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On radial and non-radial positive steady-states
for Lotka-Volterra competition model
on two dimensional annulus
Kimie Nakashima (+E ¥ 5 )
Department of Mathematics

Waseda University
3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169, JAPAN

1 Introduction

Consider the following Lotka-Volterra competition model:

u = DAu + u(a — u — bv) in Q x [0, 00),

vy = DAv 4+ v(d — v — cu) in Q x [0, 00),

ou Ov _ , (1)
é.I;.__a_y__() . on 99 x [0, 00),

u(z;0) = uo > 0,v(z,0) =v5 > 0,

where 2 = {z € R;, R < |z|] < R+ 1} and D,a,b,c,d are positive constants. We will
discuss the bistable case, i.e, bd —a > 0 and ac — d > 0. In this case, there exist four
nonnegative constant solutions;

(0,0), (,0), (0,d) and VA
. . bd—a ac—d A-v-LU=0
(v )z(bc—l’bc—l)'

They are represented in
(u,v)—plane in Fig.1,

where (a,0), (0,d) are stable
steady-states and (0,0),
(u*,v*) are unstable.
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We are interested in the steady-state problem associated with (1);

DAu+u(a—u—bv)=0 in Q,
" DAv+v(d—v—cu)=0 inQ -

Ou Ov _ (2)
a—y——g;—o . . on@Q, .

u>0,v>0, in ,

especially, the multiplicity of nonconstant solutions for (2).
We shall study radial solutions in section 1 and non-radial solutions in section 2.

2 Radial solutions

In this section we will study radial solutions for (2). Let (u,v) be a radial solution for (2).
We take polar coordinates such as |z] = R + s, then (u,v) satisfies

( D : 7
Dug, + e +ula—u—bv)=0 in (0,1);
§ Duss + B +v(d—v—cu)=0 - in(0,1), (3)
u,(0) = u,(1) = v,(0) = vy(1) =0,
| u>0,v2>0, - in (0,1).

From now on we study (3). First we will make some definitions.

Definition 1 Let (u,v) = (u(s),v(s)) be a solution for (3). Then (u,v) is called an
n—mode radial solution if and only if

#{s € (0,1);us(s) =0} = #{s € (0,1);v5(s) =0} =n — 1.
Here #A denote the number of elements of A.

AUV UVA
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Before stating results we will prepare some notation: Let o* be the positive solution of
p?+ (u* + v*)p — (be — Du*v* = 0.
' ¥ _ L0 A f radial functions) with
37 R+33s (= —A in the space of radial functions) wi
Neumann zero boundary condition by A,, (0 = Ao < A\; < Ay < ---). In discussing radial
solutions we regard D~! as a parameter and consider branches of n—mode solutions for

(3). Set

Denote the eigenvalues of —

S :={(u,v,7) € C*[0,1] x C*[0,1] x R*; (u,v) is a nonconstant positive radial solution
' for (3) with D=1 = r}.

Sn = {(u,v,7) € C*0,1] x C'[0,1] x R¥; (u,v) is an n—mode positive radial solution
for (3) with D=1 = 7}.

Theorem 1 (i)S = [ J S,.
n=1

. \ _

(¢¢)Sn contains a connected component B such that (u*,v*,—) € B and B is unbounded
a*

in {(v,v,7) € C'0,1] x C*[0,1] x R*;0 <u<aq,0<v<d}.

~ For the proof see Nakashima[11] -

Remark 1 Every positive solution for (2) has a priori estimate such that 0 < u < a and

0 < v < d. Moreover, Theorem 1 implies that every solution for (3) becomes an n—mode
solution for some n.
Remark 2 When D is large (or a parameter D~! is small), there exists no nonconstant

solution for (3). (Conway-Hoif-Smoller[l].)

From the above remarks B keeps the property of n—mode and continues up to D~! = cc.

uv

(wr v¥)
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3 non-radial solutions

In this section we will study the existence and multiplicity of non-radial positive solutions
for (2). Here we restrict ourselves to the case N = 2 and we show that the following result

holds for (2). . ‘

For any k € N there exists Ry = Ro(k) > 0 such that if R > Ro(k) then (2) has at least
k— non-radial positive solutions, which are not equivalent with respect to rotation.

Such an existence result is well-studied for a smgle equation like

Au-{-uP—O in , u:OonBQ, u >0, (4)

when 1 < p < co. We refer to ([2], [4], [6], [8], [9], [10]).
Taking polar coordinates (s,8) such as

z=(R+s)cosb, y=(R+s)sinb,

the steady-state problem for (2) is written as

( D D ) '
Du,, + Rs_su, + (Rg 3)2u99 +u(la—u—-bv)=0 in [0,1] x [0,27),
¢ Dugs + Brs (R+ BE vog+v(d-lv—cu)=0 in [0,1] x [0,27), (5)
u5(0,0) = u,(1,0) = v,(0,0) = v4(1,0) =0,
| u>0,v2>0. in [0,1] x [0, 27).

From now on we will study nonconstant solutions for (5). Define a cone such as

Cr == {(u,v) € C*([0,1]x[0,27))xC*([0,1] x[0,27)); u >0, v >0, ug > 0, v < 0 on [0, F].
u,v is symmetric with respect to

0_0 T 21r ‘k—,'cl"ﬂ'}
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Here and henceforce we assume the following assumption (N).

(IN) Every positive solution (¢y, ¢;) for

Ddi;gu-}-u(a—u—bv) =0 in [0,1],
{,D%v—}—v(d——v—-cu):ﬂ in [0, 1], (6)
uz(0) = uz(1) = v,(0) = v,(1) = 0,

is nondegenerate, i.e. zero is not an eigenvalue for the linearized problem for (6) at (¢1, ¢3).
Remark 3 From the results of Kan-on, we know (N) holds if @ = d, b = ¢c. Using the

fixed point index theory on Ci, we can get the following result.

Theorem 2 Assume (N). For each k € N there exists Rg(D,a,b,c,d) > 0, such that (2)
has a non-radial solution in Cy, for every R > Ry.

Remark 4 Observe that Cy N C; is identical with the set of radial solutions Phs if
k #1, k,1 € N. Theorem 2 implies that there exist two solutions (ug,vx) € Cy — ® and
(u,v) € C; — @ if we set R > max{Ry, R;}. Since (uy,v;) and (u;,v;) are different with
respect to rotation, we can get the multiplicity.

In this way we can find any number of nonradial positive solutions for (5) if R is suffi-
ciently large.

4 Proof

In this section we show the outline of the proof of Theorem 2. We will find a non-radial
solution in each C. (k=1,2,-,m.)

We will remark a priori estimate for the solutions for (5). Every solution (u,v) has a
priori estimate such that

0<u<a and 0<v<d.

To show this, let v has its maximum at 2 € . We have a —u(zo) —bv(zo) = —Au(zg) > 0.
From the positivity of v, u(zo) < @ — bv(zo) < a. We can show v < d in the same way.
Owing to Shaudar estimates for elliptic equations, there exist sufficiently large My, M,
such that ||u|]| < M; and |[v|| < M; for every solution for (5), where || - || denote the
C'—norm.
Set a bounded set

Ty == {(u,v) € Cy; |lull < My +1,|jv]| < M +1}

Note that the solutions for (6) is not on the boundary of T;. Here we use the word
"boundary” in the meaning of the relative topology with respect to Cj. '
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We define a compact operator A from C([0,1] x [0,27)) x C*([0,1] x [0,27)) into itself

by
u d? T pu+ Do —u—bv)u
A(v)_(_ﬁ_i_p) <pv+D‘1(d—v—cu)v ' (7)
where p = max{D~'(2M; + bM,), D™ (2M; + cM;)}

Note that there is one to one correspondence between a fixed point of A and a solution
for (5). So A has no fixed point on the boundary of T;,. Moreover the standard regularity
theory of elliptic equations tells us that A is completely continuous. '

From the above fact and the following Lemma 1, we can define degree of I — A on Cj,
which is denoted by degci(I — A, - ). For the definition of degc (I — A, - ), see Dancer|[3].

Lemma 1 A maps T} into Cy.

Proof. Let (u,v) € Ty. First we will show the positivity of A(u,v). Note that v > 0 and
v > 0 and that p is sufficiently large. Using the maximum principle in (7), we see that each
element of A(u,v) is positive.

Next we will show the monotonicity of A(u,v). Defferentiating with respect to 6,

d U

a0
__d_2+ ! p+ DY a—2u— bw) —D 'bu Ug
ez " P —Dtev p+D YW d-2v—cu) | \ vy )~

Since ug > 0 and vy < 0, it follows fron the maximum principle that the first element of
the above equality is nonnegative and the second is nonpositive. a

Now we can define degci(I — A, Ty).
Lemma 2 degor(I — A, T;) = 1.

Proof. We use the homotopy invariance and excision property of the fixed point index
theory. When we regard D as a parameter, we sometimes write Ap to emphasize D
dependence of A. A

‘From the result of Conway-Hoff-Smoller[1], it is well known that there is a sufficiently
large Dy = Do(a,b,c,d,2) > 0 such that (5) has no nonconstant solution for D >
Do(a,b,c,d,Q); so that the excision property gives

degc, (I — Ap,Tx) = indexc, (Ap, (a,0)) + indexc, (Ap, (0, d))

+index¢, (Ap, (0,0)) + indexc, (Ap, (u*,v*))  for D > Dj. (8)

To calculate the righthand side of (8), we will give the value of fixed point indices of
constant solutions in the following lemma, whose proof is omitted. .
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Lemma 3 (i)in dea:ck(A (a 0)) =indezc, (A, (0,d)) =

(¢1)indezc, (A, (0, ))
(e11)indezc, (A, (u* )) -1 if DX >o*.

We will continue the proof of Lemma 2. Since we can make Dy sufficiently large, Do) > o
holds. So the righthand side of (8) is 1 from Lemma 3. Remember that Ap has no fixed
point on the boundary of 7. Using the homotopy invariance property, it follows that

degg, (I — Ap,Ti) =1 for every D > 0.

]

In the rest of the proof we restrict ourselves to the case when the parameter R is suffi-
ciently large.

Our stratgy is as follows. In Lemma 4 we get all the positive radial solutions, and in
Lemma 5 we study the fixed point indices of these radial solutions. Finally combining
Lemmas 2, 4 and 5, we conclude the existence of a non-radial fixed point of A in T} by
contradiction.

Set ¢ := &, then (5) is equivallent to

( De D?é? , .
Dug, + T ot (1+6S)2u09+u(a—u—bv) =0 in [0, 1] x [0,27),
De D?¢?
¢ Du,, +

Ttes " (1 +es)2 % +v(d—v—cu)=0 in {0, 1] x [0,2), (9)

us(0,0) = us(1,0) = v5(0,0) = vs(1,0) = 0,
[ v >0,v>0. _ ~in]0,1] x [0,27).

Note that (9) with ¢ = 0 is equivalent to the one dimensional system (6). Denote by
{(u;v5)}i=1,2,,m all the nonconstant solutions for (6). Observe that the number of such
solutions is finite because of the nondigeneracy assumption.

Lemma 4 Assume (N). For small ¢ > 0, (9) has a nonconstant radial solution (ui,v:)
near (ub,vy) fori=1,2,- m

Moreover, if (u,v) is a nonconstant radial solution, then (u,v) = (ut,v?) for some i €
{1,2,--,m}. '

The proof can be accomplished with use of the implicit function theorem.

We can calculate the fixed point index of each radial solution using Dancer’s index
formula.
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Lemma 5 Let (u,v) be a positive radial solution for (7) including (u*,v*). If the eigenvalue

problem
Au 1 { a—2u— b, —bu ) ‘
(Aﬁ>+5( —cv d—2v—-cu)('§)_)‘( )’ (10)

[S{I~d]

%,(0) = u,(1) = 5,(0) = 5,(1) =
v 0? e 0 N
e A= gt Treas T v o

has a positive real eigenvalue, then

S
S

(u,v) = (ut,v?).
For (u,v) = (u*,v*), (11) has a positive real eigenvalue. (Recall that we are discussing

indezc, (A, (u,v)) = 0.
€7 Ve
First, we consider the case € = 0;
the bistable case. ) For nonconstant solutions, we will introduce the result of Kishimoto-
Weinberger|7]. '

Lemma 5 is useful to get the fixed point index of (u!,v!); we study the eigenvalue problem
Ugg 4+ 1( a—2uf— b}, —bu})
e | d —cvf d — 205 — cup
Theorem 3 (Kishimoto-Weinberger)

(10) with
a(2). o
U,(0) = (1) = 9,(0) = 0,(1) = 0.
For any nonconstant solution (ui,v}), (11) has a positive real simple eigenvalue Xo.
Taking account of these results, the implicit function theorem shows the following lemma.

Lemma 6 For sufficiently small € > 0, (10) with (u,v) = (u,v’) has a simple real eigen-

€ €
value A\ near A\g. Therefore, A¢ is also positive since g is positive.

We are ready to complete the proof of Theorem 2. It follows from Lemmas 5 and 6 that
indexci (A, (u*,v")) =0, (12)
indexck(A, (ul,v})) =0 for every ¢=1,2,-,m. (13)

Assume that there exists no non-radial solution. From the excision property,

degg, (I — A, Ty) = indexg;, (A4, (a,0)) + indexc, (4, (0, d))+

indexc, (4, (0,0)) + indexc, (A4, (u*,v*)) + 3 _ indexc, (A, u'e, v'e).
i=1
We see from (12),(13) and (i), (ii) in Lemma 3 that the righthand side is equal to 2. This
contradicts to Lemma 2. Thus we can obtain a non-radial fixed point in Cj.
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