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Homogenization of Hamilton-Jacobi equations
with Neumann and Dirichlet boundary conditions

- Kazuo Horie (JE{L #F15)
Saitama University (FEKRFE)

Introduction.

- 'We describe some results which we have obtained jointly with Prof. H. Ishii in [HI].
We consider the limiting behavior, as ¢ — 0, of solutions of the following boundary

value problems for Hamilton-Jacobi equations,

H (Due(_;_c),ue(w),m,g) =0 in .,
(N). 2 |
B (Du (z),u (w),m,;) =0 on O,
and
: € € f — :
H (Du (z),u’(z),=, ,6) 0 in .,

(D). o
o u®(z) =0b (:c, E) on 0.,
where Q, = e and Q is a periodic domain of RY. In homogenization theory, one of
important issues is the treatment of “domain with small holes” and many mathemati-
cians studied this problem in linear cases ([A] and its references). We want to study
the Aca,se. of Hamilton-Jacobi equations via the viscosity solutions approach.

The study of homogenization based on viscosity solutions was initiated by [LPV]

and then developed by [E1l] and [E2]. In those papers, they considered equations of the
following type

(1) u®(z) + |Dus(z)> =V (g) in RN,

and examined the asymptotics of u® as € — 0 (or the corresponding evolution equations).



39

Thanks to [LPV], [E1] and [E2], we have a rather good comprehension of homog-
enization of (1) in the case N = 1. Assume that V € C(R), V(y + 1) = V(y) and
ming V = 0. Then, according to [LPV], the solution of (1) converges uniformly on R
to the solution of the PDE

2) | w(z)+ H(Du(z)) =0 inR.

Here H is the function on R defined by

1

0 if |p| < / Vi(y)dy,

Hip) = 0 ! 1 1o,

A(p) > 0 is a solution of |p| = / (V(y) + N)zdy if |p| > / Vz(y)dy.
0 0

In this example H is given explicitly, but in general situations it is determined through
the “cell problem” (see [LPV], [E1] or [E2]).

Through this paper, we will deal only with viscosity solutions and omit giving here
the definitions (for example, see [CIL]).

1. Main results.

We give the list of assumptions of 2, H, B and b.
(Q1) Qis a (connected) domain of RY.
(Q2) oeC'.

(23) Q4+e;=Qforalll < S N, where {e;,---,en} denote the standard ba‘sis of
RY. ‘

(H1) For each R > 0,
H € BUC(B(0,R) x [-R,R] x RV x Q0),

where B(z, R) denotes the closed ball with radius R and center z.



(H2)
(H3)

(H4)

(B1)

(B2)
(B3)

(B4)

(b1)

(b2)
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H(p,u,2,y+ &) = H(p,u,z,y) forall 1 <i < N,
For some 7y > 0, the functiqn u — H(p,’u., z,y) — yu is nondecreasing.
For each u € R,

lim inf{H(p,u,2,y) | |p| >7, ¢ € RY, y € O} = o0.

For each R > 0,

B € BUC(B(0,R) x [-R,R] x RY x 09).

B(p,u,z,y +¢;) = B(p,u,z,y) forall 1 <i < N.
The function v — B(p,u,z,y) is nondecreasing.

For some v > 0, the function ¢ — B(p + tn(y),u,z,y) — vt is nondecreasing,

where n(y) denotes the unit normal vector at y € 0f) outward to Q.

b€ BUC(RN x 69).

b(z,y+e;) =b(z,y) foralll1 <i < N.

We state an existence result for solutions of (N). and some of their properties.

Proposition 1. Assume that (Q1)-(Q3), (H1)-(H4) and (B1)-(B4) hold. Then,

(N)e has a unique bounded Lipschitz continuous solution u®. It satisfies

(1.1)

and

(1.2)

sup |[ullgm,) < o0
0<e<1

sup || Du®||pee(n,) < oo.
0<e<1
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To determine the effective Hamiltonian associated with the problem (N),, we con-

sider the following “cell problem”.

Proposition 2. (Cell problem) Assume that (Q1)-(923), (H1)-(H4) and (B1)-(B4)
hold. Then, for each (p,u,z) € RN x R x RV, there exists a unique number A\; € R
such that the problem

H(p + Dyvi(y),u,z,y) =A1 in Q,
(CPN) { ( y 1(. 1

B(p+Dyv1(y),u,cc,y) =0 on 089,

has a bounded solution v; € C%*(9).

We put A\; = H(p,u,z) and call H the effective Hamiltonian associated with the
problem (N).. This Hamiltonian H satisfies the following properties.

Proposition 3. Assume that (Q1)-(Q3), (H1)-(H4) and (B1)-(B4) hold. Then:
(1) For each R > 0,

H ¢ BUC(B(0,R) x [-R, R] x RVN).

(2) For some ~ > 0, the function uw — H(p,u,z,y) — vu is nondecreasing.
Theorem 1. The Hamilton-Jacobi equation

(1.3) H(Du(z),u(z),z) =0 in RN,

has a unique solﬁtion u € BUC(R™) and

(1.4) lim sup |u®(z) — u(z)| = 0.
eN\0 z€Q,
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Proposition 4. Assume that (Q1)-(23), (H1)-(H4) and (B1)-(B4) hold. Then,

(D). has a unique bounded Lipschitz continuous solution u®. It satisfies

(ts) -~ sup [[v][cqq,) <
0<e<1
and
(1.6) sup ||[Duf||gee(q,) < oo
0<e<1

Proposition 5. (Cell problem) Assume that (21)-(3), (H1)-(H4) and (B1)-(B4)
hold. Then, for each (p,u,z) € RN x R x R, there exists a unique number A, € R
such that the problem '

H(p + Dyva(y),u,z,y) < X2 in Q,
(CIﬂD) { yY2 y Wy 2

H(p+ Dyvs(y),u,z,y) > A2 in 0,

has a bounded solution v € C%*(9).

The problem (CPD) is of the state-constraint type. Problems of this type naturally
arises in optimal control, where the dynamic programing equations have convex Hamil-
tonians H in the first variable p. Here, the interesting point is that the function H is

not assumed to be convex in p. .
We put Ay = H(p,u,z) and call H the effective Hamiltonian associated with the
problem (D).. The effective Hamiltonian H has the following properties.

Proposition 6. Assume that (21)-(23), (H1)-(H4) and (B1)-(B4) hold. Then:
(1) For each R > 0,
H ¢ BUC(B(0,R) x [-R,R] x RY).

(2) For some v > 0, the function u — H(p,u,z,y) — yu is nondecreasing.
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‘Theorem 2. The Hamilton-Jacobi equation
(L.7) max{u(z) - B(x), H(Du(x), u(x),2)} =0 in RV,
where b(z) = min,epq b(z,y), has a unique solution w € BUC(RN) and

(1.8) lim sup |[u®(z) — u(z)| = 0.
: e\0 z€Q,

2. Proof of main results.
We only sketch the proof in the case of the Dirichlet problem (D)..

Proof of Proposition 4. Note that, by (H4), a bounded subsolution of (D), is
Lipschitz continuous. Moreover, if (1.5) holds, then solutions satisfy (1.6). Noting that

ui(z) = —A; and us(z) = A4,

where A; > 0 is large enough are, respectively, a subsolution and a supersolution of
(D). Then, using Perron’s method and standard comparison arguments, we see that
(D). has a unique bounded Lipschitz solution u¢. Moreover, noting that the constant

A; can be chosen independently of ¢ > 0, we conclude (1.5) and (1.6). B

Outline of proof of Proposition 5. For 0 < a < 1, we consider the following

approximate problem

(CP),, { cw®(y) + H(p + Dyw*(y),u,z,y) <0 in 2,
awa(y) + H(P + Dy’wa(y),u,:z;,y) >0 in Q.
Since , )
wi(y) = *?2 and w,(y) = ?2

are, respectively, a subsolution and a supersolution of (CP), if the constant A, is large
enough, we get a unique Lipschitz solution w® of (CP), by Perron’s method for each
0 < a < 1. Morerover, by (H2), we have w*(y + ¢;) = w(y) forall 1 <i < N.
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It follows from the construction of the solution that
sup lew®|| ¢y < oo
By using this inequalify, we obtain
sup [ Dw®|| Lo () < 0o.
We put v*(y) = w%(y) — minw®*. Then we have
sgp “Va”co,l(ﬁ) < 0.

Therefore,

v* - vy and aw® — —)A; uniformly

along a sequence as a — 0, for some v € C%!(Q) and X, € R. This way we get a

solution (v2,)\;). We omit giving the proof of the uniqueness of A (see [E2]). B

We omit giving the proof of Proposition 6 (see [I4] or [HI]). Next, we will prove
Theorem 2, where we use both the perturbed test function method (see [El] and [E2])

and the test function used in the proof of comparison results (see [I2]).
Prpof of theorem 2. We put
u(z) = limsup{u’(y) | [z —y| <&, 0<é<e}
and
u(z) = li_ﬂx%)inf{ua(y) |z —y|<e, 0<bd<e}

for z € RY. We will show that % and u are, respectively, a subsolution and a superso-
lution of (1.7).

Let ¢ € CYY(RY) and & be a maximum point of w — ¢. We may assume that
lim|;| 00 ¢(z) = 0o and that T—¢ attains a strict maximum at £ € RY. Letv € C%1(0)

be a solution of Proposition 5 with A, = H(D¢(&),%(%), ). Then, we can find maximum
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points z¢ € (), of u*(z) — p(z) — ev (%) satisfying z° — & as € — 0. We are concerned
with the case z° € 0f),; the other case can be argued similarily and more easily.

By (92), there exist n = 7(z°) € RY and b > 0 such that B(z® +t7,1b) C Q. for all
0<t<b. Fora>0,weput

Ty
o

|2

®(z,y) = u(z) — p(z) — ev (g) _

e
on Q. x Q.. Let (z5,y5) € Q. x ), be a maximum point of ®. Then z%,y5 — z° as

a — 0. Since ®(y:, + an,y5,) < ®(z5,y5), we have

e €
Lo — Yo

«x

*ﬂ’SCa

for some C' >0 independent of ¢ > 0. Moreover, we may assume that z5 € Q..

Since u® is a solution of (D)., we obtain

€ [ T

€ 2 To— Y e(. € Va p |
H (D‘ro(wa)+ Z( o = —77) y U (za))maaf‘) < 0
and

a=Va _ 17) ~ 2(ya — =), u(#), %, g;) 2 H(Dp(2),U(2), 2).

(24

z

2
H D T -
( () + — (
Sending a — 0 first and ¢ — 0, we get
H(Dy(#),u(),2) < 0.

Now, we show that @(z) < b(z). If there exists Z € RY such that @(z) > b(z), then
we can show that there exist ¢ > 0 and &, € 0N, such that u®(z.) > b (:EE, z—;—) Let
r >0, A > 0and z4 be a maximum point of u*(z) — 4|z — Z. — rn(Z.)|. Since z4 — Z.

asr:%andA——)ooand

|za — Ze — rn(Z,)

H (A S ’""(”’e)l us(z4),2a, “’?A) >0
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for A > 0 large enough by (H4), we have z4 € 8Q, and u®(z4) < b (x4, %+). Therefore,
sending A — oo, we get a contradiction. Thus we have proved that @ is a subsolution
of (1.7).

Similarly, we can prove that u is a supersolution of (1.7). By comparison arguments,

we have & = u and conclude the proof. &
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