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On the L, — L, estimates of
~ the Stokes semigroup

in a two dimensional exterior domain
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§1. Introduction

Let Q be an unbounded domain in the 2-dimensional Euclidean space Rz having a
compact and smooth boundary 0Q contained in the ball By, = {z € R? | |z| £ b,}.
In (0,00) x Q, we consider the nonstationary Stokes initial boundary value problem

concerning the velocity field u = u(¢,z) = *(u1, u2) and the scalar pressure p = p(t, z) :

(NS)  du—Au+Vp=0 and V-u=0 in(0,00)x 2,
u=0 on (0,00) x 09, u(0,z) =f(z) inQ,

where 0; = 9/0%, A is the Laplacian in R?, V = (81,0,) with 9; = 0/0z; is the gradient,
anci V.u=divu : O1u4 -|- Bguvz is the divergence of u. |

For the corresponding nonlinear Na\?ier—Stokes equations in fwo diménsional exterior
domain, we know the uniqueness of the Leray-Hopf weak solutions which was proved
by Lions and Prodi [23]. Masuda [26] proved that if u(z) is a weak solution with
N ”Vu(t)“%z(mdt < 00, ||u(t)||L,(n) tends to zero as t — co. The decay rate of a weak
solution was investigated by Borchers & Miyakawa [3] and Maremonti [24]. In 1993,
Kozono and Ogawa [19] proved a unique existence theorem of global strong. solutions

with initial data in Ly(2), which satisfy the following decay rate:
—(i-1 i : —1
la(®)liz,@ =0 (£9) 25 g<o0, Ju)lze@ =o(t7H/iogt),

IVu(®)la@) = o (%)

as t — oo.
But it is surprising that we do not know any L, —L, estimate of the Stokes semigroup

in a two dimensional exterior domain like Iwashita {12] for the space dimension n = 3.
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Borchers and Varnhorn [5, 35] investigated the behavior of the resolvent of the Stokes
operator A in a two dimensional exterior domain by using the classical potential theory,
which implied the boundedness of the Stokes semigroup {.c_tA}tZO in L, for any 1 <
q < 0. But, it dose not seem that the L, — L, decay estimates of the Stokes semigroup

follow from their results, because we do not know the estimate:
= o o '
Ve ||z, < IAZe ™ f|lL,@), t>0

in the two dimensional case, which was proved by Giga and Sohr [10] when n 2 3.
The purpose of this paper is to show the L, — L, estimates which is an extension
of IWa;shita;s to two dimensional case. If we apply the L, —VL estimates to Kato’s
argument, we also obtain all of estimates in (D) except Lo decay for the corresponding
nonlinear Navier- Stokes equations. o
'To discuss our results more precisely, first we outline at this point our notation used

throughout the paper. To denote the special sets, we use the following symbols:
Dy={zecR*|b—-1Z|z|SDb}, S = {z € R?||z| = b}, % =QNB,.

Let W;"(D) denote the Sobolev space of order m on a domain D in théqu sense and

Il - llgm,p its usual norm. For simplicity, we use the following abbreviation:

I lgp=1 - lgoos | - lgm =1+ llgmas I+ lg=1 - loo0-
Moreover, we put

qb(D) = {U € Ly(D) | u(z) =0 Vz ¢ By},
q’b(D) {u € Wm(D) | u(:c) =0 Vz ¢ By}, | | |
Wq':‘,oc(Rz,) ={u € S'»I 02u € Ly(By) Ya, [of S m and Y6 > 0},

Woo(D) = {u | 23U € W[h,o(R?) such that u=U on D}, Lg,oc(D) = (D),

Ioc
W;n(D) = the completion of C§°(D) with respect to || - ||¢,m,D,

Wr(D) = (u e Wy(D) | [ ule)dz =0}

Wy (D) = {u € Wyioe D) | 197 ullgp < o0},
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(wvIp = [ u(e)-¥@da, () =(,a.

To denote function spaces of two dimensional column vector—valued functions, we use the
blackboard bold letters. For exarhple, Ly(D) = {u ="*(u1,uz) | uj € Lg(D),j = 1,2}.
Likewise for C3°(D), Lg (D), W;’:loé(D),’Lq,loc(‘D),’ W;"(D), W';'fb(D), W;n(D) and
W;n(D). Moreover, we put

J4(D) = the completion in L,(D) of the set {u € Cg°(D) |V -u=0 in D},
21
Gy(D)={Vp|pe WD)}

According to Fujiwara and Morimoto [6] and Miyakawa, ‘[27], the Banach space IL;,(D)
admits the Helmholtz decomposition: L,(D) =V.qu(D) 69 G,(D), where @ denotes the
direct sum. Let Pp be a continuous projection from L4(D) onto .]Tq(D). The Stokes
operafor Ap is defined by Ap = ~PpA with (ienée domain Dé(Ab) = .]Tq(D) DW;(D) N
WZ(D). For simplicity, we write: P = Pg, A = Ag. It is known that —A generates an
analytic semigroup e~ in J () [9, 5, 35], [4 for n = 3]. To denote various constants
we use the same letter C, and by C4 p,... we denotes the constant depending on the
quantities A, B, ---. The constants C' and Cy4 p, ... may change from line to 1iﬁe. For two
Banach spaces X and Y, £(X,Y") denotes the set of all bounded linear operators from X
into Y and || - ||z(x,y) means its operator norm. In particular, we put £(X) = £(X, X).
A(I, X) denotes the set of all X-valued analytic functions in I.

Now we state our main results.

Theorem 1.1. (Local energy decay) Let 1 < ¢ < oo. For any b > by and any integer

m 2 0, there exists a constant C = Cy 3 m > 0 such that

(1.1) 107 e~ 28] 2.0, < Ct2"™(logt)~2||f]l, t — oo

for any f € J,(Q) N Lgs(Q) =: J, 4().

Theorem 1.2. (L, — L, estimates) (1) Let 1 < ¢ = r < oo. Then the following
estimate holds for any f € Jq(Q): -

1

(12) le=®f||, < ¢, =G D)), t> 0.
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(2) Let 1 < ¢ £ £ 2. Then, for f € J ()

1 1

@3) Ve e, < Cp it~ (TRTHE,, >0,

Andlet 1 <g<rand2<r<oo,then, for f € J,(Q)

Cort™(G=E)-3f),, O0<t<1,

(1.4) Vel < { .
- UGt lf]lg, t2 1.

Remark. After the completion of this study, we were aware of the related work of P.
Maremonti and V. A. Solonnikov, ”On nonstationary Stokes problem in exterior do-
main” Preprint, 1996. In their paper, they also obtained L, — L, estimates of Stbkes
semigroup in n-dimensional exterior domain (n 2 2), by a different method. In fact,
t_hei; arguments rely on energy estimates, imbedding theorems, L, — L, estimates in the

whole space case and duality arguments.

§2. Preliminaries

Let us first consider the stdtiona,ry Stokes equation in R?:
(2.1) (A—Au+Vp=f and V-u=0 inRZ

When A € £ =C\ {)A £ 0}, put

o a-Pe)i®], |
ANf=F R ](m) f-lEA*f,
of = F 1 fzél(f) (a:):p*f

for f € L,(R?), where i = /=1, P(€) = (&;€x/I€2)j.k=12,

Q) = [ e, FTUGE) = g [ @t
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and
Ex = Ex(z) = (Ej%(2))j k=12,
Bl(@) = (2m)™ {656 Ko(VAal) — A78;0% (log Je] + Ko(vXIz])) }
(2.2) = (2m)! {6]']‘;61(\/XI.'L'D + :T;Tzk ez(ﬁl.’l)l)} ,

(2) 1 1 T2
= r)= — _— .
P=P = o el 2P

Here, K, (n € NU {0}) denotes the modified Bessel function of order n and

e1(x) - Ko(k) + g—lkl(n) — k2

| =‘—% <7+%——log2—f—log&)+O(f§2_)logn | as kK — 0,
where 7 is Euler’s constant,

es(k) = —Ko(k) — 26 1Ky (k) + 2672

=%+0(n2)logn as k — 0.

These are calculated in [5, 35] Then, for 1 < ¢ < oo and any integer m 2 0, by the L,

boundedness of Fourier multiplier (cf. [Theorem 7.9.5 of 11}), we have

(23)  Ax € AT, L(WP™(R), W22 (R2))), T € L(W2™(R?), W™ (R?)),

and the pair of u = A,f and p = IIf solves (2.1) for A € ©. When f € L, (R?), we have

(2.4) A= 0(2|™2), Tf =0(z|?) as |z] — oo.
For A =0, put

(2.5) - Af =Egxf for f € Wi™(R?),

where

Ey = Ey(z) = (E}i(2))j k=12,

1 T;Tk
0 — . IR
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(cf. [IV.2 of 7]). Then the pair of u = Aof and p = IIf solves (2.1) for A = 0. We have
the following facts for 1 < ¢ < oo:

- Ao € LOW2™(RE), W, (R?)),
2. |
Aof = O(log|z|) as|z| — cofor f € Lq,b(R_z’)- :

From (2.2) and (2.5), it follows that
. |
(2.7) Ex(z) = Eo(z) — (¢ +log VI + Hx(z),

where I is the 2 X 2 identity matrix, Hx(z) = O(A|z|?) log(v/Alz|) and ¢ = v+ 3 —log2.
Let D be a bounded domain in R? with smooth boundary aD‘aﬁd Yo =32U{0}. We
now consider the stationary Stokes equations with parameter A € 3¢ in D:
(2.8) (A—=A)ju+Vp=f and V-u=0 inD,
u=0 ondD.

The existence, uniqueness and regularity of solutions to (2.8) are well known.

Proposition 2.1. Let 1 < ¢ < oo and let m be an integer 2 0. Then, for any
f € W;'(D) and X\ € Do, there exists a unique u € WT“(D) which together with
some p € W;”+1(Ij) solves (2.8); p is unique up to an additive constant. Moreover, the

following estimate is valid:
(2.9) lullg,m+2,0 + IVPllgm,0 & Cq,m,Dllfllg,m,D-

The following results in bounded domain D are used later.

Proposition 2.2. Let 1 < ¢ < oco. (1) The following relation holds:

(2.10) lvllg.0 < Cp (||Vv||q,D + ’/D v(z)dz ) , forve qu(D).

(2) Let m be an integer 2 0. Then, for any u € W(D), there exists a v € wr(R?)

such that v = v in D and ||v|[, 2 < Cym,pl|t|lgm,0, Where Cy n p is a constant

independent of v and v.
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Proposition 2.3. (Bogovskii) Let 1 < ¢ < oo and let m be an integer =:0. Then,
there exists a linear bounded operator B : W:a(D) — WT+1(D) such that

211)  V-Blf]=f inD, [B{fllsm+1,0 S Complfllgm,p-
We need the following propositions 2.4 and 2.5 on uniqueness.
Proposition 2.4. Let 1 < ¢ < oo. Let u € Wi(ﬂ) and p € Wz(Q) satisfy the
homogeneous equations:
—Au+Vp=0 and V-u=0inQ, u=0 on .
Assume that u(z) and p(z) satisfy the following:
u(z) = 0(1), p(z)=0(z|™") as|z| - .
Then, u =0 and p = 0.
Proposition 2.5. Let 1 < ¢ < o0 and G = R? or Q. Let u € WE(G) andp € W;(G)
satisfy the equations:
(A=A)u+Vp=0 and V-u=0 in®Q, u=0 ondQifG=20.

for A € ¥. Assume that p = O(|z|™!). Then, u(z) = 0 and p(z) = 0.

Proposition 2.6. Let 1.< ¢ < co and let A be the Stokes operator in J,(Q) and m be
any integer 2 0.

(1) Assume that u € Dy(A) and Au € W' (). Then u € W;n"'z(Q) and for some

constant Cgq m > 0,

lallg,m+2 = Com(llAullg,m + Jlully)-

(2) If u € Dy(A™), then

lullg,2m S Com(A™ullg + llully),

[A™ullg = Cq,mlullg,2m-
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§3. Asymptotic behavior of the resolvent around the origin

Let us consider the stationary problem for the Stokes equation with parameter A € ¥

in :

() (A-Au+Vp=f and V-u=0 in,

u=20 on 0f.
In terms of the Stokes operator A, (S) is written in the form:
(s A+Au=f1.

Giga [9] and Borchers and Varnhorn [5, 35] proved. that ¥ belongs to the resolvent set
p(A) of A and

(3.1) | 1A+ A) e, @) = CoslA ™

when |arg\| £ 4 for any 0 < v < 7.

Let b > by + 4 and 1 < ¢ < oo. Contracting the domain of (A 4+ A)~! from J, ()
to J, 3(£2), we shall investigate the asymptotic behavior of (A + A)™! as |A| — 0. Put
Sy = A€ 3| Jargh| S 7, N S e,

Proposition 3.1. Let 1 < iq < oo and m be any integer 2 0. There exist operator

valued functions Ry and P, possessing the following properties:

(1) Ry € A(Z, L(W 5 (Q), W2 (),
Py € A(Z, L(W2T (), W2™T(Q))),
(2) the pair of u = Ryf and p = Pyf is a solution to (S) and
(3.2) RAf € W2™2(Q), PfeW, ' (), Paf=0(lz|™) as [z| — oo

for f € Wg,’?(ﬂ), A\ € ¥, and we have

(3.3) Ra=(\+A)" onJ 4(Q) forrex,
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(3) for any 0 < 4 < =, there exists an € = () such that for f € W';’j’,,‘(Q) and A € £,

R\, s [ M(log))/L(log )\ ot
(3.4) (Pi> f=)\ (M(log A)/i(b@)) f+ 0\t 1og? )), |

where $ is an integer (not necessarily positive); L and L are polynomials with constant

coefficients and M (resp. M) is a polynomial, not identically zero, whose coefficients

belong to L(W275(Q), W2 2(Q)) (resp. LW (Q), W2Z™H(Q))); B is an integer.

The order symbol O is used in the sense that

IRAf = A* (M(log )/ L(log A)) fllg,2m+2,2, S Cgm,o[A"F" log” A[[|£||g,2m,

|| PAf — /\’(M (log A)/L(log N))fllg,2m+1,0, S Com 3|1 log? M|I£llg,2m-

Proof. At first, we introduce some symbols. Let ¢ be a function of C*°(R?) such that
@(z) = 0 for |z] 2 b—1and p(z) =1 for |z| Sb—2. For f € L,(£2) let us denote
the restriction of f on Qj by mf and define the extension «f of f to whole R? by the
relation: (f(z) = f(z) for z € 2 and «f(z) = 0 for z € R? \ Q. Let Ly and p;, be the
operators defined by the relations: Lyyg = w and p;,g = q where the pair of w and g

is the solution of the following Stokes equation in 4:
35) (A—AWw+Vg=g and V-w=0 inQ, w=0 ond,

where 0 = S U0 and A € ¥y. p;,g is not decided uniquely at this moment, that is
we have freedom to choose any additive constant, which will be chosen in (3.6) below.

Let us construct Ry and P, from a compact perturbation of the following operators:

O = (1 - ¢)(Axid) + eLiamf + B[(Vy) - Axif] — B[(Vep) - Liamf],
Uaf = (1 — )(ILf) + ppyrmef,

for f € ng:((l), where we have used Proposition 2.3. Now, p;, is chosen so that

(3.6) ' o ‘ A (pprmsf — ILef) (z)dz = 0.

We know that there exists a a > 0 such that Lb,g and p,, are analytié with respect to
A € C\ (=00, —a] (cf. [Proposition 2.6 of 17]). From the construction, we have
A=A)PAf+ VU, = (14 F\)f inQ,
V-8, f=0 inQ, &Ff=0 ondQ,



88

where

Faf =2(Vep - V)Axf + ApAxf — 2(Vp - V)Loamf — ApLunmf
+(A— A)B[Vgo A,\Lf] - (/\ A)B[ch Lb)‘m,f] chHLf + Vpyamaf.

Contracting the domain of Ay and TI; and considering those ranges in wider spaces, we

have - *
Axt € A(E E(W (Q),W”‘“(Q,,))) and II. € L(W”{f(ﬂ)‘, W2m+1(a,,)).

At each pomt A E E F) is a compact operator from Wq b(Q) into 1tse1f and F) is
analytic in A € 5. We know that (1 + Fy)~! € A(Z, L(W23(€))). Put

CRa=@(1+F)7 and P=U(1+F)7
then the pair of u = RAf and p = Pif solves (S) as A €-X: By Proposition 2.5, when
feJ,;(Q), Baf=(A+A)ffor A€ .

. Thus. we know the. analyticity of Ry in ¥, but our: purpose is to investigate the
asymptotic behavior of at A = 0. If we recall (2.7), then we have the following formula:

(3.7) o Axif = Aguf — 4%(0 + log VM)TT + Baf,

where Tf = fR'z fdzr and Byf = Hy =.f € Wzm“(ﬂb) for f € WzT(Q), A€ 3. The
logarithmic singularity appears only in the coefficients of finite dimensional operators.
Thus by projection to the range of finite dimensional operators, we can treat the sin-
gularity as a numerical matrix. This strategy follows Vainberg [Lemma 10 of Chapter

IX, 34] essentially. We omit the details of the proof. O

Proposition 3.1 'says: that the‘uoper‘ators (Rx, P)) can be expanded by the series of
polynomials of log A and A. Next task is to determine s, M and L of (3.4), exactly.
The strategy follows Kleinman and Vainberg [17]. Let ¢, m, v, and € be the same as in
Proposi;bioh 3.1. | | ”

Proposition 3.6. Let Ry be the same as in Proposition 3.1. Then we have

R V. 1 (V _
(3.8) (P*)f_(Q‘;)fHogIA(Q11>f+0(1og2A) as A€,



89

where V; € L(W27(Q), W2 2(Q4)) and Q; € LW (Q), W2+ (Qy)) (j = 0,1) are
independent of A." - : .

To prove this proposition, we use the cut-off functionn € C *(R?) such that n(z)=0
for [z| < b—2 and n(z) =1 for |z| > b 1. .
Put u=Ryf,p=Pfandz=nu—B[Vn-u]forf e Wi"{,‘(ﬂ) and A\ € .. Then,

(A=A)z+V(p) =nf +g('(u,p)) and V-2=0 inR?,
where ’ )
g(*(u,p)) = =2(Vn - V)u— Agu+ Vip — (A = A)B[V7 - u].
Obviously, suppg C Dy_1.

Lemma 3.7. Let u, p and z be as above. Then, the following formula is valid:

(39)  z=Ax(nf+g("(up) and np=T(nf+g('(up) R

forAe X, ..

Proof. Put v = Ax(nf + g(*(w,p))) and q = II(nf + g(*(u,p))). By (2.3), (2.4) and
(3.2), z — v and np — q satisfy the condition of Proposition 2.5, thus we have (3.9). O

Now we start to prove Proposition 3.6.

Proof of Proposition 3.6. To determine s of (3.4), we employ the contradiction ar-
gument. We may assume that f # 0 and we put w(,y = (M(logA)/L(logA))f,
vy = (M(log \)/E(log A)f in (3.4) and *(w(x), t(x) % (0,0). At first we shall prove
s = 0. If s >0, then by (3.4) u and p tend to 0-in Q4 as |A\| — 0, thus we have 0 = f in
Q4 by (S). From supp f C Q3 it follows f = 0, which contradicts the aésumption.

Let us suppose that s < 0. By substituting (3.4) into (S) and equating the terms

which contain the multiplier A° in both sides of (S), we have

(3.10) ~Awyy + Ve =0 and V-w) =0 in Qp, W(}‘) =0 on 01.



90

To investigate the behavior of solution as |z| is large, we use the following formula,
which is obtained by substituting (3.4) into (3.9):

(3.11) | :
n(A°winy + O3 log? \)) — B[V - (Aw(xy + O(X*+11og? V)]

) | S
= {Ao — g (c+log VAT + BA} (Tlf +8 (t(W(,\)’t(,\))/\8 + 0\ 108'3/\))) :
T\ + O+ 1og? 1)) = T0 (€ + & (“(wn), ¥y)A* + O+ 1og? 1)) in .

Equating the terms which contain the multiplier A* in both sides of (3.11), we obtain

o 1 )
(3.12) nw(y = B[V wiy) +.{A0 47r(c+ log \/X)T} g( (W(A),t(A))),

ey = Og(f(winy, tn)) | in Q.

Since the right hand sides of (3.12) depend only on values of (W(y),t(y)) in Qp, (3.12)
allows us to continue them to the whole domain (2. Thus we obtain (W), t(x)) which

satisfies (3.10) and

, . t
’ (3.13) nmwoy = B[Vn - W(A)] + {Ao - 4—7r(c + log \/X)T} gt (Wi, t o)),
neoy = Ig(H(woy, ty)) in €.

Since B[V7n - w(y)] =0 for |z| > b — 1, when |z| > b— 1, we have

—Awy + Ve = — Alnwiyy) + V(new)
=g(*(wy,t))) =0,
V-wiy =V-(nwn)) =0,

which together with (3.10) implies
(3.14) " —AW()‘) + Vt()‘) =0 and V. W()‘)' = 0 in Q, W) = 0 on 6Q

By the definition of *(w(y),t(x)), there exist an integer v, *(wo, t) and ¥(wy,t1) such

that t(Wo,to) ;75. (0,0) and

(3.15) (":0)) = log” A (":0) +log” ! A (“:1) +0(log” % \) in Q as |A| — 0.
)] 0 _ 1
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We- multiply both sides of (3.14) by log™" X and take the limit as |A] = 0, we have
(3.16) —Awo+Vey=0 and V-wg=0 in Qp, WwWo=0 on 0.

Substituting (3.15) into (3.13) and equating the ferm_s of log”*! X and log” A in both

sides, we have

(317) 0= Tg(H(wo,m)),

C

y T) g(t(Wo,tO)) - §1;Tg(t(w1, tl))v

Nt = Hg(t(Wo,to)) in 2.

(3]_8) nwWo = B[VT] . W()] + (Ao et

If we continue wy and ty to the whole domain € by (3.18) as in the same way of (3.13),
we have —Awg + Vg =0and V-wg =0as |z] > b— 1, which combined with (3.716) |

implies
(319) _AWO + Vto =0 and V. Wo = 0 in Q, W = 0 on 0.
By (3.17) and (3.18) for |z| > b — 1,

wo(e) = [ (Bole = 1) = o)l (Wo,0))(w)dy — 5T (‘(w1,12)) = O(1),
@) =g((wo,) =O0(el™)  aslelooo

(3.20)

Thus from Proposition 2.4 it follows that (wg,t) = (0,0). This contradiction proves
that s = 0. Employing the same argument as above, we can prove that v = 0 in (3.15).

Thus we have (3.8) and complete the proof of Proposition 3.6. O

§4. Proof of Theorem 1.1

In this section, we shall obtain the order of local energy decay of e *Af. To this end,
we use the result of Proposition 3.6. Let v > 37/4 and € = ey be fixed in Proposition
3.1. '



Proof of Theorem 1.1. Let the curve I' C C consist of three curves I‘it and [y, where

I ={\eC|argh=43r/4, |\ ¢},
Iy=Tful;uly,

TE = {AeC|argh = +37/4, 2/t <X e},
I3 ={AeC||\=2/t, —-3n/4 < arg A < 3r/4}

and 0 < 2/t < e. Then, by (3.1), the semigrbup e~ A admits the representation

(4.1) e A = —1——./e’\t(A+A)‘1d/\, t>0
T .

2m
(cf. [15)). By (33) we shall estimate
1 [ 1,
TRV At ~1 _ 1 At
FEW = 5 /P (ORI R0f =50 [ MR

" Since by (3.1) and Propbsition 2.6
1A+ A)fllg2 S Copellflly  as A €T,

we have

107 T (D llg.2 £ Camee” V"Il

In view of (3.8) we have

1 .,
o Jo(t)f _—_——,/ XA (Vof + log ™! AVAf)d) + L - eMA™ My fd)
2m Jr, 2m Jr,
=Ky()f + KS(H)f,

where

IMfllg,2,0, S Com,pllog A 72||£]l.
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On the term K} (¢)f, in view of Cauchy’s integral theorem we can replace I'y by Iy =

f‘:‘UfZUf‘;!

I ={(A=—¢/V2£il| 0L < e/V3),

I'; = a smooth loop joining the points A = (e/x/i)ei" and A = (¢/v2)e ™"

and going around the cut in ¥ and connecting 1:‘:- and T .
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Then we have

é Cq’mab,se_vﬁt “fHQ'
q,2,Qb

/ XA (Vof + log ™! AV3f)dA
frufy

Since ff‘z eMA™d\ = 0, if we apply Lemma 7 of [p.369, 34] to ff‘z eMA™ log™! Ad), we
obtain " ‘ N

HK(%(t)f”q,Z,ﬂb s Cq,m,b,et—m—l 108—2 t”f“q . ast— oo.

On the term KZ(t)f, employing the same argument as in the proof of Lemma 8 of [p.370,

34], we have

||K§(t)f|lq,2,szr,, < Cq,m,bt_m_l log ™2 t|flly, ~ast— oo,

which completes the proof of Theorem 1.1. O

Corollary 4.1. Let 1 < ¢ < 00, b > by and m be a positive integer. Assume that
f e D(A™)NJ, (). Then,
(42) e M loamay S Comp(1+tlog ) lflyam  fort 20,

(4'3) ”ate_tAf”q:2(m—1)7Qb S CQ)mab(l + t2 10g2 t)_l ”f”qrzm for t z O'

§5. Proof of Theorem 1.2

We start with L, — L, estimate in the whole space case. Since for ¢ < 1 we can
obtain the estimates by semigroup theory and interpolation inequality; we will consider

the case that ¢ >= 1. Put
. 1 L.
. t = — - t .
(5.1) | - E(a= e a(y)dy

When a € .]Iq(Rz), v(t) = E(t)a solves the nonstationary Stokes equation in R?:

3v(t) = Av(1)=0 and V-v(t)=0 in (0,00)x R?,
(5.2) | | | ST
v(0))=a inR%
By Young’s inequality and Sobolev’s imbedding theorem we have the folldwing esti-

mates.
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Lemma 5.1. Let 1 £ ¢S r £ co. Then,

(53)  18783v(t)llrme
< o+ 07D F all o0t mprasiataize 120,
Where; [ - ]13 the Gau;'s symbol. |
Now we shall prove Theorem 1.2. Set b = e¢™f for f € J (). Then, b € D (AN)

for any integer N 2 0, and in view of Proposition 2.6 for any integer N > 0,

(5-4) _ ”b”q,2N § Cq,N“f”q‘

Put u(t) = e~*b = e~ (**DAf. Then u(t) is smooth in ¢ and z and satisfies the following

equations with some p(t):

dpu(t) — Au(t) +Vp(t)=0 and V-u(t)=0 in (0,00)xQ,
u(t)=0 on (0,00) x OL, u0)=b nQ
Obviously, the asymptotic behavior of e *Af for large ¢ > 0 follows from that of u(t),

" so that we shall start with the following step.

1st step. For any integer m 2 0, we have the relations:
-1
(5.5) [a@®)llg2m 2 + 10:u()lg,2m, 00 S Comp(1+ )77 fllq

for any ¢t 2 0. In fact, let N be a sufficiently large integer (2 ([2/q] + 2m + 6)/2).
Since by Proposition 2.6 b € D, (A"Y) ¢ J, ()N W;(Q) n WzN(Q), by Propositions
2.2(2) and 2.3 there exists a ¢ € WgN(Rz) such that b=cin Q, V-¢ = 0 in R? and
llcllg 2nv gz S Conllfllg (cf. (5.4)). Put v(t) = E(t)c, where E(t) is the operator defined
by (5.1). Let ¢ be a function of C*°(R?) such that ¢(z) = 1 for |z| £ b and ¢(z) = 0

for |z] 2 b+ 1, where b is a fixed number 2 by. In view of Proposition 2.3, put
w(t) = u(t) — (1 - ¢)v(t) - B[(Vy) - v(2)].

Since supp B{(Vy) - v(t)] C Dy41 and since 1 — p(z).= 0 for |z] £ b, w = u in O, so
that if we prove that

(56)  [W®llgzmas + 10w Dllg2ma, S Coma(l+8)7HHll, 20,
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then we have (5.5). To get (5.6) we set

d =¢b — B[(Vy)- b],

g(t) = —{2(Ve - V)v(t) + Apv(t)} — (8: — A)B[(Ve) - v(2)],

and then

Ow(t) — Aw(t) + Vp(t) = g(t) and“ V. W(t) = 0 in (0, 00) X Q,
w(t)=0 on dQ, - w(0)=d g |

In view of (5.3), (5.4) and so on, we have the following facts:

(5.7) d € Dg(AY) N, 441(), ,

(5.8) 8ig(t) € Dy(A™) N J,541(R), t20, j=0,1,

(5.9) Idllgzn < ConlIEll,,

(5.10) 10/&(®)llg2m < Comp(1+8)"77|Iflly, 20, j=0,1.

In view of (5.7) and (5.8), by Duhamel’s principle w(t) is described as the form:
w(t) = e *Ad +/ e~ (t=Ag(5)ds.
0 . i i
By Corollary 4.1, (5.9) and (5.10), we have

W (®)llg.2m .2, Cq,m,p(1 +tlog® 1)~ £]

t
+ Cq,m’b/ (1+(t = s)log"(t ~ 8)) 7 (1 + s) 7/ 9ds| ]l
0

We split the above integral into two parts:

e+

/05(1 (t — ) log2(t — )" 1(1 + 5)" ¥ ds

' -1 Lt : :
< <1+%log2 (%)) /2(1—{—5 —%ds§C’(1A+t)_%
o :

/L (14 (t—s)log?(t —s))1(1 + s)_%ds‘

s (1 + %>_% /:(1 +(t —s)log®(t —s)) 1ds S C(1 + t)‘%,
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thus we have
(5.11) W@ llg2mes S Comp(1+8)77Ifll;, t20.

We have also
18:w (1) llg,2m, 25 < Comp(1+8)77[|fllg, 20,

which completes the proof of (5.6). Therefore we have (5.5).
In view of (5. 5) to complete the estimate of |[u(t)|lg,m for large t > 0, it remains to

estimate [[u(t)llg,m {12125} To this end, we start with the following lemma.

Lemma 5.3. Let p(t) be a certain pressure associated with u(t). Then,

(5.12) [p(®)llg,2m, 20 < Coqm,p(1+1)"7|Ifllq-

Proof. See Lemma 5.4 of [12].
2nd step. Choose 1 € C*®(R?) so that ¥ (z) =1 for || £ b—1 and ¥(z) = 0 for |z| > b.
Put

z(t) =(1 — ¥)u(t) + B{(Vy) - u(?)];

e =(1—¢)b+B[(Vy)-b],

h(t) =2(Vy - V)u(t) + Agu(t) + (8 — A)B[(VY) - u(t)] - (V)p(t),

and then |
0yz(t) — Az(t) + V((1 — ¥)p(¢)) =h(t) and V-z(t)=0 in (0,00) x R?,
z(0)=e in RZ.

Moreover, by (5.4), (5.5), (5.12) and Proposition 2.3

(5.13) IB(®llgzm—1r2 SCqmp(L+8)72[If]ly, m 21,
(5.14) lellg2m gz SCqmpllflly, m 20,

Since V - e = 0, z(t) is given by the formula:

(5.15) 2(t) = E(t)e + 2.(t), z1(t) = /0 E(t — s)Pgoh(s)ds.



97

Note that z(¢) = u(?) when |z| 2 b, so that we shall estimate z(t). At first, we have by
(5.3) and (5.14)

1

(5.16) IE(t)ellnge < Cqr(1+8)~ G2,

Let us estimate z;(t). Since supp h(¢) C Dy for all ¢ 2 0, by (5.3), Holder’s inequality
and (5.13), we have V

: 1
lz1(®)llr gz = Cr/O (1+t-— S)_(I_F)||h(S)||1,[2(1—1/r,)]+1,ne2d3
t
<c, / (14— 5) "D (), 201 /eopo 1 s

t
< Cry / (14— 5) 07D+ &) Fas|f],.

Thus we have

1

(5.17) 21 @)l € Cor(@+ )G, 1<gSr<oo, t20.

Since z(t) = u(t) for |z| 2 b and e *Af = u(t — 1) for t 2 1, by (5.5), (5.15), (5.16) and
(5.17) we have (1.2) for t 2 1. _
Next, we shall prove (1.3) and (1.4). Let us estimate u(t) for |z| 2 b. Let z(t) be the

same function as in the proof of Theorém 1.2. Then,
t

Va(t) = VE(t)e + Vau(t), Vau(t) = / VE(t — s)Pgeh(s)ds.
0

Then we claim
~ Cor(1+8)"G3)3)f), ifl<r<2
(5.18) IV2(®)llr e = { ! 1 v 4
Cor(1+8)77||f|q if2<r.
In fact, by (5.3) and (5.14) we have

1 1

IVE(t)ell,ge < Cyr(1+ 1)~ G311

So we shall estimate Vz;(t). By (5.3), Holder’s inequality and (5.13), we have
. t v ,
IVar(Olloze < Cor [ (1 4+= 9 D HBh pas opsaeds
0 v
' t 1N\ 3 v .
< Cq,r/ (1+t—s)~(-)-% Ih(s)|lg,12(1-1/r))+2,R2dS
0 .

t
< Cq,,/ (141 —s)"(3=2) (1 + s) "7 ds||f] .
0
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If we calculate the above integral as we obtained (5.11), we have (5.18), which implies
that

Cor(1+t) " G=H)-5)f),, ifl<r<2,

(519) “Vll(t)”r’ z|2b g : 1
U220 @ + )7 H)E, 2 < r < oo,

for t 2 1. By (5.19) and (5.5) we have (1.3) and (1.4) for r # 2.
In the case that r = 2, by using weighted L;-method, we can obtain (1.3) easily.
Thus we finish the proof. O
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