Homogenization of Hamilton-Jacobi equations with Neumann and Dirichlet boundary conditions

Kazuo Horie (堀江 和男) Saitama University (埼玉大学)

Introduction.

We describe some results which we have obtained jointly with Prof. H. Ishii in [HI]. We consider the limiting behavior, as $\varepsilon \to 0$, of solutions of the following boundary value problems for Hamilton-Jacobi equations,

$$(\mathrm{N})_arepsilon \ egin{dcases} H\left(Du^arepsilon(x),u^arepsilon(x),x,rac{x}{arepsilon}
ight) = 0 & ext{in} \ \Omega_arepsilon, \ B\left(Du^arepsilon(x),u^arepsilon(x),x,rac{x}{arepsilon}
ight) = 0 & ext{on} \ \partial\Omega_arepsilon \end{cases}$$

and

$$(\mathrm{D})_arepsilon \ \left\{egin{array}{ll} H\left(Du^arepsilon(x),u^arepsilon(x),x,rac{x}{arepsilon}
ight) = 0 & ext{in} & \Omega_arepsilon, \ u^arepsilon(x) = b\left(x,rac{x}{arepsilon}
ight) & ext{on} & \partial\Omega_arepsilon, \end{array}
ight.$$

where $\Omega_{\varepsilon} = \varepsilon \Omega$ and Ω is a periodic domain of \mathbf{R}^N . In homogenization theory, one of important issues is the treatment of "domain with small holes" and many mathematicians studied this problem in linear cases ([A] and its references). We want to study the case of Hamilton-Jacobi equations via the viscosity solutions approach.

The study of homogenization based on viscosity solutions was initiated by [LPV] and then developed by [E1] and [E2]. In those papers, they considered equations of the following type

$$(1) \qquad \qquad u^{arepsilon}(x) + |Du^{arepsilon}(x)|^2 = V\left(rac{x}{arepsilon}
ight) \quad ext{in } \mathbf{R}^N,$$

and examined the asymptotics of u^{ε} as $\varepsilon \to 0$ (or the corresponding evolution equations).

Thanks to [LPV], [E1] and [E2], we have a rather good comprehension of homogenization of (1) in the case N=1. Assume that $V \in C(\mathbf{R})$, V(y+1)=V(y) and $\min_{\mathbf{R}} V=0$. Then, according to [LPV], the solution of (1) converges uniformly on \mathbf{R} to the solution of the PDE

(2)
$$u(x) + \overline{H}(Du(x)) = 0$$
 in **R**.

Here \overline{H} is the function on $\mathbf R$ defined by

$$\overline{H}(p) = \left\{ egin{aligned} 0 & ext{if } |p| \leq \int_0^1 V^{rac{1}{2}}(y) dy, \ & \ \lambda(p) \geq 0 ext{ is a solution of } |p| = \int_0^1 (V(y) + \lambda)^{rac{1}{2}} dy & ext{if } |p| \geq \int_0^1 V^{rac{1}{2}}(y) dy. \end{aligned}
ight.$$

In this example \overline{H} is given explicitly, but in general situations it is determined through the "cell problem" (see [LPV], [E1] or [E2]).

Through this paper, we will deal only with viscosity solutions and omit giving here the definitions (for example, see [CIL]).

1. Main results.

We give the list of assumptions of Ω , H, B and b.

- $(\Omega 1)$ Ω is a (connected) domain of \mathbf{R}^N .
- $(\Omega 2)$ $\partial \Omega \in C^1$.
- (Ω 3) $\Omega + e_i = \Omega$ for all $1 \leq i \leq N$, where $\{e_1, \dots, e_N\}$ denote the standard basis of \mathbb{R}^N .
- (H1) For each R > 0,

$$H \in BUC(B(0,R) \times [-R,R] \times \mathbf{R}^N \times \overline{\Omega}),$$

where B(z, R) denotes the closed ball with radius R and center z.

$$(\mathrm{H2}) \quad H(p,u,x,y+e_i)=H(p,u,x,y) \text{ for all } 1\leq i\leq N.$$

- (H3) For some $\gamma > 0$, the function $u \mapsto H(p, u, x, y) \gamma u$ is nondecreasing.
- (H4) For each $u \in \mathbf{R}$,

$$\lim_{r o\infty}\inf\{H(p,u,x,y)\mid |p|>r,\;x\in\mathbf{R}^N,\;y\in\overline{\Omega}\}=\infty.$$

(B1) For each R > 0,

$$B \in BUC(B(0,R) imes [-R,R] imes {f R}^N imes \partial \Omega).$$

$$(\mathrm{B2}) \quad B(p,u,x,y+e_i) = B(p,u,x,y) \text{ for all } 1 \leq i \leq N.$$

- (B3) The function $u \mapsto B(p, u, x, y)$ is nondecreasing.
- (B4) For some $\nu > 0$, the function $t \mapsto B(p + tn(y), u, x, y) \nu t$ is nondecreasing, where n(y) denotes the unit normal vector at $y \in \partial \Omega$ outward to Ω .
- (b1) $b \in BUC(\mathbf{R}^N \times \partial \Omega).$
- $(\mathrm{b2}) \quad b(x,y+e_i)=b(x,y) \text{ for all } 1\leq i\leq N.$

We state an existence result for solutions of $(N)_{\varepsilon}$ and some of their properties.

Proposition 1. Assume that $(\Omega 1)$ - $(\Omega 3)$, (H1)-(H4) and (B1)-(B4) hold. Then, $(N)_{\varepsilon}$ has a unique bounded Lipschitz continuous solution u^{ε} . It satisfies

$$\sup_{0<\varepsilon<1}\|u^{\varepsilon}\|_{C(\overline{\Omega}_{\varepsilon})}<\infty$$

and

$$\sup_{0<\varepsilon<1}\|Du^\varepsilon\|_{L^\infty(\Omega_\varepsilon)}<\infty.$$

To determine the effective Hamiltonian associated with the problem $(N)_{\varepsilon}$, we consider the following "cell problem".

Proposition 2. (Cell problem) Assume that $(\Omega 1)$ - $(\Omega 3)$, (H1)-(H4) and (B1)-(B4) hold. Then, for each $(p, u, x) \in \mathbf{R}^N \times \mathbf{R} \times \mathbf{R}^N$, there exists a unique number $\lambda_1 \in \mathbf{R}$ such that the problem

$$\left\{egin{aligned} H(p+D_yv_1(y),u,x,y)=&\lambda_1 & ext{in} & \Omega,\ \\ B(p+D_yv_1(y),u,x,y)=&0 & ext{on} & \partial\Omega, \end{aligned}
ight.$$

has a bounded solution $v_1 \in C^{0,1}(\overline{\Omega})$.

We put $\lambda_1 = \tilde{H}(p, u, x)$ and call \tilde{H} the effective Hamiltonian associated with the problem $(N)_{\varepsilon}$. This Hamiltonian \tilde{H} satisfies the following properties.

Proposition 3. Assume that $(\Omega 1)$ - $(\Omega 3)$, (H1)-(H4) and (B1)-(B4) hold. Then: (1) For each R > 0,

$$ilde{H} \in BUC(B(0,R) imes [-R,R] imes {f R}^N).$$

(2) For some $\gamma > 0$, the function $u \mapsto \tilde{H}(p,u,x,y) - \gamma u$ is nondecreasing.

Theorem 1. The Hamilton-Jacobi equation

(1.3)
$$\tilde{H}(Du(x), u(x), x) = 0 \quad \text{in } \mathbf{R}^N,$$

has a unique solution $u \in BUC(\mathbf{R}^N)$ and

$$\lim_{\varepsilon \searrow 0} \sup_{x \in \Omega_\varepsilon} |u^\varepsilon(x) - u(x)| = 0.$$

Proposition 4. Assume that $(\Omega 1)$ - $(\Omega 3)$, (H1)-(H4) and (B1)-(B4) hold. Then, $(D)_{\varepsilon}$ has a unique bounded Lipschitz continuous solution u^{ε} . It satisfies

$$\sup_{0<\varepsilon<1}\|u^\varepsilon\|_{C(\overline{\Omega}_\varepsilon)}<\infty$$

and

$$\sup_{0<\varepsilon<1}\|Du^{\varepsilon}\|_{L^{\infty}(\Omega_{\varepsilon})}<\infty.$$

Proposition 5. (Cell problem) Assume that $(\Omega 1)$ - $(\Omega 3)$, (H1)-(H4) and (B1)-(B4) hold. Then, for each $(p, u, x) \in \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^N$, there exists a unique number $\lambda_2 \in \mathbb{R}$ such that the problem

$$\left\{egin{aligned} H(p+D_yv_2(y),u,x,y) &\leq \lambda_2 & ext{in } & \Omega, \ H(p+D_yv_2(y),u,x,y) &\geq \lambda_2 & ext{in } & \overline{\Omega}, \end{aligned}
ight.$$

has a bounded solution $v \in C^{0,1}(\overline{\Omega})$.

The problem (CPD) is of the *state-constraint* type. Problems of this type naturally arises in optimal control, where the dynamic programing equations have convex Hamiltonians H in the first variable p. Here, the interesting point is that the function H is not assumed to be convex in p.

We put $\lambda_2 = \overline{H}(p, u, x)$ and call \overline{H} the effective Hamiltonian associated with the problem $(D)_{\varepsilon}$. The effective Hamiltonian \overline{H} has the following properties.

Proposition 6. Assume that $(\Omega 1)$ - $(\Omega 3)$, (H1)-(H4) and (B1)-(B4) hold. Then: (1) For each R > 0,

$$\overline{H} \in BUC(B(0,R) imes [-R,R] imes {f R}^N).$$

(2) For some $\gamma > 0$, the function $u \mapsto \overline{H}(p, u, x, y) - \gamma u$ is nondecreasing.

Theorem 2. The Hamilton-Jacobi equation

(1.7)
$$\max\{u(x) - \overline{b}(x), \overline{H}(Du(x), u(x), x)\} = 0 \quad \text{in } \mathbf{R}^N,$$

where $\overline{b}(x)=\min_{y\in\partial\Omega}b(x,y),$ has a unique solution $u\in BUC(\mathbf{R}^N)$ and

$$\lim_{\varepsilon \searrow 0} \sup_{x \in \Omega_{\varepsilon}} |u^{\varepsilon}(x) - u(x)| = 0.$$

2. Proof of main results.

We only sketch the proof in the case of the Dirichlet problem $(D)_{\varepsilon}$.

Proof of Proposition 4. Note that, by (H4), a bounded subsolution of (D)_{ε} is Lipschitz continuous. Moreover, if (1.5) holds, then solutions satisfy (1.6). Noting that

$$u_1(x)=-A_1\quad ext{and}\quad u_2(x)=A_1,$$

where $A_1 > 0$ is large enough are, respectively, a subsolution and a supersolution of $(D)_{\varepsilon}$. Then, using Perron's method and standard comparison arguments, we see that $(D)_{\varepsilon}$ has a unique bounded Lipschitz solution u^{ε} . Moreover, noting that the constant A_1 can be chosen independently of $\varepsilon > 0$, we conclude (1.5) and (1.6).

Outline of proof of Proposition 5. For $0 < \alpha < 1$, we consider the following approximate problem

$$\left\{egin{aligned} lpha w^lpha(y) + H(p+D_y w^lpha(y),u,x,y) &\leq 0 & ext{in} & \Omega, \ lpha w^lpha(y) + H(p+D_y w^lpha(y),u,x,y) &\geq 0 & ext{in} & \overline{\Omega}. \end{aligned}
ight.$$

Since

$$w_1(y) = -rac{A_2}{lpha} \quad ext{and} \quad w_2(y) = rac{A_2}{lpha}$$

are, respectively, a subsolution and a supersolution of $(CP)_{\alpha}$ if the constant A_2 is large enough, we get a unique Lipschitz solution w^{α} of $(CP)_{\alpha}$ by Perron's method for each $0 < \alpha < 1$. Moreover, by (H2), we have $w^{\alpha}(y + e_i) = w^{\alpha}(y)$ for all $1 \le i \le N$.

It follows from the construction of the solution that

$$\sup_{lpha}\|lpha w^lpha\|_{C(\overline{\Omega})}<\infty.$$

By using this inequality, we obtain

$$\sup_{\alpha}\|Dw^{\alpha}\|_{L^{\infty}(\Omega)}<\infty.$$

We put $v^{\alpha}(y) = w^{\alpha}(y) - \min w^{\alpha}$. Then we have

$$\sup_{\alpha}\|v^{\alpha}\|_{C^{0,1}(\overline{\Omega})}<\infty.$$

Therefore,

$$v^{lpha}
ightarrow v_2$$
 and $lpha w^{lpha}
ightarrow -\lambda_2$ uniformly

along a sequence as $\alpha \to 0$, for some $v \in C^{0,1}(\overline{\Omega})$ and $\lambda_2 \in \mathbb{R}$. This way we get a solution (v_2, λ_2) . We omit giving the proof of the uniqueness of λ (see [E2]).

We omit giving the proof of Proposition 6 (see [I4] or [HI]). Next, we will prove Theorem 2, where we use both the perturbed test function method (see [E1] and [E2]) and the test function used in the proof of comparison results (see [I2]).

Proof of Theorem 2. We put

$$\overline{u}(x) = \lim_{arepsilon o 0} \sup \{ u^\delta(y) \mid |x-y| \le arepsilon, \,\, 0 < \delta < arepsilon \,\, \}$$

and

$$\underline{u}(x) = \lim_{\varepsilon \to 0} \inf\{u^{\delta}(y) \mid |x-y| \le \varepsilon, \,\, 0 < \delta < \varepsilon \,\,\}$$

for $x \in \mathbf{R}^N$. We will show that \overline{u} and \underline{u} are, respectively, a subsolution and a supersolution of (1.7).

Let $\varphi \in C^{1,1}(\mathbf{R}^N)$ and \hat{x} be a maximum point of $\overline{u} - \varphi$. We may assume that $\lim_{|x| \to \infty} \varphi(x) = \infty$ and that $\overline{u} - \varphi$ attains a strict maximum at $\hat{x} \in \mathbf{R}^N$. Let $v \in C^{0,1}(\overline{\Omega})$ be a solution of Proposition 5 with $\lambda_2 = \overline{H}(D\varphi(\hat{x}), \overline{u}(\hat{x}), \hat{x})$. Then, we can find maximum

points $x^{\varepsilon} \in \overline{\Omega}_{\varepsilon}$ of $u^{\varepsilon}(x) - \varphi(x) - \varepsilon v\left(\frac{x}{\varepsilon}\right)$ satisfying $x^{\varepsilon} \to \hat{x}$ as $\varepsilon \to 0$. We are concerned with the case $x^{\varepsilon} \in \partial \Omega_{\varepsilon}$; the other case can be argued similarly and more easily.

By $(\Omega 2)$, there exist $\eta = \eta(x^{\varepsilon}) \in \mathbf{R}^N$ and b > 0 such that $B(x^{\varepsilon} + t\eta, tb) \subset \overline{\Omega}_{\varepsilon}$ for all $0 \le t < b$. For $\alpha > 0$, we put

$$\Phi(x,y) = u^{arepsilon}(x) - arphi(x) - arepsilon v\left(rac{y}{arepsilon}
ight) - \left|rac{x-y}{lpha} - \eta
ight|^2 - |y-x^{arepsilon}|^2$$

on $\overline{\Omega}_{\varepsilon} \times \overline{\Omega}_{\varepsilon}$. Let $(x_{\alpha}^{\varepsilon}, y_{\alpha}^{\varepsilon}) \in \overline{\Omega}_{\varepsilon} \times \overline{\Omega}_{\varepsilon}$ be a maximum point of Φ . Then $x_{\alpha}^{\varepsilon}, y_{\alpha}^{\varepsilon} \to x^{\varepsilon}$ as $\alpha \to 0$. Since $\Phi(y_{\alpha}^{\varepsilon} + \alpha \eta, y_{\alpha}^{\varepsilon}) \leq \Phi(x_{\alpha}^{\varepsilon}, y_{\alpha}^{\varepsilon})$, we have

$$\left| rac{x_lpha^arepsilon - y_lpha^arepsilon}{lpha} - \eta
ight| \leq C lpha$$

for some C>0 independent of $\varepsilon>0$. Moreover, we may assume that $x_{\alpha}^{\varepsilon}\in\Omega_{\varepsilon}$. Since u^{ε} is a solution of $(D)_{\varepsilon}$, we obtain

$$H\left(Darphi(x_lpha^arepsilon)+rac{2}{lpha}\left(rac{x_lpha^arepsilon-y_lpha^arepsilon}{lpha}-\eta
ight),u^arepsilon(x_lpha^arepsilon),x_lpha^arepsilon,rac{x_lpha^arepsilon}{arepsilon}
ight)\leq 0$$

and

$$H\left(Darphi(\hat{x})+rac{2}{lpha}\left(rac{x_lpha^arepsilon-y_lpha^arepsilon}{lpha}-\eta
ight)-2(y_lpha^arepsilon-x^arepsilon),\overline{u}(\hat{x}),\hat{x},rac{y_lpha^arepsilon}{arepsilon}
ight)\geq \overline{H}(Darphi(\hat{x}),\overline{u}(\hat{x}),\hat{x}).$$

Sending $\alpha \to 0$ first and $\varepsilon \to 0$, we get

$$\overline{H}(Darphi(\hat{x}),\overline{u}(\hat{x}),\hat{x})\leq 0.$$

Now, we show that $\overline{u}(x) \leq \overline{b}(x)$. If there exists $\tilde{x} \in \mathbb{R}^N$ such that $\overline{u}(\tilde{x}) > \overline{b}(\tilde{x})$, then we can show that there exist $\varepsilon > 0$ and $\tilde{x}_{\varepsilon} \in \partial \Omega_{\varepsilon}$ such that $u^{\varepsilon}(\tilde{x}_{\varepsilon}) > b\left(\tilde{x}_{\varepsilon}, \frac{\tilde{x}_{\varepsilon}}{\varepsilon}\right)$. Let r > 0, A > 0 and x_A be a maximum point of $u^{\varepsilon}(x) - A|x - \tilde{x}_{\varepsilon} - rn(\tilde{x}_{\varepsilon})|$. Since $x_A \to \tilde{x}_{\varepsilon}$ as $r = \frac{1}{A}$ and $A \to \infty$ and

$$H\left(Arac{x_A- ilde{x}_arepsilon-rn(ilde{x}_arepsilon)}{|x_A- ilde{x}_arepsilon-rn(ilde{x}_arepsilon)|},u^arepsilon(x_A),x_A,rac{x_A}{arepsilon}
ight)>0$$

for A > 0 large enough by (H4), we have $x_A \in \partial \Omega_{\varepsilon}$ and $u^{\varepsilon}(x_A) \leq b\left(x_A, \frac{x_A}{\varepsilon}\right)$. Therefore, sending $A \to \infty$, we get a contradiction. Thus we have proved that \overline{u} is a subsolution of (1.7).

Similarly, we can prove that \underline{u} is a supersolution of (1.7). By comparison arguments, we have $\overline{u} = \underline{u}$ and conclude the proof.

References

- [A] H. Attouch, Variational Convergence for Functions and Operators (New York: Pitman, 1984).
- [BL] G. Barles and P.-L. Lions, Fully nonlinear Neumann type boundary conditions for first-order Hamilton-Jacobi equations, Nonlinear Anal. Theory Methods Appl. 16 (1991), 143-153.
- [BP] G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping- time problems, Modèl. Math. Anal. Num. 21 (1987), 557-579.
- [BLP] A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures (Amsterdam: Noth Holland, 1978).
 - [C1] M. C. Concordel, Periodic homogenization of Hamilton-Jacobi equations: 1. Additive eigenvalues and variational formula, preprint.
 - [C2] M. C. Concordel, Periodic homogenization of Hamilton-Jacobi equations: 2. Eikonal equations, preprint.
 - [CL] M. G. Crandall, and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42.
- [CIL] M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1-67.
 - [DI] P. Dupuis and H. Ishii, On oblique derivative problems for fully nonlinear second order elliptic equations on nonsmooth domains, Nonlinear Anal. Theory Methods Appl. 12 (1991), 1123–1138.

- [E1] L. C. Evans, The perturbed test function technique for vicosity solutions of partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359–375.
- [E2] L. C. Evans, Periodic homogenisation of fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 245-265.
- [HI] K. Horie and H. Ishii, Homogenization of Hamilton-Jacobi equations on domains with small scale periodic structure, preprint.
- [I1] H. Ishii, Perron's method for Hamilton-Jacobi equations, Duke Math. J., 55 (1987), 369-384.
- [I2] H. Ishii, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations, Ann. Scuola Norm. Sup. Pisa 16 (1989), 105-135.
- [I3] H. Ishii, Fully nonlinear oblique derivative problems for nonlinear second-order elliptic PDE's, Duke Math. J., 62 (1991), 633-661.
- [I4] 石井仁司, 粘性解とその応用, 数学, 46 (1995), 97-110.
- [L] P.-L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Math. J., **52** (1985), 793-820.
- [LVP] P.-L. Lions, G. Papanicolaou and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi equations, Preprint.
 - [S] H. M. Soner, Optimal control with state-space constraint I, SIAM J. Control Optim. 24 (1986), 552-562.