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STATIONARY SOLUTIONS
FOR THE NAVIER-STOKES EQUATIONS AND THE
~ BOUSSINESQ EQUATIONS
UNDER GENERAL OUTFLOW CONDITION
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Depa.rtment of Mathematics , Meiji University
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Let D be a bounded domain in R™ ( n=2 or 3), dD its smooth boundary. We consider
the existence of solutions to the statlonary N av1er-Stokes equations :

(1) —I/A'u.—i—(u V)u+Vp = f in D,
. divu : = 0 in D,

under the boundary conditioh
(2) wu=B on 8D

where u is the velosity vector, p the pressure, f the external force, v kinematic viscosity,
B the velosity vector given on the boundary.
We consider also the similar problem for the stationary Boussinesq equations

—vAu + (u Vu+Vp+agl = f in D,
(3) ’ —XAT + (u - V)T = 0 in D,
divu = 0 in D,

under the boundary condition

u = B on 0D
(4) {T' = 0 on 0D

where T is the temperature, « coefficient of volume expansion, x thermal diffusivity, 3
and 0 prescribed velosity and temperature on the boundary, respectively.

Firstly, we mention some known results for these problem.

The existence of the stationary solutions to the Navier-Stokes equations (1), (2) and
the Boussinesq equations (3), (4) is known in general context if, for any ¢ > 0, there
exists an extension b, of the boundary value 3 to the domain D such that divb, = 0 in
D and the inequality

(L) I((w-V)be,u) < el[Vull®,  Vue CE,(D)
holds, where

(u,v) = Z/Du,'(m)v,-(w)da;
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Jlull = (u, u)*?

Cow(D) = {u € C°(D) ; divu = 0 in D}.
Suppose that the boundary 9D of D is multiply connected, -
(5) 0D =UET; (k>2) (T;: connected component of )D)

and D is inside of I'. . ‘ , o
Since divu = 0, the integral / u - ndo must vanish, where n denotes the outward

D
normal vector to the boundary. Let us call this condition general outflow condition

(GOC).
k
(GOC) ADﬂ-ndo:;/m,@-ndozo

Theorem 1. ( Leray[8], Hopf[6], Fujita/3], Ladyzhenskaya[7])
Suppose the following condition is satisfied.

(0C) /rp-ndo:ougigk)

Then the inequality (L) holds true .

Remark 1. If the boundary is multiply connected, the condition (OC) is stronger than
the condition (GOC). On the other hand, if 0D is connected, then (GOC) and (OC)
are equivalent and

/‘9D,3 -ndo =0 = (L) holds true.

When (OC) does not holds, we know the following fact due to the work of Takeshita.

Theorem 2. (Takeshita[14]) Let D be a bounded domain in R? the boundary of which
consists of 2 connected components 0D = I';y U's. Suppose that we can insert a circle
between I'y and I'y. If the boundary integral

Fl,@-nda:—/r2,6-nda;é0,

then (L) does not hold true.

Therefore we can not use the method of Theorem 1 to show the existence of stationary
solutions to the Navier-Stokes equations (1), (2). Nevertherless this does not mean the
non-existence of solutions. In fact, Amick showed the existence of solution under the
assumption of “ symmetry”for 2-D case.

Theorem 3. (Amick(1]) Let D be a bounded domain in R®. If D, f , B are symmetric.
with respect to a line £, and every I'; intersects with £, then a solution exists. :
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Motivated the work of Takeshita, we found the following exact solution for 2-D an-
nular domain

D={xeR%4R, < |x| <Ry}, 0D=T1UTly, I'i={|z| = R;}(i = 1,2).
Example 1. (Morimoto[9], see also [10]) Suppose f = O and the boundary value:

B= %er +w;Rieg on T; (i=1,2),

where p,wi,ws are given constants. Then the boundary value problem (1) (2) has the
following solution. The velocity ug is given by

ug = uo(p) = —l;fe, + b(p, "')ee-
) 1
(’L)Ifﬂ' ;é '—21/, b(ll,, ’]") e ;(Cl + (127,24—%),

.. 1
(w) If u = —2v, b(p,r) = ;((:1 + cologr),

where c1, cy are appropriate constants. The pressure pg = po(u) can be obtained from the
equation.

As for the perturbation of the above solution, we have

Theorem 4. (Morimoto-Ukai[13])
Let D= {x € R% R, < |x| < Ry} , f = O and the boundary value:

B= {—+g0,( Vrer + {wiR; + ¢¥;(0)}eg on T; (i=1,2),

where u, w1, wq are given constants and v;(0), ¥;(0) are 2w-periodic functions, the integral

of which over the interval [0, 2r] vanishes. Suppose the inequality

R2R2 Ro\? .
R2 <log R—1> < 2V

hold. Then there exists at most discrete countable set M such that for each p € R\M the

boundary value problem (1), (2) has a solution for sufficiently small ;(0), ¥;(0) (i = 1,2):

|ws w2|

Remark 2. w;(i = 1,2) can be large but the diffenrence |w; — wa| should be small.

For the general domain D in R? or R3, the boundary of which is multiply connected,
we have

Theorem 5. (Fugita-Morimoto[{])

Suppose that f € V' is a potential force, that B = uBy, + By, where i 1s a constant,
By is the boundary value of gradient of a harmonic function p € H%(D), and that B, is
in HY/2(0D) with _

/ B, - ndo = 0.
8D
Then, there ezists a discrete countable set M C R such that for each u € R\ M, there

exists a weak solution to (1), (2) if B, satisfies the inequality ||131|| H1/29D) < C* for some
positive constant C* = C*(v, u, D. B,).
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Remark 3. The boundary value B, may not satisfy the vanishing outflow condition. A
non-trivial ezample of such B, in 3—d7jmensinal case 1s

ZV (47rlw—a,|) |

where ¢;’s are constants and a; s are points outside D, each a; being enclosed by T;.

In the following case, the set M is void, that is, for every u, solutions exist for
sufficiently small 3;.

Theorem 6. ( Fujita-Mbm’moto-Okamoto[5/, Morimoto[12])
In case of 2-D annular domain and

By = Vlog T'ab
~ the set of exceptional values M in Theorem 5 is void.

As for the Boussinesq equations, we obtain the following results.

Theorem 7. (Morimoto[11]) Suppose that f € V' is a potential force, that B = uBy +
B1, where p is a constant, B, is the boundary value of gradient of a harmonic function
v € H*(D), and that B, is in HY2(OD) with

/BD,Bl-nda:O.

Suppose that 0y is in HY2(OD). Then, there exists a discrete countable set M C R
such that for each p € R\ M, there ezists a solution to (3) (4), if , ||Billm/2ap),
100l| zr1/25p) < C* holds for some positive constant C* = C*(v, x, p, D, By).

Remark 4. The set of exceptional value M is the same as in the Navier-Stokes equa-
tions case.

Theorem 8. (Morimoto[11]) In case of 2-D annular domain and

Bo=Vlog TIBD

the set of exceptional values M in Theorem 7 is void.
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