric
elliptic operators with boundary conditions.

The author is grateful to Professor Sawashima, Professor Takeo, Professor Okazawa
and Professor Miyajima for many stimulating discussions and a most enjoyable and
fruitful stay in Japan.

1 Gaussian estimates for semigroups.
Let $\Omega\subset R^{d}$ be an open set, $1\leq p<\infty$ . We consider $L^{p}(\Omega)$ as a subspace of
$L^{p}(R^{d})$ identifying a function $f\in L^{p}(\Omega)$ with its extension to $R^{d}$ by $0$ . The
Gaussian semigroup on $L^{p}(R^{d})$ is denoted by $G=(G(t))_{t}\geq 0$ where

$(G(t)f)(_{X)=}(4 \pi t)-d/2\int_{R^{d}}e-|x-y|2/4tf(y)dy$

$(x\in R^{d} , t>0 , f\in L^{p}(R^{d}))$ , $1\leq p<\infty$ . The generator of $G$ is the $\mathrm{L}\mathrm{a}\mathrm{p}\mathrm{l},\mathrm{a}\mathrm{C}\mathrm{i}\mathrm{a}\mathrm{n}$

$\Delta$ on $L^{p}(R^{d})$ with distributional domain $\backslash$. .. :

$D(\Delta)=\{f\in Lp(R^{d}):\Delta f\in Lp(R^{d})\}$ .

Definition 1.1 A $C_{0}$ -semigroup on $L^{2}(\Omega)sa..tisfieS\backslash .\cdot$
$a$

$\mathrm{G}\mathrm{a}\mathrm{u}\mathrm{s}\mathrm{s}\mathrm{i}$an
$\backslash \cdot..$ .. $\cdot$

$\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{e}:$ i.fthere exist constants $c>0,$ $b>0$ such that

(1.1) $|T(t)f|\leq cG(bt)|f|$ $(0<t\leq 1)$

for all $f\in L^{2}(\Omega)$ .

Here the inequality (1.1) is understood $\mathrm{a}.\mathrm{e}$ . on $\Omega.$ If. $T$ satisfies the Gaussian
estimate (1.1), then it is easy to see [Ar, Sec. 4] that

(1.2) $|T(t)f|\leq ce^{\omega t}G(bt)|f|$ $(t\geq 0)$

for all $f\in L^{2}(\Omega)$ where $\omega=\ln c$ .

Next we explain how (1.2) is related to a representation of $T(t)$ by an integral
kernel. Let $K\in L^{\infty}(\Omega\cross\Omega)$ . Then

(1.3) $(B_{K}f)(X)= \int_{\Omega}K(x, y)f(y)dy$

defines an operator $B_{K}\in \mathcal{L}(L^{1}(\Omega), L\infty(\Omega))$ . Usually the following proposition
is called the Dunford-Pettis criterion. We refer to [Ar Bu] for a short and
elementary proof.
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$\mathrm{p}_{\mathrm{r}\mathrm{o}_{\mathrm{P}^{\mathrm{O}}}}\mathrm{S}\mathrm{i}\mathrm{t}i‘ \mathrm{o}\mathrm{n}1.2$ The mapping $K\mapsto B_{K}$ is an isometric.isomorphism from $L^{\infty}(\Omega\cross$

$\Omega)$ onto $\mathcal{L}(L^{1}(\Omega), L\infty(\Omega))$ . $M_{oreove}r_{J}$ this mapping is an order $iSomor_{\mathrm{P}^{him_{i}}}s$

$i.e.,$ $B_{K}\geq 0$ (i.e., $f\geq 0\Rightarrow B_{K}f\geq 0$ ) if and only if $K(x, y)\geq 0a.e$ .

$\mathrm{L}\mathrm{e}\mathrm{t}\prime B\in \mathcal{L}(L^{p}(\Omega))$ , $1\leq p\leq\infty$ . We set

(1.4) $||B||c_{\langle L^{\infty}}L^{1},)= \sup\{||Bf||L^{\infty} : f\in L^{1_{\cap}}L^{p}, ||f||_{L^{1}}\leq 1\}$ .
If $||B||_{\mathcal{L}}\langle L^{1},L\infty$ ) $<\infty$ , it follows from the Dunford-Pettis $\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}_{0}\mathrm{n}$ that there exists
a unique kernel $K\in L^{\infty}(\Omega\cross\Omega)$ such that $Bf=B_{K}f$ for all $f\in L^{p}\cap L^{\infty}$ and

(1.5) $l||I\grave{\dot{C}}||l\mathrm{i}\infty \mathrm{t}^{\Omega \mathrm{X}}\Omega)=||BK||_{\mathcal{L}(}L^{1},L\infty)$ .
We say that $B$ is represented by the kernel K. If $B_{0}\in \mathcal{L}(L^{p}(\Omega))$ is a se-
cond operator such that $|B_{0}f|\leq B|f|(f\in L^{\mathrm{p}}(\Omega))$ , then it follows that $B_{0}$ is
represented by a kernel $I\mathrm{f}_{0}\in L^{\infty}(\Omega\cross\Omega)$ such that $|K_{0}(x, y)|\leq I\mathrm{f}(x, y)a.e$ . As
an immediate consequence we obtain an alternative more concrete description of
Gaussian estimates.

Corollary 1.3 A $C_{0}$ -semigroup $T$ on $L^{2}(\Omega)$ satisfies a Gaussian estimate if
and only if $T(t)$ is represe.$nte.db.y$ a kernel $K(t, \cdot,.\cdot)\in L^{\infty}(\Omega\cross\Omega)$ such that

(1.6)
$-.$ .

$\cdot-,-|I,.C.(t, x, y,)|.\leq ce^{\omega t}t^{-}$ e$d/2$ x.$\mathrm{p}(-b|x-y|2/t)\backslash \cdot$

for $a\dot{l}lt>0$ , where $c,$ $b>0$ are constrants.
If $T$ satisfies a Gaussian esti..mate, it can be extended to $L^{p}(\Omega)(1\leq p\leq\infty)$ in
the following way.

Proposition 1.4 Let $T$ be a $C_{0}$ -semigroup on $L^{2}(\Omega)$ satisfying a Gaussian
estimate. Then for $1\leq p<\infty$ there exists a unique $C_{0}$ -semigroup $T_{p}$ on $L^{p}(\Omega)$

and a unique adjoint semigroup $\tau_{\infty}$ on $L^{\infty}(\Omega)$ such that

$a)T_{2}(t)=T(t)$ $(t\geq 0)_{i}$

$b)T_{p}(t)f=T_{q}(t)f$ if $f\in L^{p}(\Omega)\cap L^{q}(\Omega),$ $1\leq p,$ $q\leq\infty,$ $t>0$ .

Here we say that $S=(S(t)_{t\geq 0}\subset \mathcal{L}(L^{\infty}(\Omega))$ is an adjoint semigroup if there exists
a $C_{0}$-semigroup $(R(t))_{t}\geq 0$ on $L^{1}(\Omega)$ such that $R(t)^{*}=S(t)$ . The semigroups $T_{p}$

are called the extensions of $T$ to $L^{p}(\Omega)$ , $1\leq p\leq\infty$ .

Proof. It is clear from domination that there exists $T_{p}(t)\in \mathcal{L}(L^{p}(\Omega))$ such that
$T_{p}(t)=T(t)f$ for $f\in L^{2}\cap L^{p}$ , $1\leq p<\infty$ and $T_{p}$ satisfies the semigroup
property. Strong continuity demands an additional argument (see [Ar] or [AE]).
The semigroup $\tau_{\infty}$ can be defined as follows. Also $\dot{\mathrm{t}}$he adjoint $\tau*=(T(t)*)t\geq 0$

satisfies a Gaussian estimate and so $\tau_{1}*$ can be defined as before. Define $\tau_{\infty}$ as
the adjoint semigroup of $\tau_{1}*$

$\blacksquare$
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2 Examples.
We describe elliptic operators associated to sesquilinear forms. Let $\Omega\subset R^{d}$ be

an open set,

$H^{1}( \Omega)=\{u\in L2(\Omega):D_{j}u=\frac{\partial u}{\partial x_{i}}\in L^{2}(\Omega), j=1\cdots d\}$

the first Sobolev space with norm

$||u||_{H^{1}} \langle\Omega)=(||u||_{L}2)2\langle\Omega+\Omega\int|\nabla u|^{2}\mathrm{d}\mathrm{x})\frac{1}{2}$

Let $V$ be a closed subspace of $H^{1}(\Omega)$ which is dense in $L^{2}(\Omega)$ . Let $a:V\cross Varrow G$

be a continuous sesquilinear form. Assume that $a$ is coercive, i.e.,

(2.1) ${\rm Re} a(u, u)+\lambda_{0}(u|u)_{L(\Omega}2)\geq\alpha||u||_{H^{1}}^{2}$

for all $u\in V$ and some $\lambda_{0}\in R,$ $\alpha>0$ . Define the operator $A$ associated with
$a$ by ..

$D(A)=\{u\in V:\exists v\in L^{2}(\Omega)$ such that $a(u,\varphi)=(v|\varphi)_{L^{2}}$

.. . $\cdot$ . for all $\varphi\in V$}, $Au=v$ . $\sim$

Then $-A$ generates a holomorphic $C_{0}$-semigroup $(e^{-tA})_{t\geq 0}$ on $L^{2}(\Omega)$ . We call it
the semigroup associated with a. In the following, we give a.series of examples
of such semigroups which admit a Gaussian estimate.

First of all, we notice that the Gaussian semigroup itself is associated with the form
$a$ on $V=H^{1}(R^{d})$ given by

$a(u, v)= \int_{R^{d}}\nabla u\cdot\overline{\nabla v}\mathrm{d}\mathrm{X}$
.

Example 2.1 (The Dirichlet Laplacian). Let $V=H_{0}^{1}(\Omega)$ (the closure of the
space $C_{\mathrm{c}}^{\infty}(\Omega)$ of all test functions in $H^{1}(\Omega))$ , $a(u, v)= \int\nabla u\overline{\nabla v}$ . The operator
associated with $a$ is denoted by $-\Delta_{\Omega}^{D}$ Then $(e^{t\Delta_{\Omega}^{D}})_{t\geq}0$ is represented by a kernel
$k(t, \cdot, \cdot)$ satisfying

(2.2) $0\leq k(t, x,y)\leq(4\pi t)^{-d/}2e-|x-y|2/4t$

$(t>0, x, y\in R^{d})$ .

This is well-known (cf. [AB 1], [AB 2]).

This estimate $(2.2).\mathrm{i}\mathrm{S}-$ very $\mathrm{s},\mathrm{p}\mathrm{e}\mathrm{c}’ \mathrm{i}\mathrm{a}\mathrm{l}$ since $\mathrm{i}\dot{\mathrm{t}}$ is $\mathrm{a}.$

.
direct domination..b$\mathrm{y}$ the Gauss kernel

with $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\dot{\mathrm{t}}$ants $c=b=1$ , $\omega=0$ in (1.2).
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Example 2.2 (Elliptic operator with constant coefficients). Let $C=$
$(c_{ij})_{i,j=}1\cdots d$ be a strictly positive definit matrix and define the operator $A$ on
$L^{2}(R^{d})$ by . .,

$A=- \sum_{=i,,j1}^{d}cijD_{i}Dj$ .

Thus $A$ is associated with the form $a$ defined on $V=H^{1}(R^{d})$ by $a(u, v)=$

$\sum_{i,j=1}^{d}c_{j}\dot{.}\int\nabla u\overline{\nabla v}R^{d}\mathrm{d}\mathrm{x}.$ D.enote by $v_{1},$ $\cdots v_{d}.>0$ the eigenvalues of $C$ . Then the

kernel of $e^{-tA}$ is given by
$k(t, x, y)=(4 \pi t)-d/2(v1\ldots v_{d})-\frac{1}{2}\exp(-(C-1(x-y)|(x-y))/4t)$ .

So we have the estimate

$0\leq k(t, x, y)\leq(4\pi t)-d/2(v1\ldots v_{d})^{-}1/2\exp(-b|x-y|2/4t)$

where $b=( \min_{k=1\cdots d}vk)^{-1}$

As an illustration we next consider the simplest example of a non-symmetric opera-
tor. Here we can also determine the kernel explicitly.

Example 2.3 Let $Af=-f”+f’$ on $L^{2}(R)$ ; i.e. $A$ is associated with the form
$a(u, v)= \int_{R}u’\overline{v}’\mathrm{d}\mathrm{X}+\int u’\overline{v}\mathrm{d}\mathrm{X}$

, $V=H^{1}(R)$ . Then $e^{-tA}=G(t)S(t)$ where $G$ is

the Gaussian semigroup and $(S(t)f)(x)=f(x-t)$ . Hence $e^{-tA}$ is represented by
the kernel

$k(t, x,y)$ $=$ $(4 \pi t)-\frac{1}{2}\exp(-(x-y-t)2/4t)$

$=$ $(4Tt)^{-\frac{1}{2}}\exp(-(x-y)^{2}/4t-t/4+(x-y)/2)$ .
By the old Young’s trick we have

$\frac{1}{2}(x-y)=\frac{1}{4}2((x-y)\cdot\epsilon^{\frac{1}{2}}t-\frac{1}{2})\cdot(\epsilon^{-\frac{1}{2}}t\frac{1}{2})\leq\frac{1}{4}\dagger.(x-y)^{2}t-1\epsilon+t\epsilon^{-1}\}$

Choosing $\epsilon=\frac{1}{2}$ one obtains

$0 \leq k(t, x, y)\leq e^{t/4}(4Tt)-\frac{1}{2}\exp(-(x-y)2/8t)$ .
Example 2.4 (the Neumann Laplacian). Let $V=H^{1}(\Omega)$ , $a(u, v)– \int_{\Omega}\nabla u\overline{\nabla v}$ dx

We denote the operator associated with $a$ by $-\Delta_{\Omega}^{N}$

a) Assume that $\Omega$ has a Lipschitz boundary. Then the semigroup $(e^{t\Delta_{\Omega)_{t\geq}}^{N}}0$

satisfies a Gaussian estimate, (see [Dal]) or Theorem 2.6 below). Here, in
general, we cannot take $\omega=0$ in the estimate (1.6). In fact, assume that $\Omega$

is bounded. Then
$e^{t\Delta_{\Omega}^{N}}1_{\Omega}=1_{\Omega}(t\geq 0)$ whereas $\lim_{tarrow\infty}||G(t)1_{\Omega}||_{L^{2}}=0$ .
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b) Some regularity property of $\Omega$ is needed in order to have Gaussian estimates.
For example, if $d=1$ and $\Omega=(0,1)\backslash \{\frac{1}{n} : n\in N\}$ . Then $e^{t\Delta_{\Omega}^{N}}$ is not
compact since

$e^{t\Delta_{\Omega}^{N}}1_{(\frac{1}{n+1}},$
$\frac{1}{n})=1_{(\frac{1}{n+1},\frac{1}{n})}$ for all $n\in N$

so that the eigenvalue 1 has infinite multiplicity (cf. Proposition 3.1).

After t-hese first examples we formulate some general results on elliptic operators.

Let $a_{ij}$ , $b_{j},$ $c_{j},$ $c_{0}\in L^{\infty}(\Omega)$ , $i,j\in\{1, \cdots, d\}$ . We assume throughout the
ellipticity condition

(2.3) $\sum_{i,j=1}^{d}.aij(X)\xi_{i}\xi j\geq\mu|\xi|^{2}$ for all $\xi\in R^{d}x-a.e$ . , where $\mu>0$ .

Moreover, we assume throughout that the second order coefficients are real-valued
(cf. Remark 2.7). The first order coefficients may be complex in some cases. As
before we consider a closed subspace $V$ of $H^{1}(\Omega)$ which contains $H_{0}^{1}(\Omega)$ . Define
$a:V\cross Varrow C$ by

$a(u, v)$ $=$ $\sum_{i,j=1}^{d}\int_{\Omega}aii^{D_{i}}u\overline{Djv}+\sum_{j=1}^{d}\int\Omega bjD_{j}u\overline{v}+$

(2.4)
$\sum_{j=1}^{d}\int_{\Omega}c_{j}u\overline{v}+\int c0\Omega u\overline{v}$ .

Then $a$ is continuous, sesquilinear and coercive. We note by $A_{V}$ the operator
associated with $V$ . First we consider Dirichlet boundary conditions; i.e., $V=$

$H_{0}^{1}(\Omega)$ .
Theorem 2.5 Let $V=H_{0}^{1}(\Omega)$ . Assume that the first order coefficients $b_{j},$

$c_{j}$ are
in $W^{1,\infty}(\Omega)$ , $j=1,$ $\cdots,$

$d$ . Assume that one of the following conditions is satisfied
$a)$ $a_{ij}\in W^{1,\infty}(\Omega)$ $i,j=1,$ $\cdots,$

$d$ or

$b)$ the coefficients $b_{i},$
$c_{j}$ are real-valued.

Then the semigroup $(e^{-tA_{V}})_{t\geq 0}$ satisfies a Gaussian estimate.

Notice that the semigroup is positive in the second case [Ou3]. For more general $V$

the following holds.

Theorem 2.6 Assume that all coefficients are real and $b_{j},$ $c_{j}\in W^{1,\infty}(\Omega)$ $(j=$

$1,$ $\cdots d)$ . For $V$ we assume the following hypotheses:

$a)v\in V$ implies $|v|$ , $\inf\{|v|, 1\}\in V$ ,

$b)v\in V$ , $u\in H^{1}(\Omega),$ $|u|\leq v$ implies $u\in V$ ,
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$c)v\in V$ implies $b_{j}v,$ $c_{j}v\in H_{0}^{1}(\Omega)$ $(j=1\cdot\forall\cdot d)$ .

In the case, where $V\neq H_{0}^{1}(\Omega)$ we assume in addition that $\Omega$ has Lipschitz boun-
dary. Then $(e^{-tA_{V}})_{t\geq,\backslash }0$ is a positive semigroup satisfying Gaussian estimates.

For example, assume that $\Omega$ has a Lipschitz boundary $\partial\Omega--\Gamma$ which can be
written as $\Gamma=\Gamma_{1}\cup\Gamma_{2}$ where $\Gamma_{1},$ $\Gamma_{2}$ are closed. Choose $V=\{u_{\Omega}$ : $u\in C_{c}^{\infty}(R^{d}\backslash$

$\Gamma_{1}\}^{-H^{1}()}\Omega$ : If $b_{j},$ $c_{j}=\{\varphi|_{\Omega} : \varphi\in C_{c}(R^{d}\backslash \Gamma_{2})\}-W^{\mathrm{r}},\infty(\Omega)$ then the conditions a), b),
c) are satisfied. In the case of the Laplacian and if $\Gamma_{1}\cap\Gamma_{2}=\emptyset$ , this corresponds to
Dirichlet boundary conditions on $\Gamma_{1}$ and Neumann boundary conditions on $\Gamma_{2}$ .

Remark 2.7 Complex second order coefficients are a delicate matter. A coun-
terexample on $R^{d}$ for $d\geq 5$ is given by Auscher-Tchamitchian [AT]. However,
Gaussian estimates can be proved on $R^{1}$ and $R^{2}$ also in the complex case, see
$\mathrm{A}\mathrm{u}\mathrm{s}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{r}-\mathrm{M}_{\mathrm{C}\mathrm{I}}\mathrm{n}\mathrm{t}_{\mathrm{o}\mathrm{S}\mathrm{h}}$ -Tchamitchian [AMT].

For symmetric elliptic operators (i.e., $b_{j}=c_{i}=0,$ $a_{ij}=a_{ji}$ ) and $V=H_{0}^{1}(\Omega)$

or $H^{1}(\Omega)$ , Theorem 2.5 and Theorem 2.6 are proved in [Dal]; for the general
non-symmetric case presented here see [AE] where also more general boundary
conditions (e.g., Robin’s boundary conditions) are given. All proofs are based on
Davies’ trick (see $[\mathrm{A}\mathrm{E}$ , Proposition 3.3] or [Dal]) which reduces the proof to an
$\mathcal{L}(L^{1}, L^{\infty})$-estimate of a semigroup obtained from $e^{-tA}$ by a similarity transfor-
mation. However, there are various ways to prove the $\mathcal{L}(L^{1}, L^{\infty})$ -estimate , and
they are the reason of the different hypotheses in Theorem 2.5 and 2.6. The proof of
the first given in [AE] is the simplest one, based only on a non-symmetric Beurling-
Deny criterion established by Ouhabaz ([Ou 1], [Ou 3]). It has the disadvantage
to need a regularity hypothesis on the second order coefficients but allows complex
first order coefficients. Davies [Dal] uses logarithmic Sobolev inequalites.

As.. a last exaniple we consider Schr\"odinger operators.

Example 2.8 (Schr\"odinger semigroups). Let $A=\Delta-V$ on $L^{2}(R^{d})$ where
$V$ : $R^{d}arrow R$ is measurable such that $V_{-}$ is in Kato’s class and $V_{+}\in L_{l_{oC}}^{1}(R^{d})$ .
Then $A$ (with suitable domain) is a self-adjoint operator $whic\dot{h}$ generates a $C_{0^{-}}semi-$

group $T$ on $L^{2}(R^{d})$ . Then by [Si, Prop. .B. 6.7] $T$ satisfies a Gaussian estimate.

Remark 2.9 Here we restricted our attention to the most common class of po-
tentials. Concerning the $L^{p}$-theory of Schr\"odinger operators with more general
potentials we refer to the recent article by Okazawa [Ok].

3 Consequences of Gaussian estimates.
Let $\Omega\subset IR^{d}$ be open and let $T$ be a $C_{0}$-semigroup on $L^{2}(\Omega)$ satisfying a

Gaussian estimate. It follows that $T$ has many remarkable properties. Most of
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them concern the solutions of the corresponding Cauchy problem, some concern
spectral properties of the generator. By $T_{p}$ we denote the extended semigroup on
$L^{p}(\Omega)$ and by $A_{p}$ its generator, $1\leq p\leq\infty$ . (By definition, $A_{\infty}=B_{1}^{*}$ where
$B_{1}$ is the generator of $(T^{*})_{1})$ .

3.1 Regularity of the semi.group.
In this subsection, we show that Gaussian estimates imply remarkable regularity

properties of the semigroup, like norm continuity or holomorphy.

Proposition 3.1 Assume that $\Omega$ is bounded. Then $T_{p}(t)$ is compact for all $t>$

$0,1\leq p\leq\infty$ .
Proof. a) It follows from the kernel representation that $T_{2}(t)$ is Hilbert-Schmidt,
$t>0$ . For $2\leq p\leq\infty$ one can factorize $T_{p}(2t)=T_{2,\infty}(t)0\tau_{2}(t)\mathrm{o}j$ where
$j$ : $L^{\infty}(\Omega)arrow L^{2}(\Omega)$ is the injection and $T_{2,\infty}(t)$ is $T_{1}(t)$ seen as an operator from
$L^{2}\not\in\Omega)$ into $L^{\infty}(\Omega)$ . Hence $T_{p}(2i)$ is compact. .

b) For $1\leq p\leq 2$ , the result follows from a) by taking adjoints. $\blacksquare$

It follows in particular that $T_{p}$ is norm continuous on $(0, \infty)$ for $1\leq p<\infty$ .
But it seems to be unknown whether $T_{p}$ is automatically holomorphic if $\Omega$ is
bounded. If $\Omega$ is unbounded, this is not the case. Indeed, it has been shown by
Voigt (oral communication) that the operator $\triangle+ix$ , properly defined [LM], is the
generator of a $C_{0}$-semigroup $T$ on $L^{2}(R)$ such that $|T(t)f|\leq G(t)|f|$ $(t\geq 0)$ .
But $T$ is not holomorphic and not even eventually norm continuous. We are
grateful to a clarifying discussion with F. R\"abiger on this last point. However,
if for some $p_{0}\in[1, \infty)$ , $T_{p_{0}}$ is holomorphic, then all the semigroups $T_{p}$ are
holomorphic $(1 \leq p<\infty)$ , and this holds for arbitrary open subsets $\Omega$ of $R^{d}$

In the preceding section, we saw a large class of examples which all are holomorphic
on $L^{2}(\Omega)$ . Recall, that we assume thoughout this section that $T_{2}$ satisfies a
Gaussian estimate.

Theorem 3.2 If $T_{2}$ is holomorphic, then $T_{p}$ is holomorphic for all $p\in[1, \infty)$ .

First of all, it should be said that in the case $1<p<\infty$ , Theorem 3.2 is valid
for every semigroup which extends to $L_{p}$ , $1\leq p<\infty$ . This is a consequence of
Stein’s interpolation theorem (see [Dal, Thm. 1.4.2]). But, in general, the semi-
group may fail to be holomorphic in $L_{1}$ (see [Dal, Thm. 4.3.6] for an example).
The point in Theorem 3.2 is the case $p=1$ , and, for this case, applied to el-
liptic operators, it has several predecessors. In fact, Stewart [Stl], [St2] proved
holomorphy of the semigroup generated by elliptic operators on the space $C(\overline{\Omega})$ or
$C_{0}(\Omega)--\{f\in C(\overline{\Omega}):f_{|\partial\Omega}=0\}$ for bounded regular $\Omega$ and for various boundary
conditions. Using Stewart’s result, Amann [Am] proved holomorphy on $L^{1}(\Omega)$ by
skillful duality arguments. These results are valid also for operators which are not
in divergence form. Then it was shown by Cannarsa and Vespri [CV] that a certain
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class of more general elliptic operators generates an analytic semigroup in $L^{1}(R^{d})$

(see also the remark at the end of Section 4). For arbitrary open subsets of $R^{d}$ , it
was shown in [AB 1], [AB 2] that the Laplacian with Dirichlet boundary conditions
generates a holomorphic semigroup in $L^{1}(\Omega)$ .
Now, Theorem 3.2 implies in particular that the elliptic operators considered in
Theorem 2.5, 2.6 generate holomorphic semigroups in $L^{1}(\Omega)$ .

In view of Example 2.8, it also follows that Schr\"odinger semigroups are holomorphic
in all $L^{p}(R^{d})$ , $(1 \leq p\leq\infty)$ . This had been shown before by Kato [K2]. In the
general version, Theorem 3.2 is obtained in [AE] and [H2]. We give a complete proof
of Theorem 3.2 in Section 4.

3.2 Spectral properties.
In the following we denote by $\rho_{\infty}(A_{p})$ the connected component of the resolvent
set $\rho(A_{p})$ which contains a right half-plan. Then the following holds.

Theorem 3.3 One has

$\rho_{\infty}(A_{\mathrm{P}})=\rho\infty(A_{2})$ $(1\leq p\leq\infty)$ .

In $parti_{C}ular_{j}$ if $A$ is self-adjoint then the spectrum $\sigma(A_{p})$ is independent of
$p\in[1, \infty]$ .

Theorem 3.3 has been proved in [Ar] after a proof for Schr\"odinger operators had
been given by Hempel and Voigt [HV]. It implies in particular, that the spectrum
of the elliptic operators given in Theorem 2.5 and 2.6 is independent of $p\in[1, \infty]$ .
This is remarkable since the spectrum of (very simple) self-adjoint degenerate ellip-
tic operators may strongly depend on $p$ (see [Ar]).

It is interesting that Theorem 3.3 is also true if, instead of the Gaussian kernel,
estimates by more general kernels are considered. This is done by Miyajima and
Ishikawa [MI] where the Gaussian semigroup is replaced by the semigroup generated
by $-(I-\Delta)^{\alpha}$ $( \frac{1}{2}<\alpha\leq 1)$ . In Section 5 we consider higher order Gaussian esti-
mates. For symmetric operators Davies [Da 2] obtains spectral $L^{p}$-independence
as consequence of a functiOnal, calculus designed for symmetric operators satisfying
kernel estimates.

However, the full independence in the non-symmetric case is still open.

Problem. Is the spectrum of $A_{p}$ independent of $p\in[1, \infty]$ (also if $\rho(A_{2})$ is
not connected)?
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We should mention, that spectral $L^{p}$-independence is trivial when $\Omega$ is bounded.
Then the resolvent of $A_{p}$ is compact (by Proposition 3.1), $1\leq p\leq\infty$ . Thus
$\sigma(A_{p})$ consists of eigenvalues only, and since $T_{p}(t)$ maps $L^{p}(\Omega)$ into $L^{\infty}(\Omega)$ ,
the point spectrum is the same for all operators $A_{p}(1\leq p\leq\infty)$ . Some other
partial answers involving conditions on the domain are given recently by Hieber and
Schrohe [HS].

3.3 $H^{\infty}$-functional calculus and maximal regularity.
It has been discovered recently that Gaussian estimates imply the existence of

an $H^{\infty}$ -functional calculus (see Duong [Du], Duong-Robinson [DR], Hieber [H1]).
More precisely, if $A_{2}$ has an $H^{\infty}$-functional calculus then the same is valid for
$A_{p}$ , $1<p<\infty$ . This is a very useful result since $H^{\infty}\sim \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}..\mathrm{n}\mathrm{a}1$ calculus is
easy to obtain on a Hilbert space; e.g. contractivity of the semigroup suffices. The
following result is due to Duong and Robinson who proved it for $\Omega=R^{d}$ or more
generally, for homogeneous spaces $\Omega$ (see $[\mathrm{A}\mathrm{E}$ , Theorem 5.5] for the general result).

Theorem 3.4 Assume $t’ hatT$ is contractive on $L^{2}(\Omega)$ and holomorphic of angle
$\theta\in(0,\frac{\pi}{2})$ . Then $-A_{p}$ has an $H^{\infty}(\Sigma(\nu))$ -functional calculus for all $\nu>\frac{\pi}{2}-\theta$ .
In view of the Dore-Venni theorem $H^{\infty}$ -functional calculus implies maximal regu-
larity for the non-homogeneous Cauchy problem. Very recently, Hieber and $\mathrm{P}\mathrm{r}\ddot{\mathrm{u}}\theta$

[HP] gave a direct proof of maximal regularity assuming Gaussian estimates without
passing by the Dore-Venni theorem.

Theorem 3.5 Let $1<p,$ $q<\infty$ and assume that $\partial\Omega$ has Lebesgue measure $0$ .
Assume further that $T$ is holomorphic. Let $\tau>0$ and $f\in L^{p}((0, \tau);L^{q}(\Omega))$ .
Consider the function $u(t)= \int_{0}^{t}\tau_{q}(t-s)f(s)\mathrm{d}\mathrm{S}$ . Then $u\in W^{1,p}((0, \tau);L^{q}(\Omega))\cap$

$L^{p}((\mathrm{o}, \mathcal{T})$ ; $D(A_{q}))$ , where $D(A_{q})$ is considered as a Banach space with the graph
norm.

Notice that we assume that $T$ satisfies a Gaussian estimate throughout this sec-
tion. It seems to be an open problem whether Theorem 3.5 is valid without this
assumption. In fact, it is if $p=2$ . Let us make this point more precise.

Remark 3.6 (maximal regularity). Let $B$ be the generator of a $C_{0}$ -semigroup
$T$ on a Banach space $X$ . Let $1<p<\infty$ and $f\in L^{p}((0, \mathcal{T});X)$ where $\tau>0$ .
Then

.
$u(t)= \int_{0}^{t}T(t-S)f(s)$ ds

is the mild solution of the Cauchy problem

$(CP)$ $\{$

$\dot{u}(t)$ $=$ $Bu(t)$ $0\leq t<\tau$

$u(0)$ $=$ $0$ .
One says that $B$ satisfies maximal regularity if

$u\in W^{1,p}((0, \tau);X)\cap L^{p}((0, \tau);D(B))$ for all $f\in L^{p}((0, \tau);X)$ .
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It turns out that this property is independent of $p\in(1, \infty)$ . Assume that $S$ is
holomorphic. Then deSimon $[\mathrm{d}\mathrm{S}]$ showed in 1964 that $B$ is maximal regular if $X$

is a $\mathrm{H}\mathrm{i}\mathrm{I}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{t}$ space. This result does not hold for $X=L^{1}$ but it seems to be an
open problem whether it holds for $X=L^{p}$ , $1<p<\infty$ . Particular cases are
known, though. For example, Lamberton [La] proved 1987 maximal regularity if
the semigroup is contractive for the $L^{r}$-norm for all $1\leq r\leq\infty$ . Theorem 3.5 is
another particular solution of this open problem.

Remark 3.7 Theorem 3.5 is proved in [$\mathrm{H}\mathrm{P}$, Theorem 3.1] for $\Omega=R^{d}$ (and more
generally, for t.o.pological spaces satisfying the doubling property). As in [$\mathrm{A}\mathrm{E}$ , Theo-
rem 5.5] the more general result follows from this by a direct sum argument:
Let $\Omega_{1}=R^{d}\backslash \overline{\Omega}$ . Since $\partial\Omega$ is a null set we have $L^{2}(R^{d})=L^{2}(\Omega)\oplus L^{2}(\Omega_{1})$ . Con-
sider on $L^{2}(\Omega_{1})$ the operator $\Delta_{\Omega_{1}}$ and apply the result [ $\mathrm{H}\mathrm{P}$, Theorem 3.1] to the
direct sum of $A$ and $\triangle_{\Omega_{1}}$ considering $f$ : $(0, \infty)arrow L^{2}(\Omega)$ as a $L^{2}(R^{d})$-valued
function. Then the claim follows from the result on $lR^{d}$ . $\blacksquare$

Concerning elliptic operators of order 2 (as defined in Theorem 2.5, 2.6) Lamberton’s
direct result is more suitable than the general Theorem 3.5 based on Gaussian
estimates. In fact, the following theorem hold.

Theorem 3.8 Let $\Omega\subset R^{d}$ be an arbitrary open set. Let $a_{ij}\in L^{\infty}(\Omega)$ be real
coefficients satisfying the ellipticity condition (2.9) and let $b_{j},$ $c_{i}\in W^{1,\infty}(\Omega)$ $(j=$

$1,$ $\cdots d)$ , $c_{0}\in L^{\infty}(\Omega)$ complex. Let $V$ be a closed subspace of $H^{1}.(\Omega)$ conta\’ining
$H_{0}^{1}(\Omega)$ . Assume that

(3.1) $u\in V$ implies $\inf\{1, |u|\}$ sign $u\in V$

where
sign $u\{$

$u(x)/\overline{u(x)}$ if $u(x)\neq 0$ ,
$0$ if $u(x)=0$ .

Define the form $a$ on $V\cross V$ by (2.10). Then $a$ is continuous, sesquilinear and
coercive with respect to $L^{2}(\Omega)$ . Denote by $A_{V}$ the operator associated with $a$ and
by $S$ the semigroup on $L^{2}(\Omega)$ generated by $-A_{V}$ . Then there exists a family of
$C_{0}$ -semigroups $S_{p}$ on $L^{p}(\Omega),$ $1<p<\infty$ , such that $S_{2}(t)=S(t)$ $(t\geq 0)$ and
$S_{p}(t)f=S_{q}(t)f$ $(f\in L^{p}\cap L^{q}, t\geq 0)$ for $1<p,$ $q<\infty$ . Denote by $A_{p}$ the
generator of $S_{p}$ . Then $A_{p}$ satisfies maximal regularity.

Proof. The semigroup $S$ is holomorphic on $L^{2}(\Omega)$ . It follows from [Oul] or [Ou3,
Theorem 4.2 and Remark 4.3] that $||e^{-\omega t}S(t)f||LP\leq||f||L^{p}$ for all $f\in L^{2}\cap L^{\infty}$

and all $t\geq 0$ , $1\leq p\leq\infty$ and for some $w\in R$ . Now it follows from the above
mentioned theorem by Lamberton [La, Theorem 1] that $A_{p}-w$ satisfies maximal
regularity. Then also $A_{p}$ satisfies maximal regularity. $\blacksquare$

We mention, however, that the above proof is restricted to second order elliptic
operators. On the other hand, Theorem 3.5 is also valid if other kernel estimates
are assumed and can be applied in particular to Example 5.2 below.
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4Proof of holomorphy by Gaussian estimates.
In this section we give a complete proof of Theorem 3.2. First of all we need to
choose holomorphic representations of the kernel (cf. [Ar-Bu, Lemma 3.4]).

Lemma 4.1 Let $D\subset$ $\mathbb{C}$ be open and $F$ : $Darrow L^{\infty}(S)$ holomorphic where
$(S, \Sigma, \mu)$ is a measure space. Then there exists $f$ : $D\cross Sarrow G$ such that $f(z, \cdot)=$

$F(z)a.e$ . and $f(\cdot, x)$ is holomorphic for all $x\in S$ .
Proof. Let $B=B(z_{0}, r)=\{z\in \mathbb{C} , |z-z_{\mathrm{O}}|<\mathrm{r}\}$ such that $\overline{B}\subset D$ . Then
there exist $a_{n}\in L^{\infty}(S)$ such that $\sum_{n=0}^{\infty}||a_{n}||_{\infty}r^{n}<\infty$ and $F(z)= \sum_{n=0}^{\infty}an(z-z_{0)^{n}}$

Define $h:B\cross Sarrow G$ by $h(z, x)= \sum_{n=0}^{\infty}an(X)(z-z_{0)^{n}}$ . Then $h(\cdot, x)$ : $Barrow C$

is holomorphic for all $x\in S$ and $h(z, \cdot)=F(z)$ in $L^{\infty}(S).$ . Let $B_{1},$ $B_{2}$ be two
such discs such that $\overline{B_{1}}\subset D$ , $\overline{B_{2}}\subset D$ and let $h_{j}$ : $B_{j}\cross Darrow G$ be functions
$(j=1,2)$ such that $h_{j}(z, \cdot)=F(z)$ in $L^{\infty}(S)$ $(z\in B_{j})$ and such that $h_{j}(\cdot, x)$

is holomorphic on $B_{i}$ for all $x\in S$ . If $B_{1}\cap B_{2}\neq\emptyset$ , then $h_{1}(z, x)=h_{2}(z, x)$ for
all $z\in B_{1}\cap B_{2},$ $x\in S$ by the identity theorem. Now it suffices to cover $D$ by
such discs. $\blacksquare$

The next criterion is very convenient to prove holomorphy of vector-valued functions.
A subset $W$ of $X^{*}$ is called $\mathrm{S}\mathrm{e}_{\mathrm{P}^{\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}}}\backslash$ if for all $x\in X$ there exists $\varphi\in W$

such that $\varphi(x)\neq 0$ .
Theorem 4.2 Let $D\subset G$ be open and $f$ : $Darrow X$ be locally bounded such that
$\varphi \mathrm{o}f$ is holomorphic for all $\varphi\in W$ where $W\subset X^{*}$ is separating. Then $f$ is
holomorphic.

In the case where $W$ is a norming subspace (i.e. if $||x||_{W}= \sup\{|\varphi(X)|$ : $\varphi\in$

$W,$ $||\varphi||\leq 1\}$ is an equivalent norm), then this theorem can be found in [Kl, $\mathrm{p}$ .
139]. The general case, proved in [AN], is much more convenient, but also the more
special hypothesis can be checked in the situation considered in the following proof.
Next we recall the following well-known version of the Phragmen-Lindel\"of theorem
[Co, $\mathrm{c}\mathrm{o}\mathrm{r}$ . $6.4.4$].

Proposition 4.3 Let $\gamma\in(0, \frac{\pi}{2})$ and let $D=\{re^{i\theta} : r>0,0<\theta<\gamma\}$ . Let
$k:\overline{D}arrow G$ be continuous, holomorphic on $D$ such that $|h(z)|\leq\alpha\exp(\beta|z|)$ $(z\in$

$D)$ where $\alpha,$ $\beta>0$ . If $|h(r)|\leq M\sim$. $r’.\backslash |h(re^{i\gamma}.\cdot)|$.
$\leq$

.
$M$ for all $r>0$ , then

$|h(z)|\leq M$ for all $z\in D$ .

The following consequence is a simplified version of [Dal, Thm. 3.4.8] which suffices
for our purposes.
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Lemma 4.4 Let $\gamma\in(0, \frac{\pi}{2})$ and let $k$ : $\overline{\Sigma(\gamma)}arrow C$ be continuous, holomorphic
in $\Sigma(\gamma):=\{re^{\alpha} : r>0 , |\alpha|<\gamma\}$ such that

$a)$ $|k(z)|\leq c$ $(z\in\Sigma(\gamma))$ and

$b)$ $|k(t)|\leq ce^{-b/t}$ $(t>0)$ ,

where $c,$ $b>0$ . Then for $0<\theta_{1}<\gamma$ one has

$|k(Z)|\leq c\cdot\exp(-b_{1}/|z|)$ $(z\in\Sigma(\theta_{1}))$

where $b_{1}= \frac{\sin(\gamma-\theta 1)}{\sin\gamma}\cdot b$ .

Proof. Let $g(z)=k(z^{-1}) \cdot\exp\{be(\frac{\pi}{2}-\gamma). Z\frac{1}{\sin\gamma}i\}$ . Then

(i) $|g(r)| \leq ce^{-b\cdot r}\exp\{b{\rm Re} e^{i(}\frac{\pi}{2}-\gamma). r\frac{1}{\sin\gamma}\}=c$ $(r>0)$ ;

(ii) $|g(re^{i\gamma})| \leq c\cdot\exp\{b{\rm Re}(e^{i()}\frac{\pi}{2}-\gamma re^{i}\gamma)\frac{1}{\sin\gamma}\}=c$ ,

(iii) $|g(z)| \leq c\exp\{\frac{b}{\sin\gamma}|z|\}$ , $z\in\Sigma(\gamma)$ .

It follows from Proposition 4.3 that $|g(z)|\leq c$ for all $z\in D$ . Replacing $g$ by
$z\mapsto\overline{g(\overline{z})}$ we see that $|g(z)|\leq c$ for all $z\in\Sigma(\gamma)$ . Hence

$|k(_{Z)|}$ $=$ $|g(z^{-1} \rangle\exp(-be^{i}\frac{\pi}{2}-\gamma\rangle-1\frac{1}{\sin\gamma}\iota)Z|$

$\leq$ $c \cdot\exp(-b/r\cdot{\rm Re} e^{i(\frac{\pi}{2}}-\gamma-\theta)\frac{1}{\sin\gamma})$

$=$ $c\exp(-b/r\sin(\gamma+\theta)/\sin\gamma)$

$\leq$ $c\exp(-b\cdot\sin(\gamma-|\theta|)/(r\cdot\sin\gamma))$

for $z=re^{i\theta}$ , $|\theta|\leq\gamma$ . $\blacksquare$

Lemma 4.5 Let $IC$ : $\Omega\cross\Omegaarrow C$ measurable, $h\in L^{1}(R^{d})$ such that $|K(x, y)|\leq$

$h(x-y)$ $(x, y\in\Omega)$ . Then

$(B_{K}f)(X)= \int K(x, y)f(y)dy$

defines a bounded operator $B_{K}$ on $L^{\mathrm{p}}(\Omega)$ and $||B_{K}||C\mathrm{t}^{L^{\mathrm{p}})}\leq||h||_{L^{1}}(R^{d})$ .

This is immediate from $\mathrm{Y}_{\mathrm{o}\mathrm{u}}\mathrm{n}\mathrm{g}_{\mathrm{S}}’$

. inequality. For the proof of Theorem 3.2 we use the
following terminology. Let $S=(S(t))_{t}\geq 0$ be a $C_{0}$-semigroup on a Banach space
X. We say that $S$ is holomorphic of angle $\theta\in(0, \frac{\pi}{2}]$ if $S$ has a holomorphic
extension (still denoted by $S$ ) from the sector $\Sigma(\theta)$ into $\mathcal{L}(X)$ which is bounded
on the sets $\{re^{i\alpha} : 0<r\leq 1 , |\alpha|\leq\theta-\epsilon\}$ for all $\epsilon>0$ . Then the following is
easy to show (cf. $[\mathrm{P}$, Thm. 2.5.2 $(d)\Rightarrow(a)$ ]):

(4.1) $S(z_{1})S(Z_{2})=^{s(}Z_{1}+z_{2})$ $(Z_{1}, Z_{2}\in\Sigma(\theta))$ ;
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(4.2)
$z \in\Sigma(\theta’)\lim_{0zarrow}S(Z)_{X=}X$

$(x\in X)$ for all $\theta’\in(0, \theta)$

for all $\theta’<\theta$ there exist $M\geq 0,$ $w\in R$ such that(4.3)
$||S(Z)||\leq Me^{|z|\omega}$ $(z\in\Sigma(\theta’))$ .

Proof of Theorem 3.2 Assume that $T$ is a holomorphic $C_{0}$-semigroup of angle
$\theta\in(0, \pi/2]$ on $L^{2}(\Omega)$ which satisfies a Gaussian estimate. Let $0<\theta_{1}<\theta$ .
Choose $\theta_{1}<\gamma<\theta_{2}<\theta_{3}<\theta$ . Replacing $T$ by $(e^{-wt}\tau(t))_{t\geq 0}$ we can assume
that
(4.4) $||T(Z)||C(L^{2})\leq$ const $(z\in\Sigma(\theta_{3}))$ ;

(4.5) $|T(t)f|\leq$ const $G(bt)|f|$ $(t\geq 0 , f\in L^{2}(\Omega))$ .
From this follows
(4.6) $||T(t)||_{C\mathrm{t})}L^{1},L^{2}\leq$ const $t^{-d/4}$ $(t>0)$ ;

(4.7) $||T(t)||c(L^{2},L^{\infty})\leq$ const $t^{-d/4}$ $(t>0)$ .
(In fact, one sees from the kernel and Proposition 1.2 that $||T(t)||c(L^{1},L^{\infty)}\leq$

const $t^{-d/2}$ . Since $T$ is bounded on $L^{1}$ and $L^{\infty},$ $(4.6)$ and (4.7) follow from
the Riesz-Thorin theorem). Choose $\delta\in(0,1)$ such that $\delta t+is\in\Sigma(\theta_{3})$ whe-
never $t+is\in\Sigma(\theta_{2})$ . Let $z=t+is\in\Sigma(\theta_{2})$ . Then by (4.4), (4.6), (4.7),
$||T(z)||c(L^{1},L\infty)\leq||T((1-\delta)t/2||_{\mathcal{L}\mathrm{t}^{L,L^{2})}}1||T(\delta t+iS)||c(L^{2})$ . $||\tau((1-\delta)t/2)||\mathcal{L}(L^{1},L^{\infty})\leq$

const $t^{-d/2}=$ const $(\mathrm{R}\mathrm{e}\mathrm{z})-d/2$

It follows from Theorem 4.2 that the mapping $z\mapsto T(z)|L^{1}$ : $\Sigma(\theta_{2})arrow \mathcal{L}(L^{1}, L^{\infty})=$

$L^{\infty}(\Omega\cross\Omega)$ is holomorphic. By Lemma 4.1 there exists $IC$ : $\Sigma(\theta_{2})\cross\Omega\cross\Omegaarrow \mathbb{C}$

such that $K(\cdot, x, y)$ is holomorphic for all $x,$ $y\in\Omega,$ $K(z\cdot, \cdot)\in L^{\infty}(\Omega\cross\Omega)$ and
$(T(z)f)(x)= \int_{\Omega}I\mathrm{f}(Z, x, y)f(y)dy$

$(f\in L^{1}\cap L^{2})$ . Moreover,

(4.8) $|IC(z, x, y)|\leq$ const $(\mathrm{R}\mathrm{e}\mathrm{Z})-d/2$ $(z\in\Sigma(\theta_{2}))$

and by (4.5),

(4.9) $|I\mathrm{f}(t, x,y)|\leq$ const $t^{-d/2}\exp(-b|x-y|2/t)$ $(t>0)$ .

Applying Lemma 4.4 to the function $z^{d/2}K(Z, x, y)$ we obtain a constant $c>0$
such that for $b_{1}=b \cdot\frac{\sin(\gamma-\theta 1)}{\sin\gamma}$

(4.10) $|K(z, x, y)|\leq c\cdot|z|^{-}d/2\exp(-b_{1}|x-y|^{2}/|z|)$

for all $z\in\overline{\Sigma}(\theta_{1})$ and all $x,$ $y\in\Omega$ . It follows from Lemma 4.5 that

$\sup||T(Z)||c(L^{p})<\infty,$ $1\leq p<\infty$ .
$z\in\Sigma(\theta_{1})$

Thus there exist operators $T_{p}(z)\in \mathcal{L}(L^{p})$ such that $T_{p}(z)f=T(z)f$ $(f\in$

$L^{p}\cap L^{2})(z\in\Sigma(\theta_{1}))$ . It follows from Theorem 4.2 that $T_{p}(\cdot)$ : $\Sigma(\theta_{1})arrow \mathcal{L}(L^{p}(\Omega))$
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is holomorphic. This finishes the proof. $\blacksquare$

As application we obtain that the operators described in Theorem 2.5, 2.6 gene-
rate holomorphic semigroups in all spaces $L^{p}(\Omega)$ , $1\leq p<\infty$ . In the case of
Dirichlet boundary conditions, Vespri [V] proved holomorphy on $L^{1}(\Omega)$ for real
$L^{\infty}$-coefficients conditions. This is more general than our result based on Theorem
2.5, 2.6 where some regularity assumption on the first order coefficients is needed.
However, Vespri’s proof is not elementary at all, using estimates due to De Giorgi
and variants of $\mathrm{S}\mathrm{t}\mathrm{e}\mathrm{W}\mathrm{a}\mathrm{r}\dot{\mathrm{t}}’ \mathrm{s}$ technique. In addition some regularity assumptions on the
boundary of $\Omega$ are needed,, for his proof.

5 Higher order Gaussian estimates and holomor-
$\mathrm{p}\mathrm{h}\mathrm{y}$ .

So far, we considered merely Gaussian estimates of order 2. However, the proof of
Theorem 3.2 carries over to higher order with small alterations. We first give the
precise definition and examples for the higher-order-case, following Hieber [H2]. Let
$m\in m^{r}\backslash \{1\}$ . We had considered $m=2$ , before. Let

$k_{t}(x)$ $=$ $t^{-d/m}\exp(-|X|m/(m-1). t^{-1}/\langle m-1))$ $(t>0 , x\in R^{d})$

$G(t)f$ $=$ $k_{t}*f$ $(f\in L^{2}(R^{d}))$ .
Let $\Omega\subset R^{d}$ be open.

Definition 5.1 A $C_{0}$ -semigroup $T$ on $L^{2}(\Omega)Sat_{\dot{i}Sfies}$ a Gaussian estimate of
order $\mathrm{m}$ if there exist constants $w\in R,$ $b,$ $M>0$ such that

$|T(t)f|\leq Me^{wt}G(bt)|f|$ $(t>0)$ ,

As in the case of order 2, this implies that there exist $C_{0}$-semigroups $T_{p}$ on $L^{p}(\Omega)$

such that

a) $T(t)=T_{2}(t)$ $(t>0)$ ;

b) $T_{p}(t)f=T_{q}(t)f$ $(f\in L^{p}\cap L^{q} , t>0)$ .
As before, $T$ can be represented by a bounded integral kernel.

Example 5.2 Let $\rho\in(0,1)$ , $a_{\alpha}\in BUC^{\rho}(R^{d}, \mathbb{C})$ for $|\alpha|=m$ and $a_{\alpha}\in$

$L^{\infty}(R^{d}, \mathbb{C})$ for $|\alpha|\leq m$ . Suppose that there exists $\delta>0$ such that

${\rm Re} \sum_{|\alpha|=m}a_{\alpha}(x)(i.\xi)^{\alpha}<-\delta|\xi|^{2}$

for all $x\in R^{d}$ , $\xi\in IR^{d}$ . Define the elliptic operator $A$ on $L^{2}(R^{d})$ by

$D(A)=H^{m}(R^{d});Af= \sum_{\leq|\alpha|m}a_{\alpha}D^{\alpha}f$
.
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Then A generates a holomorphic $C_{0}$ -semigroup $T$ on $L^{2}(R^{d})$ which satisfies a
Gaussian estimate of order $m$ .

See [ $\mathrm{F}$ , Theorem 9.4.2] for a proof.

Theorem 5.3 Let $T$ be a holomorphic $C_{0}$ -semigroup of angle $\theta\in(0, \frac{\pi}{2}]$ on
$L^{2}(\Omega)$ . Assume that $T$ satisfies a Gaussian estimate of order $m\geq 2$ . Then the
extended $C_{0}$ -semigroup $T_{p}$ on $L^{2}(\Omega)$ , $1\leq p<\infty$ , are holomorphic of angle $\theta$ .

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\dot{\mathrm{f}}$ . The $\mathrm{p}\mathrm{r}\mathrm{o}\dot{\mathrm{o}}\mathrm{f}$ of $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{e}\check{\mathrm{m}}3.2$ carries over if the following modifications are
made. From (4.5) one deduces here

(5.1) $||T(t)||c(L^{1},L^{\infty})\leq$ const $t^{-d/m}$

Since $T$ is bounded on $L^{1}$ and $L^{\infty}$ the Riesz-Thorin theorem gives

(5.2) $||T(t)||_{C\mathrm{t})}L^{1},L^{2}\leq$ const $t^{-d/2m}$

(5.3) $||T(t)||C(L^{2},L^{\infty})\leq$ const $t^{-d/2m}$

As before one deduces from this

(5.4) $||T(z)||C\mathrm{t}L^{1},L\infty)\leq$ const $(\mathrm{R}\mathrm{e}\mathrm{z})^{-d/}m$ $(z\in\Sigma(\theta_{2}))$ .

Thus the kernel If$(z;x, y)$ satisfies

(5.5) $|I\mathrm{f}(z, x, y).|\leq$ const $|z|^{-d/m}$ $(z\in\Sigma(\theta_{2}))$ ,

(5.6) $|I\mathrm{f}(t, x, y)|\leq$ const $t^{-d/m}\exp(-b|x-y|m\beta. t-\beta)$

where $\beta=\frac{1}{m-1}$ . Let $k(z)=z^{d/m}k\beta(z^{\frac{1}{\beta}}, X, y)$ . Then

$|k(z)|\leq$ const $(z\in\Sigma(\gamma))$ and
$|k(z)|\leq$ const . $\exp(-b|X-y|^{\beta m.-}t)1$ .

By Lemma 4.4 we obtain $|k(z)|\leq$ const . $\exp(-b_{1}|X-y|^{\beta}m|Z|^{-1})(x,$ $y\in\Omega$ , $z\in$

$\Sigma(\theta_{1}))$ where $b_{1}= \frac{\sin(\gamma-\theta_{1})}{\sin\gamma}b$ . Now the conclusion follows as before. $\blacksquare$

Theorem 5.3 is due to Hieber [H2]. He uses the resolvent estimate characterizing
holomorphy, which is more complicated to prove, it seems.
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