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1. Introduction v
We consider time-global existence of solutions of some parabolic systems related to chemo-
taxis. We consider the following system which is called Keller-Segel model.

([ uy =V (Vu—xuVe((v)), ze€Q, t>0,
ey = Av —v+u, e, t>0,
y Ju Ov
%_%_0, z €N, t>0,
L u(+,0) = ug,v(-,0) = o T €N,

where x and e are postive constants, £ is a bounded and connected domain of R? with
smooth boundary 99, ¢ is a smooth function on (0, c0) with ¢’ > 0, up and vy are smooth,
nonnegative and non-trivial on .

Keller-Segel model was introduced by Keller and Segel [6] to describe the initiation of
chemotactic aggregation of cellular slime molds. u(z,t) represents the cell density at place
z and time ¢. v(z,t) represents the concentration of chemical substance at place z and time
t.

Let me explain Keller-Segel model.

The first equation means change of cell density. The term (—Vu + xV¢(v)) means the
flow of cells. The term —Vu means the flow due to diffusion. As Vé(v) = ¢'Vv, then the
term yu¢d'Vv means the chemotactic flow due to response to chemical attractant. Namely,
cells sense the gradient of chemical concentration. This phenomenon is called chemotaxis.
And chemical substance is an attractant, then the positivity of ¢ is neccessary. Then the
function ¢ means the relation between the intensity of chemotactic flux and v, Vv. ¢ is called
sensitivity function. Cells measure the gradient of ¢(v). Several forms of ¢ are suggested in
biology.
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The second equation means change of concentration of chemical substance. The term
(~1/€)Vv means the flow due to diffusion. The term of v/e means the degradation by
reactions. The term u/¢ means the production by cells. Then the degradation and the
production are proportional to chemical concentration and cell density, respectively.

Those phnomenon suggests the posibility of aggregation. Namely, first, cells move toward
higher concentration. Then cells aggregate at the place and product much attractant. Then
cell and chemical substance aggregate at the place. |

Then we consider the following problem :

Investigate whether solutions can exist globally in time or not for several forms of the sen-
sitivity function ¢.

In particular, ¢ is specified as the following two cases :
(A1) ¢(v) = v,

(A2) ¢(v) = logw.

First, we describe a result in one dimensional case. In the following theorem, ¢ is a smooth
function with ¢’ > 0.

Theorem 1 Assume that Q = (0,L), uo is a nonnegative smooth function on [0, L] and
Vo 8 a positive smooth function on [0,L]. Then the solution is globally bounded in time.
Namely, T = co and

sup([lu(, iz + [[o(:, llz) < oo,

where Ty, ts the mazimal time of existence.

Then, in two dimensional case, we expect one dimensional blow-up can not occur.

Theorem 2 Assume ¢(v) = v.

(1) If ||uollzr < 4m/x, then the solution is globally bounded in time.

(ii) Let @ = {z € R? |z| < L} and (uo,v) be radial in z. If ||ug||px < 87/x, then the
solution is globally bounded in time.

We expect that the restriction of L' — norm is necessary. Because, there are the following
conjecture and resuluts.

Childress [2] and Childress and Percus [3] have given a conjecture such that if L up(z)dz <

8m/x then the solution exists globally in time, and if L ug(z)dz > 8m/x then the solution
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can blow up in finite time, in the case of ¢(v) = v and radial initial functions (uo,'uo) on
Q= {z e R%|z| < L}.

T. Nagai [7] deal with the limiting system as € — 0. He has given a result such that if
L uo(z)dr < 8m/x then the solution is globa,lly bounded in time, and if / uo(z)dz > 81 /x

and / uo(z) |z|2dz < 1, then the solution blows up in finite time, in the case of ¢(v) = v

and radial initial functions (ug,vo) on Q = {z € R?;|z| < L}.

Theorem 3 Assume $(v) = logv and vy is positive in Q.
(i) If x < 1, then the solution globally exists in time. Namely, Tin.: = 0o and

sup (||u(,8)llze + [lv(-,8)||z=) = COr < 00
0<t<T

forT > 0.
(ii) Let @ = {z € R% |z| < L} and (ug,vo) be radzal in . Ifx < 5/2, then the solution

globally exists in time.

We expect that the restriction of L' — norm is not necessary. Because, T. Senba [8] deal
with the limiting system as € — 0. I have given a result such that the solution is glob-
ally bounded in time, in the case of ¢(v) = logv and radial initial functions (ug,vo) on
Q= {zeR?%|z| < L}. : |

2. Proof of Theorem 2.
Lemma 2.1 Put

W(t) = L{ulogu—xuv+ (|V'v|2+'u )}d

Then we have
dw 2 _ 27 _
_ —CE—(t) + st('vt) dz + /QUIV “(logu — xv)|°de =0

Proof. Multiplying logu — xv by the first equation and using Green’s formula and the
second equation, we have this lemma.

Lemma 2.2
(i) Let © be a bounded and connected domain in R? with smooth bounda.ry Then,

JCq > 0 s.t.
2
< — iy =
| exp luldz < Caexp {8ﬂuwn2 g nuul}

for u € H(Q). (S.Y.A. Chang and P.C. Yang [1])
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(i) Let Q= {r € R?%|z| < L} . Then for V6 > 0, 3C = Cs > 0 s.t.

1 2
< — 24 = .
/Qexp luldz < Csexp {(16 + 5) IVullz + I ||u||1}
for u € HY(Q) with u(z) = u(|z]).

Lemma 2.3 If ||ull; < 7*/x, 3C(independent of ¢) > 0 s.t. / wvde < C and |[W(t)| <
c, e
8w, in radially symmetric case,
4, otherwise.

where 7 = {

Proof. Let a > 0. For fix t € (0,T), put % (z,t) = Y@t where

M= [ u(z,t)dz and :/ (@) gy
Lu(w )dz and p e z

By Lemma 2.2 for V6 > 0, 3Cs > 0 s.t.

1 o
logu <logCs + = |Q| |Ivl|1 + {27r* + 5} a?|| V3.
Yyu o s .
By L " Md:c = 1 and Jensen’s inequality,

0 = —log '——Mu—dx

Then

(21 ) aZ} Vol|2 + (a - x) Luvdx

{logcg 42 o]l — IOgM} + W)

{K
2
<
- 18]

M
M

Lemma 2.4 3C(independent of t) > 0 s.t. ||u(-,t)|s < C.

Proof. For simplicity we put x = € = 1. Multiply u by the first equation, we have

53 Jo ¥ dx+A|Vu| dz = —/V (uVv)udz

= —l/ PAvdy = —= 2(thrv—u)d:I:
2 Ja "2
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We can show that

lulls < 6]Vally?luloguli®
+C5 {|lulog ull: + [[ully’},

By Horder and Gagliardo-Nirenberg inequality, we have
L [wPulde < 8| Vull; + C {Jlvlls + llvella} llul3,
which together above formulas leads to

) |
1l + 20Vuly < 81Vullg + C {Jlullf + lluello } il
+ 8%lulog ulla [ Vull3 + C {lulogull} + lull. }

By the above inequality and Gronwall’s inequality, we have this lemma.

By applying the estimes of ||u||2 and standard argments to the second equation, we have
the boundedness of |Vv||e and ||v||c, Which yields the bondedness of ||u}l by applying
Moser’s technique to the first equation.

3. Proof of Theorem 3. Since the proof of (ii) is similar to one of (i), we shall prove
only (ii).

Lemma 3.1 Let a be a positive constant. Then we have

U2

d a
EZA(ulogu—aulogv)dm—l—g Q—v—dx

+/Qu{|Vlogu|2f (x+ %;)_Vlogu-Vlogv
. .

3

(¢+ DIV logof* | dz = Zugl

Proof. Multiplyihg logu — alogv by the first equation and using Green’s formula and the
second equation, we have this lemma. '

Lemma 3.2 For Vp > 1, 3C;(independent of ¢) > 0 s.t.

lv(, Dy < Cp(llzollr + [lvollp)

- Proof. Using the following estimet of Green’s function G.

eC z—yP2 t
01 < F exp (22— ).
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Lemma 3.3 If x < 1, 3C(independent of ¢) > 0 s.t.

t
Lulogudx and A Au|V1c5gu|dxds < Ct.

Proof. By using Lemma 3.1 with a = £/2,
d > 1 - X 2
EZL (ulogu— —2-ulog'u>d:1:+ TLMVlogul dz
< 5ol
< 3 lluoll-

Put ¢(z) = $oP, where

u
M = ||ul|y and p = ||v||B. By lz %Mda: =1 and Jensen’s inequality,

’¢7 U ’w u
—_— < _—

7’
1 d</l dz + Mlog -
p%}uogvx_ Quogux+‘; QgM

Combining the first eq. and the last eq. implies this lemma.

Then

Proof of Theorem 3 By Gagliardo-Nirenberg inequality, we have

lell3 = IVelld < (119 Vel + IVall3) [Vel3.

The above inequality and Lemma 3.3 implies that

) , .
/ / u?dzds < Ct. (1)

Mulitplying —Av by the second equation, we have

ZUV0l3 + 180l + [V]2” < flulll Av]
Combining the above inequality and (1) implies that
[1avandvelg<cr. ©
Mulitiply » by the first equation and using Gagliardo-Nirenberg inequality, we have

d
a”’“”g*‘ |Vull; = —xAuVu-Vlogfuda: :

2
_X [ 2 :X/”_ — |Viogv[?)dz
_QAU Alogvdz 5 Q,’U(Av |V1ogv|*)

IA

g 18vlel| Vo ]
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,where V,,,(t) = minq v(-,t) > Vmm(0)e™*, which together (2) implies
Iull3 < Cexp (ete™).

By applying the estimes of ||u||2 and standard argments to the second equation, we have the
boundedness of ||V||eo and ||v||co, Which yields the bondedness of ||u||. by using Moser’s
technique for the first equation. ' ’ '
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