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There are two aims in this note. The first one is to give a review of recent develop-
ments of this subject. The second one is to state my new results. Especially, in the first
part I would like to descirbe the relation among three kinds of the weighted estimates:
the estimates of restriction theorem , the estimates of limiting absorption principle and

the estimates of smoothing effect.
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Part 1.

In this paper, we will deal with restriction theorem , smoothing effect and limiting
absorption principle.. They connect each others, and seem as trinity. Here we explain
the relationship. The first subject is restriction theorem. Let f(x) be a function in
R™ and f(€) be its Fourier transform. If f € L1(R™) then f(¢) € L°(R"), hence f(£)
can be restricted any subset of the Euclidean space. Restriction theorem is analog of
such trivial fact. Namely it tells us that the restriction to some subset S of R™ can be
extended to a bounded operator from some function space of R™ to the other function
space of S. The second subject is smoothing effect. It tells us that the solutions to
dispersive equations are a little bit smoother than the Cauchy data in some function
space of space-time variables. Recently there is much activity in this subject. The third
subject is limiting absorption principle. It vtells us that the resolvent operator R({) has
limit as a bounded operator in some function spaces even if { approaches the spectrum
of the Laplacian. The purpose of the present part is to explain the relation among such
subjects by describe a review of recent developments of the second subject.

The first result of smoothing effect is due to Prof. Kato [8] . Concerning linearized

KdV (i.e., Airy) equation, he obtained the following result: Let u be a solution of

ou B
Bt + ax3 0’
’LL|t:()_ = (,b

If ¢ € L%(R) then u enjoys that |Dju(t,z) € L? (R?). He also proved that the similar
conclusion holds even if we add the nonlinear term to the equation. After such epoc

making work, P. Constantin and J.C. Saut [4] have found new approach. Also they

remark that such phenomenon is common in dispersive equations. They proved the
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following result. Let u be a solution of the initial value problem

{ %u 1 i P(D)yu =0,

U|t=0 ) = ¢7

where it is assumed that P(£) is real valued and has asymptotic behavior like [€|™ as
|€] — oo. Then it holds that (D]ﬂi‘_‘lu € L2 (R™*1), if ¢ € L*(R™). Their proof is
based on harmonic analysis. More precisely, they proved the following inequality, which

is adjoint of the previous result: Let x(t,2) € C§°(R™*1!). Then there exists a constant

C such that

/;eRn(l + €)™ O (PE). OPdE < Cllf I 2@ty

where f (1.€) is the Fourier transform of f with respect to space-time variables. Such
proéedure is not due to them, but essentially due to R. Strichartz [16]. Indeed R.
Sttichértz'[lfi] proved that, if ¢ € L2(R") and n > 3, then the solution to Schrédinger
equation u = e~ enjoys u(t,z) € LYR™1) where ¢ = 2nt4 Note that g > 2, so it
tells us that the SOlUtioﬁ is smoother than the initial datum. To prove it, he showed the

following restriction theorem to paraboloid: |

/ﬁ&n 1f(1€]2,6))2d¢ < C||f|]%p(Rn+1)’

2n+4

x> (i-e., dual exponent of ¢). Such kind of restriction theorem has been

where p =
an important problem in harmonic analysis from 1960’s. Especially P. Tomas and E.M.

Stein (see [17]) proved that, concerning the restriction to sphere, it holds

/ F©RAS < Ol 20
[€l=1

ifn23andp:2n&+32.
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- After the work by P. Constantin and J.C. Saut, it is natural to seek a global
version of such result as the one obtained by R. Strichartz [16]. T. Kato-K. Yajima [9]
and M.Ben Artzi-S. Klainerman [2] independently succeeded to obtain it. Supposing

n > 3, they gave the foliowing result. If ¢ € L?(R™) then the solution u(t,z) = e #2¢

enjoys

1
(1) lz|*7 D]y € L2(R™1Y) (0<a< 5)
and

(1+ |z)~ (549 | D2y € L2(R™HY).

M. Ben-Artzi and S. Klainerman begin the proof by introducing the restriction

theorem as follows:

(2) -/lEI=/\ ]Jg(f)lzdS,\ < Cmin(A%~1, 1)’|f|\%2,s(w)’

where dS) is surface element of the sphere {¢£ € R™[|(] = A} and

“f“%z.s(Rn) = /(1 + lez)s[f($)!2dx :

Moreover the inequality (2) relys on the one of limiting absorption principle, which
was proved by S. Agmon [1]. Let me explain about it. Precisely S. Agmon proved the

following estimate: If s > £ it holds

(3) [+ [2) " ull2@ny < CIA+[2])* (A = Qull L2 @n),

where the constant C is independent of u and ( € C.

Let R({) = (—A — {)~! and notice that

@m"  lm  Im (RQ)f, f) = — f©)PdSy.

¢—22,Im¢>0 ——ﬁ |§[=A| .
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(We can easily see the above inequality if we recall that limyo 5~ {E il o n} =6(£).)

Since { ~ A2 in the above limit, it follows that

A 9 _ —1— .
Jooy @PaSs = |8 it (RO,
< CouplClI(1 + le (= = O AL+ e])*f]

< C'lIflIz2-

Thus the inequality (2) for A > 1 follows and we can see that limiting absorption
principle implies restriction theorem. The inequality (2) for A < 1 can be proved by
another investigation ( see [2]).

The procedure to prove (1) from the inequality (2) is very simple. Let us follow

the argument by M. Ben-Artzi and S. Klainerman [2]. Set now

(AN, g) = /|£le F(&)3(@) ds.

The interior product (]D|%u, v)p2(gn+1) with u = e~%2¢ and v = v(t,2) can be repre-

sented by the operator A(A). Indeed we have

(D1, Ve = [ dt [ deleiee (6 T8

/ A (AN, / (8, -) dt) d.

Hence
(|ID|%u, v)
: (/ooo(A(A)qj’ 2 d’\> h ( /Ow A(ANBNE, ), B(N2,4)) d/\) e

0 1/2
— (22| 4] ( |0, ), 50,) dA) ,
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where 9(7,z) = [ €“"v(t,z) dt . Now let us put 2« +25—1= 1, then (2) implies

] TR AN, ), 502,-)) dA
: 0

T o
<cC / N2 XL 5(AZ) 2 . gy A
; |

C -
= 5/ 5(7, )|} 2.dr
0

<c / lo(t, )|[2a..dt.

Thus it follows that

oo

1/2
“U(ta')lliz,sdt) ,

—0oC

(ID|%u, v) L2@n+1) < Cllo]|L2mn) (/

Moreover (1) holds by scaling, and thus inequality (2), which is a kind of restriction

theorem, implies the estimate of smoothing effect.

To terminate the first part of this note, let us summarize the relationships among
three kinds of the estimates. At f_irst.‘it is obvious that the estimate of limiting absorp-
tion principle implies the one of restriction theorem. Second, by previous argument,
restriction theorem implies the smoothing effect for homogeneous equations. Let us re-
mark that there are another relationships. Indeed the estimates of limiting absorption
principle imply the ones of smoothing effect for inhomogeneous equations. For this, see
C. Kenig, G. Ponce and L. Vega [10]. Also with the additional assumption of Holder
continuity, restriction theorem implies the limiting absorption principle. For this, see

T. Kato and K. Yajima [9)].
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Part 2

1. RESULTS

In the previous part, we saw that new restriction theorem or new estimate of
limiting absorption principle yields new estimate for the smoothing effect. We begin
this part by giving a restriction theorem.

At first let A be Laplace-Beltrami operator of the unit sphere S~ !. Namely,

where A is the Laplace operator in R”™. The following facts are well known:

(i) The eigenvalues of —A are
M =k(k+n-2), k=0,1,2,...

(ii) The projection Hj to the eigen space (the space if spherical harmonics of degree-

k) in L2(R™) can be represented in the following way:

Hyf(w) = ;]{;L—ll [ Gl @)@ da,

- where v = (n—2)/2, dw : the unit surface measure, |S®~1|: area of S*~! (namely
is equal to 27™/2/T'(n/2)), C¥(z) : the Gegenbauer polynomial of degree k and
W = Z?:l (.c)j(:)j .

From these facts, the fractional power (I — A)® (a € R) can be defined by
: 00
(I-A)*= Z(l + Ap)*H.
wer _ .

Our restriction theorem is as follows:
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Theorem 1. Let s be a positive number satisfying % <8< 3. Then we have

(4) /lfl;—)\ lf(f)lﬂis)\ < C,\25—1 / |m|2s (I _ A)_'(2s—-1)/4f(:_v) Zd{b,

with a constant C iﬁdependent of A >0 and f € C§°(R™). (Here dS, is the Lebesque

surface measure, namely dSy = \" " 1dw.)

We remark that there are some advances in (4) compared with (2). Indeed, con-

cerning the exponent of I — A, —2—347—1- >0if s > % By the argument of Ben-Arzti and
Klainerman we obtain the following result:

Theorem 2. Supposen >3 and 0 < a < 3. Let u(t,z) = e"*2¢. Then there exists a
constant C' = C(a,n) such that

(5) /_°° /n | |22 “DIQ(I — A)(l“z")/“id(t,m) 2dmdt <Clgl?, ¢e L2(R™),

(lz)* = 2% + -+ 22, |lull = |lullL2zn).)

The last theorem says that the solution u(¢, z) enjoys the better property concerning
the smoothness of the angular direction. Note that the operator |D|*(I — A)(1—22)/4 jg

of order . Also taking o = 0 in (4), we can see by Sobolev’s imbedding theorem that

L (/M:l '““”"“’)'qd“’> " sar <t

with ¢ =2(n —1)/(n —2).

Next we turn to the result of inhomogeneous initial value problem.
Theorem 3. Let u(t,z) be a solution of the following initial value pmblem:
ou+iAu = f,

U|t=0 = ¢ 7
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If ¢ € L*(R™) and |z|f € L*(R™*Y) , then we have |z|~1u € LE(R™1).

This theorem does not seem excellent. However in the process to prove it, I obtained
the following result, which is closely related to the one of C. Kemg, A Ruiz and C.D.

Sogge [11]

Theorem 4. Suppose n > 3. Let 8,p,q,a,3 be real numbers satisfying the following

relations: 0 < 0 <1,

2(n+1)(n—-1) cp<qg< | 2(n+1)(n-1)
mr 12+ m-1)m+31-0 P 1S i Dm-30+(m-1201-0)
’ O!+ﬁ Z 07 :
a<n 1 n-1-2
P 2n+1-26))°
B<n 1 n—1-260.
g 2(n+1-26)f"
and v
1_1 e+f-35g
¢ p no
Put k = m Then it holds that, for every u € Cg°(R™) and A € C\ (Ry U {0}),

2l =]l o gy < O™ 121*(~A — Nl ey

where C is a constant independent of u and ).

2. SKETCH OF THE PROOFS

Here we shaﬂ sketch the outline of proofs of Theorem 1 and Theorem 4.

In order to show Theorem 1, the following expression is essential:

2 n
(6) /m= F©)2dSy = (2m) AZ /

2
Jore( AP 2 Hy f (r,w) dr| dw,
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where v = (n — 2)/2 and J,1«(r) is the Bessel function of order v + k.  Moreover the

inequality (6) is due to the following classical formulas (see G. Watson [19]):

/ ei(y—l)EdS)‘ — )\n—l/ etv—2)w g,
“JE=A ‘ lw]=1

_ y\n—1 n/ZJV()‘I'T—yD
X N =

J,,(lilf - yl) — 2”]:‘(1!) io:(V‘F k) Ju+k(/r) JI/—Hc(p)

Cr (w1 - wa),
R

and

l/+ k v 174 . v
—TT / Ci(wi - w)Cf (w - w2) dw = 6 CF (w1 - wa).
v|Sm=t, |w]=1

From (6) it immediately follows

/KH F)dsy
(27) ”/\Z (/ Joen(Ar)2rt= str) (/wl 1/ |75 Hy f (r, w)|2r™~ 1drdw)
(2m)" A% 12 (/ Jork( )2 - zsdr) (/m 1/ 'ITSka(T,w)IZT'n—ldrdw).

Now let us remark that it holds

o0 . T(2s — OI(v+k—s+1)
2,,1-2s
/ R S v Yy Sy

and moreover the rightAhand side is asymptotically 0((1 + k)1~2¢) as k — oco. Hence we

obtain
/ Fi63 £)[2dSx < ON**~ 12 (14 k) 25/ / Ir® H f (r,w)|*r™ ™ dwdr
l€1=A
gc’,\2s—12(1+,\k)<1“’-’-8>/2 / / |r° Hye f (r; w) |*r™ " dwdr
_ 0 |wl=1

2
:~.Cl/\23—1/1x|23 (I—A)_(23‘1)/4f(:z:)'»dx,
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which proves Theorem 1.

Let us furn to the proof of Theorem 4. The proof of Theorem 4 is due to the
complex interpolation between operators '(—A — X2 (z € C) of the cases Re z = 0
and Re = "T‘H — 6. First hote that the following inequality immediately follows from

Parceval’s inequality:
(7) | lull < e™(=A =N ul.

Moreover it is known that the kernel of the operator (—A — X)™# is expressed in the

following form:

342

v
lz —y|

1-=2 n
Ko -y = 2

Ky pa(VAz —3)).

where Kz, is the modified Bessel function of the second kind. Let us recall that the

asymptotic behavior of Kz, is known. Especially we have

C’ee"hl
Ty e —ylo A

for 0 < 6 <1 (see T. Hoshiro [0]). Now we quote a fractional integral estimate by E.M.

Stein and G. Weiss [15].

Proposition. (E.M. Stein and G. Weiss) Let T,, be the Riesz potential, namely

T“f(x):/R 1) dy, 0<p<n.

n T —yl#
Suppose 1 < p _<_q< 00, < n/p, ﬁ<n/q, a+B>0andl/q= l/p‘—l- (u+a+08)/n.

(p' is defined by % + ;)17 =1.) Then it holds

(An {ITufH«Tl—ﬁ}qda;)l/q <cC (/Rn (@)1} dx>1/p’
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where C' is independent of f(x), but may depends on p,q,a, B, and n.

(7).

0.
1.

10.
11,
12.
13.
14.
15,
16.
17
18.

19.

Theorem 4 follows from (6) and some estimates, which are induced by the inequality
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