STATIONARY SOLUTIONS FOR THE NAVIER-STOKES EQUATIONS AND THE BOUSSINESQ EQUATIONS UNDER GENERAL OUTFLOW CONDITION

MORIMOTO, Hiroko
Department of Mathematics, Meiji University
森本 浩子
明治大学理工学部数学科

Let D be a bounded domain in \mathbb{R}^n (n=2 or 3), ∂D its smooth boundary. We consider the existence of solutions to the stationary Navier-Stokes equations

(1)
$$\begin{cases} -\nu \Delta \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla p &= \boldsymbol{f} & \text{in } D, \\ \operatorname{div} \boldsymbol{u} &= 0 & \text{in } D, \end{cases}$$

under the boundary condition

(2)
$$\boldsymbol{u} = \boldsymbol{\beta}$$
 on ∂D

where u is the velosity vector, p the pressure, f the external force, ν kinematic viscosity, β the velosity vector given on the boundary.

We consider also the similar problem for the stationary Boussinesq equations

(3)
$$\begin{cases} -\nu \Delta \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} + \nabla p + \alpha \boldsymbol{g}T &= \boldsymbol{f} \text{ in } D, \\ -\chi \Delta T + (\boldsymbol{u} \cdot \nabla)T &= 0 \text{ in } D, \\ \operatorname{div} \boldsymbol{u} &= 0 \text{ in } D, \end{cases}$$

under the boundary condition

(4)
$$\begin{cases} \mathbf{u} = \boldsymbol{\beta} & \text{on } \partial D \\ T = \boldsymbol{\theta} & \text{on } \partial D \end{cases}$$

where T is the temperature, α coefficient of volume expansion, χ thermal diffusivity, β and θ prescribed velosity and temperature on the boundary, respectively.

Firstly, we mention some known results for these problem.

The existence of the stationary solutions to the Navier-Stokes equations (1), (2) and the Boussinesq equations (3), (4) is known in general context if, for any $\varepsilon > 0$, there exists an extension $\boldsymbol{b}_{\varepsilon}$ of the boundary value $\boldsymbol{\beta}$ to the domain D such that $\operatorname{div}\boldsymbol{b}_{\varepsilon} = 0$ in D and the inequality

(L)
$$|((\boldsymbol{u}\cdot\nabla)\boldsymbol{b}_{\varepsilon},\boldsymbol{u})| \leq \varepsilon||\nabla\boldsymbol{u}||^2, \quad \forall \boldsymbol{u} \in \boldsymbol{C}_{0,\sigma}^{\infty}(D)$$

holds, where

$$(\boldsymbol{u}, \boldsymbol{v}) = \sum_{i} \int_{D} u_{i}(x) v_{i}(x) dx$$

$$||\boldsymbol{u}|| = (\boldsymbol{u}, \boldsymbol{u})^{1/2}$$

$$C_{0,\sigma}^{\infty}(D) = \{ \boldsymbol{u} \in C_0^{\infty}(D) ; \operatorname{div} \boldsymbol{u} = 0 \text{ in D} \}.$$

Suppose that the boundary ∂D of D is multiply connected,

(5)
$$\partial D = \bigcup_{i=1}^{k} \Gamma_i \ (k \geq 2) \ (\Gamma_i : \text{ connected component of } \partial D)$$

and D is inside of Γ_k .

Since $\operatorname{div} \boldsymbol{u} = 0$, the integral $\int_{\partial D} \boldsymbol{u} \cdot \boldsymbol{n} d\sigma$ must vanish, where \boldsymbol{n} denotes the outward normal vector to the boundary. Let us call this condition general outflow condition (GOC).

$$(GOC) \quad \int_{\partial D} \boldsymbol{\beta} \cdot \boldsymbol{n} d\sigma = \sum_{i=1}^{k} \int_{\Gamma_i} \boldsymbol{\beta} \cdot \boldsymbol{n} d\sigma = 0$$

Theorem 1. (Leray/8], Hopf/6], Funta/3], Ladyzhenskaya/7]) Suppose the following condition is satisfied.

$$(OC)$$
 $\int_{\Gamma_i} \boldsymbol{\beta} \cdot \boldsymbol{n} d\sigma = 0 \ (1 \le i \le k)$

Then the inequality (L) holds true.

Remark 1. If the boundary is multiply connected, the condition (OC) is stronger than the condition (GOC). On the other hand, if ∂D is connected, then (GOC) and (OC) are equivalent and

$$\int_{\partial D} \boldsymbol{\beta} \cdot \boldsymbol{n} d\sigma = 0 \implies (L) \text{ holds true.}$$

When (OC) does not holds, we know the following fact due to the work of Takeshita.

Theorem 2. (Takeshita[14]) Let D be a bounded domain in \mathbb{R}^2 the boundary of which consists of 2 connected components $\partial D = \Gamma_1 \cup \Gamma_2$. Suppose that we can insert a circle between Γ_1 and Γ_2 . If the boundary integral

$$\int_{\Gamma_1} \boldsymbol{\beta} \cdot \boldsymbol{n} d\sigma = -\int_{\Gamma_2} \boldsymbol{\beta} \cdot \boldsymbol{n} d\sigma \neq 0,$$

then (L) does not hold true.

Therefore we can not use the method of Theorem 1 to show the existence of stationary solutions to the Navier-Stokes equations (1), (2). Nevertherless this does not mean the non-existence of solutions. In fact, Amick showed the existence of solution under the assumption of "symmetry" for 2-D case.

Theorem 3. (Amick/1) Let D be a bounded domain in \mathbb{R}^2 . If D, f, β are symmetric with respect to a line ℓ , and every Γ_i intersects with ℓ , then a solution exists.

Motivated the work of Takeshita, we found the following exact solution for 2-D annular domain

$$D = \{ \boldsymbol{x} \in \mathbf{R}^2; R_1 < |\boldsymbol{x}| < R_2 \}, \ \partial D = \Gamma_1 \cup \Gamma_2, \ \Gamma_i = \{ |\boldsymbol{x}| = R_i \} (i = 1, 2).$$

Example 1. (Morimoto/9), see also (10) Suppose f = 0 and the boundary value:

$$oldsymbol{eta} = rac{\mu}{R_i} oldsymbol{e}_r + \omega_i R_i oldsymbol{e}_{oldsymbol{ heta}} \quad on \quad \Gamma_i \ (i=1,2),$$

where μ, ω_1, ω_2 are given constants. Then the boundary value problem (1) (2) has the following solution. The velocity \mathbf{u}_0 is given by

$$oldsymbol{u}_0 = oldsymbol{u}_0(\mu) = rac{\mu}{r} oldsymbol{e}_r + b(\mu, r) oldsymbol{e}_{ heta}.$$

(i) If
$$\mu \neq -2\nu$$
, $b(\mu, r) = \frac{1}{r}(c_1 + c_2 r^{2 + \frac{\mu}{\nu}})$,

(ii) If
$$\mu = -2\nu$$
, $b(\mu, r) = \frac{1}{r}(c_1 + c_2 \log r)$,

where c_1, c_2 are appropriate constants. The pressure $p_0 = p_0(\mu)$ can be obtained from the equation.

As for the perturbation of the above solution, we have

Theorem 4. (Morimoto-Ukai/13))

Let $D = \{ \boldsymbol{x} \in \mathbf{R}^2; R_1 < |\boldsymbol{x}| < R_2 \}$, $\boldsymbol{f} = \boldsymbol{0}$ and the boundary value:

$$oldsymbol{eta} = \{rac{\mu}{R_i} + arphi_i(heta)\}oldsymbol{e_r} + \{\omega_i R_i + \psi_i(heta)\}oldsymbol{e_{ heta}} \ \ on \ \ \Gamma_i \ (i=1,2),$$

where μ, ω_1, ω_2 are given constants and $\varphi_i(\theta)$, $\psi_i(\theta)$ are 2π -periodic functions, the integral of which over the interval $[0, 2\pi]$ vanishes. Suppose the inequality

$$|\omega_1 - \omega_2| \frac{R_1^2 R_2^2}{R_2^2 - R_1^2} \left(\log \frac{R_2}{R_1} \right)^2 < 2\nu$$

hold. Then there exists at most discrete countable set \mathcal{M} such that for each $\mu \in \mathbf{R} \setminus \mathcal{M}$ the boundary value problem (1), (2) has a solution for sufficiently small $\varphi_i(\theta), \psi_i(\theta)$ (i = 1, 2).

Remark 2. $\omega_i(i=1,2)$ can be large but the difference $|\omega_1-\omega_2|$ should be small.

For the general domain D in \mathbb{R}^2 or \mathbb{R}^3 , the boundary of which is multiply connected, we have

Theorem 5. (Funta-Morimoto[4])

Suppose that $\mathbf{f} \in V'$ is a potential force, that $\mathbf{\beta} = \mu \mathbf{\beta}_0 + \mathbf{\beta}_1$, where μ is a constant, $\mathbf{\beta}_0$ is the boundary value of gradient of a harmonic function $\varphi \in H^2(D)$, and that $\mathbf{\beta}_1$ is in $H^{1/2}(\partial D)$ with

$$\int_{\partial D} \boldsymbol{\beta}_1 \cdot \boldsymbol{n} d\sigma = 0.$$

Then, there exists a discrete countable set $\mathcal{M} \subset \mathbf{R}$ such that for each $\mu \in \mathbf{R} \setminus \mathcal{M}$, there exists a weak solution to (1), (2) if β_1 satisfies the inequality $||\beta_1||_{H^{1/2}(\partial D)} < C^*$ for some positive constant $C^* = C^*(\nu, \mu, D, \beta_0)$.

Remark 3. The boundary value β_0 may not satisfy the vanishing outflow condition. A non-trivial example of such β_0 in 3-dimensinal case is

$$\sum_{i=1}^{k-1} \nabla \left(\frac{q_i}{4\pi |x - a_i|} \right)$$

where q_i 's are constants and a_i 's are points outside D, each a_i being enclosed by Γ_i .

In the following case, the set \mathcal{M} is void, that is, for every μ , solutions exist for sufficiently small β_1 .

Theorem 6. (Fujita-Morimoto-Okamoto[5], Morimoto[12]) In case of 2-D annular domain and

$$oldsymbol{eta}_0 =
abla \log r \Big|_{oldsymbol{\partial D}}$$

the set of exceptional values M in Theorem 5 is void.

As for the Boussinesq equations, we obtain the following results.

Theorem 7. (Morimoto[11]) Suppose that $\mathbf{f} \in V'$ is a potential force, that $\mathbf{\beta} = \mu \mathbf{\beta}_0 + \mathbf{\beta}_1$, where μ is a constant, $\mathbf{\beta}_0$ is the boundary value of gradient of a harmonic function $\varphi \in H^2(D)$, and that $\mathbf{\beta}_1$ is in $H^{1/2}(\partial D)$ with

$$\int_{\partial D} \boldsymbol{\beta}_1 \cdot \boldsymbol{n} d\sigma = 0.$$

Suppose that θ_0 is in $H^{1/2}(\partial D)$. Then, there exists a discrete countable set $\mathcal{M} \subset \mathbf{R}$ such that for each $\mu \in \mathbf{R} \setminus \mathcal{M}$, there exists a solution to (3) (4), if α , $||\boldsymbol{\beta}_1||_{H^{1/2}(\partial D)}$, $||\boldsymbol{\theta}_0||_{H^{1/2}(\partial D)} < C^*$ holds for some positive constant $C^* = C^*(\nu, \chi, \mu, D, \boldsymbol{\beta}_0)$.

Remark 4. The set of exceptional value \mathcal{M} is the same as in the Navier-Stokes equations case.

Theorem 8. (Morimoto[11]) In case of 2-D annular domain and

$$oldsymbol{eta}_0 =
abla \log r \Big|_{\partial D}$$

the set of exceptional values \mathcal{M} in Theorem 7 is void.

References

- [1] Amick, C. J., Existence of solutions to the nonhomogeneous steady Navier-Stokes equations, Indiana Univ. Math. J. **33**(1984), pp.817-830.
- [2] Cattabriga, L., Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Mat. Sem. Univ.Padova **31**(1961) pp.308-340.
- [3] Fujita, H., On the existence and regularity of the steady-state solutions of the Navier-Stokes equation, J. Fac. Sci., Univ. Tokyo, Sec. I, 9(1961), pp. 59-102.
- [4] Fujita, H., Morimoto, H., A remark on the existence of the Navier-Stokes flow with non-vanishing outflow condition, to appear in Proceeding of Nonlinear Wave 1995
- [5] Fujita, H., Morimoto, H., Okamoto, H., Satbility analysis of the Navier-Stokes flows in annuli, to appear in Mathematical Methods in the Applied Sciences
- [6] Hopf,E., Ein allgemeiner Endlichkeitssatz der Hydrodynamik, Math. Ann. 117(1941) pp.764-775
- [7] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.
- [8] Leray, J., Etude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pure Appl. 12(1933) pp.1-82.
- [9] Morimoto, H., A solution to the stationary Navier-Stokes equations under the boundary condition with non-vanishing outflow, Memoirs of the Institute of Science and Technology, Meiji Univ. 31(1992), pp.7-12.
- [10] Morimoto, H., Stationary Navier-Stokes equations under general outflow conditon, Hokkaido Math.J. **24** (1995), pp.641-648.
- [11] Morimoto, H., On the existence of solutions to stationary Boussinesq equations under general outflow condition, preprint
- [12] Morimoto, H., Note on the boundary value problem for the Navier-Stokes equations in 2-D annular domain with general outflow condition(in Japanese), to appear in Memoirs of the Institute of Science and Technology, Meiji Univ.,
- [13] Morimoto, H., Ukai, S., Perturbation of the Navier-Stokes flow in an annular domain with the non-vanishing outflow condition, J. Math. Sci., Univ. Tokyo, 3(1996), pp.73-82.
- [14] Takeshita, A., A remark on Leray's inequality, Pacific J.Math., 157(1993), pp.151-158.
- [15] Temam, R., Navier-Stokes Equations, North-Holland, Amsterdam, 1977.