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1 - Introduction

We consider the folldwing one-phase Stefan problem SP := SP(uu,.Zb) for a semilinear
parabolic equations in one-dimensional space: Find a curve (a free boundary) z = £(t) > 0
on [0,T),0 < T < oo, and a function u = u(t,z) on Q(T) := (0,T) x (0, co) satisfying that

W=t +u*® in QT) = {(t,2);0<t<T,0<z<t)}, (1.1)
w(0,2) = up(z) for 0< z < by, | )
u(t,0)=0 for 0<t<T, o ‘ ) (1.3)
u(t,z) =0 for 0<t<Tandz>£(t), - (1.4)
£(#) = —us(t, () for 0<t<T, e | (1.5)
=t o 19

where a and {, are given positive constants and uy is a given initial function on [0, £o).
The local existence and the uniqueness for solutions to the above problem S P were already
investigated by Fasano-Primicerio [7] and Aiki-Kenmochi [1, 5, 8]. Since there are blow-up
solutions of the usual initial boundary. value problem for the semilinear equation (1.1) in a
bounded domain, by using comparison principle it is clear that SP has a blow-up solutions
for a large initial data. In author’s previous works [2, 3, 6] we showed some theorems and
numerical experiments concerned with the behavior of free boundaries of blow-up solutions to

one-phase Stefan problems with homogenuous Neumann and Dirichlet boundary condition.
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On global existence (see Theorem 2.2) in [4] we obtain a solution to the problem SP on
[0, 00), exponential decay of |u|re=(t) and boundedness of the free boundary £ for a small
initial function ug in case a > 1. - : SR

- The purpose of -the present paper is to establish the stablhty of a global solution to the
problem SP in the following sense: Let a > 1 and {u,£} be a solution to SP on [0, c0)
satisfying that there are positive constants L, M and p such that

£(t) < Lfor t >0 and |u(t,z)| < M‘exp(—ut) fort >0 and z > 0.

Then, there exists a positive‘ constant § such that if lup — u| L2(0 /o) < 6, where p > 1is some
suitable constant, the problem SP(i, %) has a solution {4, £} on [0, c0) satisfying that the
free boundary {£(t)} is bounded and |a(t)| Le(0,ixy) decays in exponential order. We note that
the global existence and stability concerned with the problem SP are not proved, theoritically,
for0<a<1. ' o

2 A main result

We give a precise definition of a solution to SP.

Definition 2.1.  We say that a pair {u, £} is a solution of SP(ug, %) on [0,7],0 < T < 00,
if the following properties are fulfilled: i -

(S1) uw € WH2(0, T; L%(0, £(t))) N L>=(0, T; W12(0, £(t))), and £ € W'2(0,T) with 0 < £ on
[0, 7.

(S2) (1.1) holds in the sense of D'(Q(T)) and (1.2) ~ (1.6) are satisfied.

Also, we call that a couple {u, £} is a solution of SP on an interval [0,7"), 0 < T" < oo,
if it is a solution of SP on [0, 7] in the above sense for any 0 < T < T". ’

We introduce the following space in order to describe the class of initial functions which

satisfy the compatiblity condition..
V ={(z,5);s >0 and 2 € W2(0, 00) with z >0 on [0,s] and 2(y) = 0 for y > s}.
First, we recall the theorem concerned with local existence, uniqueness, comparison, con-

tinuation and regularity of solutions to SP.
Theorem 2.1. (cf. [1; Theorems 1.1 and 5.1] and [7; Theorem 1]) Let o > 0 and
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(uo, %) € V. (i) Then, there is a positive number Ty such that the problem SP- has one and
only one solution {u, £} on [0, Tq]. -

(ii) We assume that (i, o) € V, o < o, ug < ilg on [0,00) and ug Z ip. Let {u,£} (resp.
{@,2}) be a solution to SP(ug, &) (resp. SP(ilg,4)) on [0,T], 0 < T < c0. Then, we have

25 l on [0,T] and u < @ on Q(T).

(i) If ug € C([0, &o]) and ug,(0) = 0, then the solution {u, £} to SP(up, 4o) on [0, T) satisfying
that uy is continuous on Q(T), w and uzy are continuous on Q¢(T) and £ € C*([0,T)).

- () Let {u, £} be a solution to SP(ug,{p) on [0,T"), 0 < T' < oo, and M be any positive
number. If ju(t,z)| < M for (t,z)-€ Q(T"), then the solution is extended in time beyond T".

Remark 2.1. By Definition 2.1 and Theorem 2.1 (iii) for a solution {u, ¢} to SP on
[0, T, u, is continuous on the set {(¢,z);0 < z < £(t),0 <t < T}, u; and ug, are continuous
on Q¢(T) and £ € C*([0,T]). Hence, applyng the strong maximum principle to SP we get

the assertion (ii) in Theorem 2.1.

Throughout this paper for the problem SP, we say that [0,7), 0 < T < +o0, is the
maximal interval of existence of the solution, if the problem has a solution on time-interval
[0,T"], for every T" with 0 < 7" < T and the solution can not be extended in time beyond T
Also, for simplicity we put

E(z,s) = /Os 2(z)dz+s for (2,8) €V,

and
V(M, L) ={(, s)EVs<Landz( )< MforO<z<s},

where M and L are positive numbers.

Here, we give a theorem concerned with the global existence of solutions to SP.
Theorem 2.2. (cf. [4; Theorem1.2]) Let a > 1, (ug,%) € V. Then, for any positive
number M there exist positive numbers & = §(M,a) € (0,1] such that if &y < M, [P ul dr <
M and [ uddz < &, then the problem SP(uy, o) has a solution {u, Z} on [0, oo) satisfying
that

B, ee) < {c+BGP}  porezg,
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d .
Eluz(t)ﬁ?(o,e(t)) <0 forae t>0,
[u(t)|zoqo,ey) < V2exp(—pt)  fort >0,

where C = C(a), B = B(a), and p = p(a, £, |ug|L=(0,)) are some positive constants.

For brevity we introduce the following set G := G(ug, bo; M, L, p) for (ug,4) € V and

positive numbers M, L and p:

{u, £} is a solution to SP(uO, £p) on [0, 0o) satisfying that
G(ug, bo; M, L,p) = { {u, &}; [us(t)r20e)) < M, |u(t)|L=(o,er) < M eXP( ﬂt) and
/(t) < Lfort>0. ' Co

The theorem is our main result on the stability of global solutions to SP.

Theorem 2.3. Let a > 1, (ug,b) € V, M, L and p be positive numbers and {u,} €
G (uo, bo; M, L, p1). Then, there is a positive number p, > 0 depending only on o satisfying the
following property:

For any positive nimber M there ezists a positive constant & such that for Aa,ny
(i, &o) € V(M) with |ug — U1 (0,00) < 6 and |y —£y| < 6 the problem SP (i, &)
has a solution {i, £} on [0,00) satisfying that

Ut) < L and [(t)| oo g gy < M exp(—fit) for t >0,

where M , L and L are positive constants depending on a, M , L,‘ﬁ. L, M and 6.

We shall prove Theorem 2.3 in the following way. First, we givé some useful inequalities in
Sobolev spaces and an ordinary differential inequality in section 2. Secondly, some properties
of a global solution belonging to the set G(ug, {; M, L,p) are shown (see section 3). Next,

we obtain the following decay for v := @& — u under the condition £, < @0 and ug < 1g:
‘|'U(t)|LP1(o,oo) <c(1+t)7# fort>0,

where ¢ and 3 are positive constants. Finally, we give a complete proof of Theorem 2.3 by
applying Theorem 2.2. ‘ , ‘
At the final of this section we define some notations. In order to avoid surplus confusion

for notations we write the set of positive constants, a, M, L, p, M and L as (D) Since o >'1
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we can take numbers satisfying that

( 1+a " 1 1 m
p1>rm(ax{2+a,a_'1}and1+a-.+~2v< <%
1,1
Pt =145, , , (2.1)
T
‘p0=hE}2—'g'

Clearly, we obtain that 1 < pg < p; and 0 < ry < 2. These numbers play an important role

in our proof.

3 Auxiliary lemmas

At the begin of this section we list some useful inequalities in Sobolev spaces(cf. O. A.
Ladyzenskaja, V. A Solonmkov and N. N. Ural’ceva [10 Chap 2, Theorem 2. 2]) Let d be

any positive number.

d 2 —r
f uPteds < (q J; 2) |(u )| .50, d)(/ Uz dx)r+2 forue W1 2(0,d) with u(d) =0,
0o .
R | (3.1)
where p>2,a >0, g=2(p+a)/p and r € (0,9);

[u|r2(0,0) < 2d|uz|r2(0,9) foru € W2(0, d) with u(d) = 0; (3.2)
|| Leo(0,0) < ( ) | a;le(O d)luqu(o o - for u € WH?(0,d) with u(d) =0, (3.3
where g > 1.

The first lemma is concerned with an ordinary differential inequality.
Lemma 3.1.  Let a, b and pu be positive numbers, 0 < r < 2 and z be a non-negative

absolutely continuous function on [0,T], 0 <T < oo, satisfying

d r )

az(t) + az%(t) < bexp(—ut) forae. te]|0,T].
Then, there is a positive constant No = No(a,b,r, ) such that

2(t) < No(1+2(0) (1 + ap;)—% for any t € [0, T}, | (3.4)
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- Proof. Let N; be any positive number and
Y(t) = Ny(1+aBt)" P forte[0,T). .
By elementary calculation we obtain that

2—7r 2 “
RS (e ~ )

P
»a(z(t) —9P() +a |

| e _ri2
< bexp(—pt) —a(N{™ — Ni)(1+aBt)" > forae. t€[0,T]

Hence, we take a positive number Ny > 1 such that

V b 2r a 2 +7r ZT';_ ) 27
O+ L) < (6 - N,

and put Ny = No(1 + z(0)).

Therefore, we have

2 — :z/;%(t)(Z(t) —p@) <0 - forae te0,T)

d
S (alt) — 9(0) + a5

By using Gronwall’s argument we see that

)~ 90) < ((0) ~p(O) expi-a [ 2Ty (r)ar)

< 20)-N(1+2(0)) SO foranyte[0,7).

Thus, we get (3.4). » Lo ' ' n|

Lemma 3.2. Letp > 1 and d > 0. We suppose that u € W22(0,d) with u,(0) = 0,
u(d) = 0 and u > 0 on (0,d). Then, (u?/?), € L*(0,d).
Proof. 1t is sufficient to show that there is a function f € L2(0,d) such that
‘ d d
—/ P2, dr = / fndz  for any n € C°([0, d)). (3.5)
0 0

Let n € C§°([0,d]). Then, there is a positive number & such that supp(n) C [e,d — €] so that

u > 6 >0 on [g,d — €] for some positive number . Clearly, we have

d d—e d—e
- / P dr = / (uP/?)ndz = g / uui~ndzr.
0 £ £

‘ 1/2 1/2
P, 2, -2 4 2
< - 4 .
<3 (ﬁ |uz]*|ul dx) (/0 n dx)

Hence,

d
’—/ uP?n,dz
O .
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Here, we note that
d—e
[ huallul-2ds
T pd—e 1
_ / (= u*)ode

e g"‘su,,uv—ldﬂp%l{uz(d—ew-l(d——_e)——uz(ew-l(e)}. (36)

Letting € | 0 in (3.6), because of continuity of u, on [0, d] we obtain that

. d—e 2| p—2 1 d é_i
i |ttt = [ e

that is, J
|- [ wPnuda| < Olnlzaga  for any 1€ G(0,d)),

where C is some positive constant.

Immediately, we conclude that there is a function f € L*(0,d) satisfying (3.5). O

4 Properties of a global solution

In this section we show some estimates for a global solutlon to SP. First, we recall some
useful equations for a solution to SP.

Lemma 4.1. (cf. [9; Lemma 5.1] and [4; Lemma 2.1]) Let (ug,4y) € V and {u,£} be a
solution to SP(uo,ZO) on [0,T], 0< T < oo.

(1) We have

: %E(u(t), b)) = /0 “ ulte(t,z)dz  for q.e. t e [0,T]. (4.1)

(2) For a.e. t € [0,T] we have
1d

s (1) |220,000) + 5 |£’(t)|3 2 dtlu"’( Ni2.e0) = 2+ a dt|u(t)|itfa(o,e(t))- - (42)
Next, the following lemma guarantees a decay for u,.
Lemma 4.2. Let M, L and p be positive numbers, (ug,%) € V and {u, Z} €

G(ug, by; M, L, ). Then, there are positive constants L, and p, such that

|u=t(t);IL2((}l,£(t)) < Lyexp(—pit) fort > 0.
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Proof. By the argument in the proof of [9; Lemma 5.2] we have

/: ut(t)um(t)dw——%c% |uz(t)|2dx |€(t)]>  for t >0. (4.3)

Also, from (1.1) we see that
£(t)
| wluntds

) .
= | (g (t) + u' () )uge (t)dz .

- [ )2 (t)dz — (1 + @) /0 w®(0) (ua)?(H)dz  for t > 0, 4.4)
It follows from (4.3), (4.4) and (3.2) that - ‘
1d o 1 ) '
s b @PE AR + 5 [ ua(t) P
< g b laoPa 0P + [ fuanto P
< (14 a)M®exp(—aput) /E(t) ]uz(t)|2d:c for t > 0. ~(4.5)

Here, we can take a positive number #, such that 1+ a)M"‘ exp(—aut) < g5 fort > to.
Accordingly, for t >t

£(t) 2 5
<
& htPaz 7 / [ua(t)fdz <O,

and hence
/ [ua(t) Pl < exp{~r5 (¢ — t0)} / fuz (to) [Pd.
On the other hands, (4.5) implies

d 2, o ['® 2
E/o |uz(t)|°dz < 2(1 + o) M fo |ug(t)|“dz.

By Gronwall’s inequality, we have

£(t) t t
/0 Jus(t)]?dz < exp{2(1 + a) L% + Z—z—z} eXP{_m}lUOzﬁz(o,eo) for ¢ € [0, o).

Therefore, putting

1

Ly = exp{2(1 + a) Lty + 4_13}’”0mﬁz(0,zo) and py = 7,
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we get the assertion of the lemma. . I T L O

The following lemma shows. the decay of z, whiéh is a key of the proof of Theorem 2.3.
Lemma 4.3. We suppose that the same assumptions as in Lemma 4.2 hold and 1 < q < 4.

Then, for some positive number pg = po(u, q)
/0 ”18()|Feetdt < co.
Clearly, the above fact implies that
/O 10(t)]9dt < oo.

Proof. Let M; and p, be positive constants defined in Lemma 4.2. According to (3.3)

and Lemma 4.2, we see that for any ¢ > 0
DI = |uslt, €(t)-)]?
< y2M, eXP(—iﬂlt) |2z (t) |qL/22(0,£(t))7

and hence

o |
€1 exp(“71) < CluaaB)s0 a0 + Coxp(—3 = 1), (46)

where C is some suitable positive constant.

By using (4.5) and Lemma 4.2, again, we have

1d ram , fr) 0
so [ we@Pde+ [ i) Pz

IA

(1 + a) M® exp(—apT) /0 O e (7) Pl
< (1+a)M*MZexp{—(ap+2u)7} for 7> 0.
Integrating this inequality over [0, t], 0 < t < 00,.we obtain thatr'
[7 btopas+ [ O () Pz
0 0 Jo :
< (1+ a)M"Mf /: exp{—(ap + 2u)T}dT + /Oeo [ugs|*dz for ¢ > 0.

Adding to (4.6), we conclude that [;° ¢'(t)e***dt < co where pg = . ' O
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5 Energy inequalities

The purpose of this section is to establish the following lemmas cOncerﬁed with global esti-
mates for the difference, @& — u, of solutions to SP.

Lemma 5.1. Let (ug, b)), (4, %) € V, M, L and p be positive numbers, {u,£} €
G (uo, bo; M, L, 1), and {@, &} be a solution to SP(ig, &) on [0,T],0 < T < co. Moreover, we
suppose that £y < £, ug < g on [0,00) and ity Z uy. Then, putting v =4 — u we obtain that
Jort € (0,T] and p € [po, 1] (see (2.1)). |

d b
EA WP (t)da

s o lte (L) -
< {—ol+cze(t)2 2 vﬂ(t)dx)vl}f(v%)z<t)1iz(o,z(t,, (51)

£(t) . i) )
+Cp exp(—opt) /0 v*(t)dz + Céf'(t)fﬁ% WP (t)dr) 5,

where C; and Cy are positive constants depending on a, py, p1 and M.

Proof. For simplicity, we put H(t) = L*(0, Z(t))

First, by Theorem 2.1 (ii) we have v = & —u > 0 on Q;(T). Multiplying (1.1) by v#~! for
P € [po, p1] we apply Lemma 3.2 to the following caluculation so that

% /0 o WP (t)dz
- 7 /:(t)vt(t)vp‘l(t)d:v
= b [ m®) + 8400 0 — p [ ) + ) 00
= o) [ e + p e )

ap [ @) —uo () ()de

IN

2 [ a0+ 0 ) ©2)

£(t)
+p2°(1 + @) /0 (WP*e(t) + wC(HvP(t))de  for t € (0,T).

Here, we note that . |
alte — o1 < 2%(1 4 a) (vt + vu). (5.3)
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From (3.1) and Hélder’s inequality it follows that

/ O ety

0

< (p+2) )00 ([ v o

< GOl [OromE oicon 6

Also, according to (3.3) we have

P ()P (¢, £(1))

2(; —-1)
S pel (t) IIUP/2 (t) |Lco (0 l(t))
-1 : } Z:_!
< ﬁpﬂ(t)1(v‘°/2)zu>|H1t,.l(v”/2>(t>lﬁ’zt,

< —2@; D102, 0) By + Gl )1 /O“”u?(t)dx)il—i frte OT],  (55)

where C,, is a positive constant depending only on p.
It follows from (5.2) ~ (5.5) that for t € (0,7}

ngoe(t) P(t)de < { Ci+ C2£(t)2—_(/0£(t) WP (t)dx)?g} |('Up/2)z(t) g{(t)

+Cy exp(—apt) / t)dz + Ca|€'(2)| 7R ( / WP (t)dz) 5,
where |
C = Upo — 1) and Cy =2%p;(2 + —)2(1 +a)+2%p,(1+ a)M + max C,.
h Po<p<p1

This is the conclusion of the lemma. ; » O

Lemma 5.2. Let B, and B, be positive numbers. We suppose that the same assumptions
as in Lemma 5.1 hold. Moreover, we suppose that for p € [po,p1] and t € (0,T), 0 < T < oo,

d o o o W
= /0 P(H)dz < —Bol(WE)a(t)2a sy + Br exp(—opt) /0 Pt)dz  (5.6)

+B e )7 ( [ O p () do) 5.
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Then, there is a positive constants C3 depending on «, py, p1, p, M and L, which satisfies
that

i) Y | o -
/0 v (t)dz < Cs /0 "P(0)dz+1)  forp€ [po,pi] andt€ 0,T].  (5.7)
Proof. For simplicity, we put
2(¢)
| Fy(t) :/0 vP(t)dz  for p € [po, p1] and te [O?T].
Obviously, we obtain that
2p p-1 2 2 p—1, .2
f’(t) P+l Fp(t) r+l S ;——l—_ly(t) P+l ;;—lel(t) ptl Fp(t) » fOI't c [0, T]

Hence, from (5.6) it follows that for p € [po, p1]

d R
712 <G eXp(—owt)F () + Cul€ (ff)lf’+1 + C’4|€'(t)IP+IF (t) forte (0,71,
-1
where Cy = By + By 0+1 +§;+1).
Since 1 < p_—:Ll < 4, by applying Lemma 4.3 and Gronwall’s argument to the above in-

equality, we get

Fy(0) < (F0) +Cu [ 1617) exp( [~ Jp()dt) for t € 0,7,

2p

where J,(t) = Cyexp(—aut) + Cy|l (t)|>-1.

Thus, this lemma has been proved. | " O

Lemma 5.3. Let M and L be positive numbers.- Then, under the same conditions as in

Lemma 5.2 there are positive constants C5 and Cg depending only on (D) such that

[ e <cnr [Cro@arcn R preepn, 69

where 1 is a positive constant defined by (2.1).
Proof. For brevity, we put F(t) = fz ® P (t)dz for t € [0 T) and note that f lo w0 (O)da: <
Mo L. According to (3.1) and the previous lemma, we infer that
2(2—rg)

Fo) < 50l A

 202-rg)

< 2—‘,0—‘;2"—(03( Jr A 1)),o+z|(,,m/2)m,(t)| ay  forte (0,T),




72

and hence
1(0/2)0 () By = L _FOPR forte(0,T).
O s(Gyim L+ )T o
Here, we note that
C)RhF @) aT
p—1, e 2 o m-1 -
< — -1 — 14 for ¢
< T lf (t)7=1F(t) exp(pot) + p— éxp( 5 Ho ) ort € (0,7T),

2
(Y

where p is a positive constant defined in Lemma 4.3, and 1 <

Therefore, by adding the above inequalities together to (5.6) we have

d

SF() < —KF@O) + Kol O F(t) exp(uot)

Ky exp(—pat) + Ko F () exp(—pst)  for t € (0,7,

where K, K», pp and pg are suitable positive constants.

~ For simplicity, we put
17 2Bl N
J(®) = Ka(|€ 0177 expluot) + exp(—pat)) and (t) = F(t) exp(— [ J(r)dr).

It is clear that

241, 2 t
' %@(t) + KﬁP(t)ﬂg e:acp(2 T(;m / J(7)d7) < Kyexp(—pot) fort € (0,7,
—To JO : ' -
and
d 24rg

E‘I)(t) + K1q>(t) 2= < K2 exp(—pgt) fort € (0, T]

By Lemma 3.1, we obtain that
®(t) < No(1+®(0))(1 + K1) A fort € [0,T],

where 5, = 72_1“7_'5 and Ny = No(K3, K3,79, 2) > 0.
Accordingly, this implies that

F(t) < No(1+ F(0)) (1 + i Kt) % exp /0 ~ J(r)dr) for ¢ € (0,7,

since 1 < 2p;/(p1 — 1) < 4, the integration inthe above inequality makes sense. We get the

assertion of Lemma 5.3. ; O
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At the end of this section, we give a global estimate for E(a(t),@(t))
Lemma 5.4. We suppose that the same assumptions of Lemma 5.3 hold. Then, there
exists a positive constant C;. depending only on (D), which satisfies that

E(t), e<t>)<c7{E(uo,eo)+</ (0) )1+a+1} forte[o T],, (5.9)

where By s a positive constant defined by (2. 1 )

Proof. For simplicity, we use the same notations as in the proof of the previous lemmas

and put 7 §
E(t) = E(u(t), £(t)) and E(t) = E(a(t), £(t)).
It follows from (4.1) with help of (5.3) that

—(E(t) E@)

< 2+ [ v+ / o' () da) e / uMe(t)dz) e}
< 2"‘(1+a){/ 9 t)d +1+La/0” uMe(t)dz + 140: © e (t)de}

< 20+ ) EE2([" (i) i) 1ja'M"+°exp(—(1+a)nt)}

< KsF(t) " E(t) it Ksexp(—(1+ a)ut) for t € (0, T},

where K3 = 2%(1 + a) (22

i 1+QM”"’), and hence

(L by
. . lta 1 d
< KF(@t)m + KeB(t) 7! exp( (1+ a)ut) + E@) 5! ZE(t) forte (0,T].
Moreover, since lﬁ‘— 1<0, (E (t)) g (E(t)) ! and 24 E(t) > 0, we see that
P9 py5) < KPS+ KEO) R Tep(—(1+a)ur)  (5.10)
1+ adr - :
1i ('r) 7 ) for 7 € (0, T.

Integrating (5;10)' over [0, t,0<t<T, we'conclude that

,li‘a(E(t)‘—# — E(0)%)
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< ¥ s e [ e
. a_y t
+K3E(0) ™ / exp(—(1 + a)ur)dr - for t € [0,T).
0
Here, it follows from Lemma 5.3 that - ‘
(1+a)(2—rn

' po e i
/0 F(r)%dr < {Cs(1+ F(0)}7 /0 (14 Gor)” i dr

< {C5(1+ F(0)} o /0 "+ Cer) "t Pdr  forte [0,T).
Therefore, it is easy to check that (5.9) holds. a

6 Stability of global solutions

First, we shall prove Theorem 2.3 in case the following condition (*) holds:
(*) o 6 < 207,1!0 < g on [0,infty) and ug Z .

Proof of Theorem 2.3 under the condition (*) Let {i, £} be a solution of SP(ii,%y) on
[0,T1],0 < T} < 00,6 € (0,1] and v := 4—u. We assume that foz" vP1(0)dz < 6 and fy < £y+6.
Since the function ¢t — jg(t) vP1(t)dz is continuous, there is a positive constant 7; < Tj such
that é(t) ' ) B :
/0 v”l(t)d:c‘ < 26rand £t)<L+2=:Ly forte|0,T5].

Lemma 5.1 implies that

d ri® _La, & '
a[, W(t)dr < {—Ci+ Cao(La)* m (28) 71} (v5)a(t) 20 500

£(t)
+Cy exp(—apt) /0 P (t)dz
22 [EO 1 '
+Cyl ()71 ( / WP(t)dz) s for t € (0,T3] and p € [po, pi]-
. 0 : - . : . ;
We choose a positive number §; such that

Cu Lo 5% 28) B < 2,

and clearly, for § < 6; we have

d rf® o) . \ v é(t)
= [T < - g + Crewl—aut) [ @ 6)

' o) 21 . '
Gl (2)( /0 P (H)dz) ¥ for t € (0,T3] and p € [po, py-
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By virtue of Lemmas 5.3 and 5.4, for § < §; we have

2-rg

| /O P (t)de < My(1+8)(1+ Myt) 70 for t € [0, T, - (6.2)
. - 189
E@@(t), i(t)) < My(1+6%%)  fort € [0, T3],

where M; and M, are positive constants depending only on (D).
It follows from (4.2) that

“ 2 ~ 12 ~ 2
|u”(t)|L2(o,Z(t)) < Iu():tle(o’jo) + mlu(t)lL-;f“(O,f(t)) ' fort e [07 T2,]’

and hence with aid of (6.2) there is a positive constant M3 depending on (D) such that

|(2) |L2(0,E(t)) < M

forte[0,T3). (6.3)
[0()| Lo o,y < Ms }

Also, putting $(2 ;’ E(@(t), 4)) — E(u(t), £(2)), we have

Lo = [ @) —ue())de

' (1) A ' '
< 2°(1+a) / (W (1) + v(t)u® (1)) de
0
< 2°(14 a)(M3 + M®exp(—aput))p(t) for t € (0, T3). (6.4)
Accordingly, by using Gronwall’s inequality we infer that

80 < H0) exp(Myt) for t € [0,T3),

where M, = exp{2%(1 + a)(Mg + M*)}.

Moreover, we observe that

) .
[ wds < MpTe)

A

ME'6(0) exp(Mat)

1-1 to 7 .
= M (/0 v(O)_d;c + by — éo)‘exp(M4t)

Mgl—l(L;_l/plél/m + 8) exp(Myt)

IA

IA

Msexp(Mgt)6/"  for§ < 6 andt€ (0,T5], (6.5)
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where My = MPY" (L7 +1). ;
It follows from Theorem 2.1 (iv) that we can extend the solution {, 2} on [0, T) for some
Ts > Ty. Here, we take positive numbers 0 < 83 < 6, < 8, and Ty such that

9. lta
Coly ™ (38)%1 < %

- 2—r
My (1+ MyTo) " %0 <265,

C2L2- pl {2M5 eXP(M4To)(2§3)1/”1}P1 < 021

We suppose that I fo yp (0)dz < 63. Noting that M; exp(M4T0)63/ PL > 83, if necessary we
choose M5 > 1, again. Now, if there is a positive number ty € (0, Tp) such that

1 i(to) o 1
M5 exp(MyT)83* < / ’ P (ty)dz < 2M5 exp(MyTp)63",

then the inequality (6.1) holds for t € (0, ¢ a.nd pe [po, pl] and hence by virtue of (6 5) we
get the inequality, [; Kto) 1 (to)dz < Mjexp(M,Tp)62*. This is a contradiction.
Therefore, the following inequality holds:

0) 1 :
/(; PPl (t)dx S M5 exp(M4To)5§1 fort e [O, To]
Similarly, {@, £} is the solution on [0, Tp] and on account of (6.2) we have
X . Z(To) . _ N . e .

PL(Ty)dz < 2My(1 + MgTo)"ﬁq < 2,
0 : -

Furthermore, if there is a positive number #; > To such that 26; < [y £e1) o (t1)dz < 36;, then

this is a contradiction to (6.2). Hence, we conclude that
(t) L :
L P (B)dz < 2My(1+ Myt) 59 fort > T,
|2 (8) |20 4eyy < M for £ 20,
E(a(t),i(t)) <2M; fort > 0.
Therefore, Theorem 2.2 implies that Theorem 2.3 is valid under the condition (*)..

Finally, we give a complete proof of the theorem.
Proof of Theorem 2.3. First, we put X = LP*(0, c0),

Ug1 = mlIl{Uo, UQ} Uge = max{uo, Uo} 401 «min{ﬁo,fo} and 202 = maX{EQ,Zo}.
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Let {uy, 41} (resp. {ug, £2}) be a solution to SP(ug1,4n) (resp. SP(ugz, £oz)) on [0,Ty] (resp.
[0, T3]): Putting T3 = min{Ty, T5} it is clear that {u1, £} € G(uo, fo; M, L, p) and Jugz—ug|x <
|'&0 - ’U,ole, U1 S u, U S Ug On Q(T3) and El S E, 2 sz ,OAn, [0,T3],

) —a@)lx < ul) —uw)lx e
< Jug(t) — u(t)lx + [ul®)|x + [ (®)]x-

From the abovevargument there is a positive number 6 such that 1f luo — uoz| LP1(0,602) < 6 and
by < byy < €y + 6, then {uz, £y} is the global solution to SP and satisfies that

. ,£2(t) S 2M1 for t Z 0,
L . i . 2—7
lu(t) = us(®)|x < 2My(1+ Mgt)" 20 fort > Tp.
Therefore, if |89 — uo|pp sy < 6 and [y — £o| < &, then {@,@} satisfies the required

conditions. O
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