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§1. Introduction. We study the initial value problem for the Davey-Stewartson
systems :

i0pu + co02 u+ 02, u = c1|ulPu + couds, p,  (2,t) € R3,
(11) ag1<p+c3a§2(p = al‘ll“"z’
u(z,0) = ¢(z),

where cg,c3 € R, c¢1,¢3 € C, u is a complex valued function and ¢ is a real valued
function. The systems (1.1) for c3 > 0 were derived by Davey and Stewartson [7]
and model the evolution equation of two-dimensional long waves over finite depth lig-
uid. Djordjevic-Redekopp [8] showed that the parameter c3 can become negative when
capillary effects are significant. When (cg,c1,¢2,¢3) = (1,-1,2,-1), (—=1,-2,1,1) or
(—1,2,—1,1) the system (1.1) is referred as the DSI, DSII defocusing and DSII fo-
cusing respectively in the inverse scattering literature. In [10], Ghidaglia and Saut
classified (1.1) as elliptic-elliptic, elliptic- hyperbolic, hyperbolic-elliptic and hyperbolic-
hyperbolic according to the respective sign of (cg, c3) : (+,+), (+, —), (—,+) and (—, —).
For the elliptic-elliptic and hyperbolic-elliptic cases, local and global properties of solu-
tions were studied in [10] in the usual Sobolev spaces L%, H and H2. In this paper we
consider the elliptic-hyperbolic case. In this case after a rotation in the z;z2-plane and
rescaling, the system (1.1) can be written as

12) { iBpu + Au = dy |ul?u + daudy, @ + dsudy, o,

6=r1 a-'z:z‘P - d48$1 !ulz + d56$2 'ulz,
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where A =932 + 92, dy,--- ,ds are arbitrary constants. In order to solve the system
of equations, one has to assume that () satisfies the radiation condition, namely, we

assume that for given functions ¢; and @y
(1.3) im o(z1,22,t) = p1(z1,t) and Hm (1, 22,t) = pa(z2,1).
T2 —>00 . 1 —0o0

Under the radiation condition (1.3), the system (1.2) can be written as

o o]

i0pu+ Au =d; |ul®u + dzu/ Oz, [ul? (1, 22, t)day’
T2

(1.4) oo
+ d3u/ O, [u? (31, T2, £)dT1 + dgudy, 91 + d5udy, o
s,

with the initial condition u(z,0) = ¢(x). In what follows we consider the equation (1.4).

In order to state the local existence result, we define several notations. We let
0 = (0z,,0z,), & = (o,02), |a| = a1 + oz and 1,05 € RU {0}. We define the
weighted Sobolev space as follows :

H™ = {f € 171 — 82, — 02)™2(1 + |&1]? + |22?)/2 ] < o0},

H™(Re,) = {f € IR, ); (1~ 82,)™>(1+ |25 flzs(m.,) < o0},

where || - || denotes the usual L? norm. We denote the usual L norm by || - ||,. For any
Banach space E, LP(A; E) means the set of F valued LP functions on A and C([0,T; E)
means the set of F valued continuous functions on [0,77], where A =[0,7], A = R? or
A =R,;, We write L?([0,T}; E) = LLE, L°(R,,; E) = LE_E which make the notation
simple. For example L7 (Rg,; L7*([0,17]; LP*(Rg;))) can be denoted as LB} LI L23. We
also write /*° = H*® and H*°(Ry,) = H*(R,,) = HZ, for simplicity.

Our first theorem says the local existence of small solution to (1.4) in usual Sobolev
spaces.

Theorem 1.1. We assume that ¢ € H®,where s > 5/2 , 05,001 € C(R; HS)), Og,02 €

C(R;HE,), and |¢llz> < 1/y/max{|dy],|ds|}. Then there ezists a positive constant
T > 0 and a unique solution u of (1.4) such that u € C([0,T]; H®).

Theorem 1.1 is considered as an improvment of the previous papers by Chihara [4]
and Linares and Ponce [19]. We only prove Theorem 1.1 in the case of s = 5/2 since in
the case of s > 5/2, Theorem 1.1 can be proved in the same way. To obtain our result
we introduce the function space.

Xr = {f € C([0,T]; L?); || fll xr < oo}, Yr = {f € C([0,T}; L?); || fllv < o0},
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where
1Al =[1fllver + “aglfHngLzTng + ||632f|hr4ggL2TLg1

Il ={ 32 10/ gera + 3 (IDH20% fifige o + IDL20% fliers) }
ler|<2 |x|=2
ng = f_1|€jla’f, 0 = 8;‘,116;';, and [a| =1+ Q.

The function space Y7 is the natural Sobolev space when we use the classical energy
method with the data ¢ € H®/2. The use of the function space X7 suggests that we
make use of smoothing properties of solutions to the linear Schrédinger equation (see
Section 2).  As mentioned in [19], it seems that the classical energy method is not
sufficient to yield a existence result. In this paper we use the two dimensional version
of the smoothing effect of Kenig-Ponce-Vega type (see, e.g., [15]). We note that the
method used in this paper does not work to remove the decay condition on the data in

. the hyperbolic-hyperbolic case which was assumed in [19],[11] to obtain local existence

results. A smallness assumption on the data can be removed in real analytic data [12],
however we do not know whether it can be removed or not in the usual Sobolev space.

To state the global existence results, we use the following notations moreover.

J = (J:cn sz)’ J:cj = Tj +2it6$j' ” : ”Xm"(t) = Z|a|§m “aa : “ +Z|a|§l ”Ja : ”7 where
o= (ay,a2), o] = a1 + ag, a1,03 € N U {0}.

Our second theorem shows the global existence of small solutions to (1.4) in the usual
weighted Sobolev spaces H3° N H%3, which is considered as lower order Sobolev class
compared to one used in [4], by the calculus of commutator of operators. We shall prove

Theorem 1.2. Let ¢ € H>° N H®?, 31, € C(R; LY), 011 gy € C(R; LY), (0 <
j <3), €3 and 63 be sufficiently small, where

em=sup Y (1+ t)1+“(|[(t6$1 Y 001 () llLgg + 1057 01(8) s
er 52,

+ 11692, Y 02y 02(t)lugy + 102 02(Dllnsg ), @ >0,

1/2
b 2( > ||a::a::x1ﬁlm2%u2) .
la+BI<m
Then there ezists a unique global solution u of (1.4) such that

(1.5) u € L2 (R; H3° n H%?) N C(R,; H*® N H%?),

(1.6) sup( Z 0% JPu(t)|| + Z (1+t)‘053|]6°‘_Jﬁu(t)||)3463.

R
tER \o)+18l<2 la|-+IB|<3
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Corollary 1.8. Let u be the solution constructed in Theorem 1.2. Then we have

C Ju®lle < CQ+ )T (llmoo + |8l
Moreover, for any ¢ € H3° N H®3 there exist u* such that
lu(t) = U@)ut||gzo — 0 as t — oo,

where U(t) = et +95;)

The rate of decay obtained in Corollary 1.3 is the same as that of solutions to linear
Schrodinger equations. Time decay of solutions for the Davey-Stewartson systems (1.1)
was obtained in [6],[10] when (co,c3) = (+,+) and (cg,c3) = (—,+) and in [12] when
(co,c3) = (+,—) and (cg,c3) = (—, —) under exponential decay conditions on the data.

By using inverse scattering methods several results were obtained for DSI system
(di = 0,dy = ds = 1/2, and dy = ds = 1 in (1.4)). In [9] A.S.Fokas and L.Y.Sung
showed that if the initial function ¢ is in the Schwartz class and if Oz, p1(t,x1) and

Oz, p2(t, T2) are also in the Schwartz class with respect to the spatial variables and
continuous in ¢, then DSI system has a unique solution global in ¢ which, for each fixed
t, belongs to the Schwartz class in the spatial variables. Furthermore it is known that
DSI system has the localized soliton type exact solutions which called dromion (for the
study of the dromion solutions, see , e.g., [13],[20]).

§2. Linear Schrédinger equations. In this section we state smoothing properties
of the inhomogeneous Schrédinger equations

i0u+ Au=f, (z,t) e R?* xR,
w(0, z) =¢().

We let U and S be U(t) = exp(itA) and (Sf)(t) = fg U(t — s)f(s)ds as defined in

Section 1. ' '

Following estimates were obtained by Strichartz [21], Kenig-Ponce-Vega [15],[16],
Bekiranov-Ogawa-Ponce [3] and Hirata[14] e.t.c.

(2.1)

Lemma 2.1. For the linear operator U and S, we have following estimates.

(2.2) U¢lireorz + ”D;{ZU‘pHLg‘iL%L§2 + HD%szﬁHLg;L?TLgI < Col|#|l2,
1
23) 10550 loe 132 s{ znfn?,;LzTLi?’
! : C1“D1:1 f“L,}L?,
s flly rare
2 Ly, L3L3
(2.4) 102, S fllLeo r2rz < .
B Wt 1275 PP
(2.5) ISfllzgers < | fllzrra-

Next lemma is Holder type estimate of Leibniz rule for fractional order derivative.
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Lemma 2.2. Let0<a<landl<p<oo. Then
1Dg(f9) — D39 — 9D5 fllp < Cliglloo |1 DS fll-
Let p,p1,p2 € (1,00) such that 1/p =1/p1 + 1/pa. Then
IDZ(f9) — fD2g — D3 flip < Cliglip, 1D fllps-
For the proof of this lemma, see Appendix of [17;Theorem A.1].

§3. The estimates for the nonlinear terms. In what follows, we use following
notations.

3
Fo)=>_ f;w),
7j=1
where
[i0) = difofPv,  fav) =dgv / By [0(1, ) ? de,
and fa(v) =dgv / B l0(3%, 32)|2 dir,

By direct culculations and using Lemma 2.1 and 2.2, we have following estimate.

Lemma 3.1. We have

H@i SF(U)”ng L2312,

(3.1) : 3 241173
<CT vy, + Qld2|T|vl|Lgp 2 |0ev |l Lge L2 + |d2lv(0) )10, vl £eo 12 22,
and
”322 SF(W)||ngL2TLg1
(3.2)

<CT |l + (2lds|TlvllLgo 2 10¢v | Lo L2 + sl Il (@) )I0Z, vl Lgs 2.1z -

Lemma 3.2. We have
T

(3.3) /0 | Tm(DY/202, F(v), D262 u)ldt < CTv|f3. ||ully;

+ (T ol 1000l o + 20l [0 )02, Vlngg g 2, 10 Wl 32,

T
(3.4) /0 l Im(DiﬁzaizF(v), D;gzagzu) dt < CT |3, lullv:

+ (4T||UI|L°T°L2’Hatv”Lg9L2 + 2|ds |l”(0)||2f|aggv|nggL?rLgl )”aggul|ngL2TL§1 )
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and

. |
/ | Im(D2/28,, 0y, F(v), DX/28,,8,,u)| dt
0 v ,

T
(3:5) + / | Im(D3/?05, 02, F'(v), D8, 0y w)| dt
0

<CT|lv|¥; llullyz-

Lemma 3.3. We have
T N
(3.6) 3 / | Im(8%F (v), 9°u)| dt < CTlol, [[ullys-
laf<2 70
We next consider the term
G(’U; QD) = d4v8m P1 + ds’vazz wa.
Using the similar way to above Lemmas, we have following.
Lemma 3.4. We have
102, SG(v; P)llrgs 2.2, <CoT 0]l
103,5G(;9) g a2, <CoT ol

T
3 / | Im(DY20°G(v; ), DY20%u)|dt <C,T|[v]lyylullva
la|<2

T
and Z/ | Im(DY/20°G(v; ), D20%u)|dt <CTvllye lullya
0

|l <2

where "
C, = C(”amm”Hg{z + Haa:z@zHng/,z)'

§4. Proof of Theorem 1.1. We define the sequence {u,(t)}.cnugo} as follows:

(4.1) { to =U¢,

un =Ug — Z‘S(F’(un—l) + G(un—l; QO)),

where F' and G are the same ones defined in Section 3. We first remark ug € X for
some p > 0 by virtue of the first estimate in Lemma 2.1. From now on we will prove
that {un(t)}nen is a Cauchy sequence in X , for some time 7', where

Xr,p = {f € X1; | fllv= < p/2, Haglf“ngL;ng < p/4, ”522f||ngL2TLg1’ < p/4}.
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We assume that u;(t) € X7, for all0 < j <n — 1. By Lemma 3.1 and Lemma 3.4, we
have

||621“n3|ngL§L32
<Col| D292, ¢ll + CT||un-1 1%,

(4.2) _—
+ 12| (2T un—1ll g2 [Osun-1llLse L2 + 1011107, un—1llrge r2 12
+ CpT |tn-1 %

and
llagQUnl‘nggL?FLgl

(43) <Col|D3/202, 8|l + CT |[un-1|¥,

+ |d3| (2T ||un—1llLgo 211Osun—1 | Loo 2 + l|¢”2)Haggun—llnggL?rLgl
+ CpT||un—1 ”%’T
Here u,,—; satisties the differential equality
t0pUp_1 = —AUp_1 + F(up—2) + G(tn_2),
{ un—1(0) = ¢,

where we define u_; = 0. So, by virtue of usual Sobolev’s inequalities, we have

10¢un—1llLgerz <||Aun—1llpgers +{|F (Un-2)llrserz + |G (tn—2)ll Lo 2

<l Aun-1llrgrs +dillun—2llFeers
+d2||un—2[|Lg9L°oL2 |[awllun—2|2||Lg9L2 Ll

T2 T T2

+dsllun—2llrgere 2 10z, [un—2*llLgrz 11

+ dallun—z2llLgerzllo1llgerse + dsllun—2llLser2lipallrgere

T2

<l Atn—1llrgr: + C“Un—zﬂigsm + Collun—2]|Lgo L2

Applying this estimate to (4.2) and (4.3), we have
(4.4)

“aglunHngL%%
<Collgllgrsrz + CT w13 + CoTllun-1]3,

+ |d2|(2T||Un—1HLg9L2([lAun—11|L%°L2 + C”“n—ZH%%oHl) + H¢||2) Hailun-lingLg,ng
<Colllzors -+ Idal 912102, uns g 202,

+ CopTlun-allyr (Ilun-1l1¥; + (lun-1llyr + lun-2lly )03, un—1llre 1222 )
<Colldllger= + 3oldal 01 + CoT3p(30* + So(3p + 36%)
=Collllmsr2 + goldalll9]* + 55C,Tp*(12 + p°) |
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and -
(4.5) Ha;o,-’gUnHngLf;Lgl < Col|pll sz + 1oldall|ol* + gz CoTP* (12 + 0°).
Now, by the assumptions on ¢, we can define small positive constant 6 such that

max(|dy|, |da|)||¢]|2 < 1 — 85. For this 6, we put p such that Col/¢||gs/2 < 6p and
T such that &C¢Tp2(12 +p3) < 6. Under these conditions, we see that

(46) 102, g raas, < p/4, and 02, unllzeganz, < o/

Next, to estimate pY 252y, we note that (4.1) is equivalent to

(47) ’l,atU()(t) + AUo(t) = 0, UQ(O) = ¢,
and
(4.8) Ot + Mip = F(un_1) + Gltin_1), un(0) = ¢.

Applying both sides of (4.7) and (4.8) by Dx/?62

Ty?

multiplying both sides of the resulting

equations by DX/?92 L Tp(t) and D;{zaﬁﬂn(t), respectively, integrating over R2, and
taking the imaginary part, we obtain

(4.9) D292 uo ()| =0,

I
dt
and

d _
(410) 1 DY202 un(VI? = 2Tm(DY/202, (F(ttn-1(8)) + Glutn-1(£))), D202, un(0)).
Integrating (4.9) and (4.10) in ¢ and using Lemma 3.2, we find that
(4.11) 1D3/202, uoll3g0 2 = [ D3/%02, 4%,
and

HD;:{28:31UWH%$L2 —<-HD;{263:1¢“2 + 2C'T“un--l”3‘1@ “un“YT
+ (8T \|tn—1llLso L2 10581l Lo L2
+ 41d 812102, w1l g 23,02, ) 162, g 3.2,

+ CoT[un—1llvr [funlye -

(4.12)

In the same way as in the proofs of (4.11) and (4.12) we have

(4.13) - I1DZ202, uoll}e 12 = | D202, 0117,
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103202, unligo 2 <IID3{202,0% +2CT (0 + p*)|unllv:

+ (8T Jun—1llLgo 2 |Ostin—1l| Lgo 2

(4.14) it \
4 Al 02102, 0 g .2, ) 192, el s £ 12
+ C‘PT”un—l H'YT ”un”YT?
(4.15) HDzzamazzuO“%gPL?’ + ”D:JiézamazzuouigpLz
—|DY20:, 05,1 + [ D200, 00 tIP,
and v
(4.16)

IlDi{zamlazzunlgii’PL? + ”Diézamazzun”%%’L2
<D 206,00 8|1% + |1 D3, 205, 0228 11% + CT 1% [unllvr + CoTltn1llye |tinlys-
Integration by parts shows that

13202, unll? <I D202, un || D320z, 0oy un|

(4.17) i

<ell D2?0%,ull® + i | D20z, Oc, ull?,
and
(4.18) D220, un|? <|ID3/202 un ||| D220z, Oz, ull

<ell D23, ul® + £ || D3/*0z,0z,ull?,
where £ > 0 is determined later. By the usual energy method and Lemma 3.3 we have

(4.19) D 10%unliers < Y 10%01% +CT (0 + 0°) lunllvs-
| jal<2 jal<2 o

From (4.11)-(4.19) and the Schwarz inequality it follows that
unll3 <ClgllEs/ + 35CoTP*(4+ p%) + 35 (8 + )T (4 + p?)
+ 35 (4+)(|dz| + |ds])[19]120%.
Hence, if necessary, we retake p and 7" such that
=(8+¢)Tp(4 + p) <6,

Cllo|I3rs/2 <3667,
%C‘PT(4 + P2) Séa
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we find that
(420) A ”un”YT = 2

From (4.6) and (4.20), we see that {u,} is well-defined sequence in X7 ,. For ug(t) =
U(t)¢ we have the following estimate by Lemma 2.1

(4.21) - luollxz < 1@l s

The induction argument and (4.20)-(4.21) show that (4.21) holds for any n € N U {0}.
A similar calculation shows {u,} is a Cauchy sequence which implies Theorem 1.1. [J

§5. Some comutator estimates. Before starting the proof of Theorem 1.2, we
state some lemmas.

Lemma 5.1. We have

Ifllzss < CQ+IDY2() (D) fllzee + s Flzz, ).

Proof. We apply to Sobolev’s ineqﬁality to exp(—i|z1|%/2t) f to get
Ifllzgy < ClHT21 e FIZE NFIZE < CT2 (e ez, + £z,
which with the usual Sobolev’s inequality yiélds-the lemma.

' Lemma 5.2. We have
1(Dz) "2, flgllza, + I{Da.)s flgllzz, < CIDz,) fllzg llglira, -
The proof of the lemma is obtamed by the following result due to R R.Coifman and
Y.Meyer (see [5], pp. 154). :
Lemma.5.3. Let o0 € C®°(R™ x R™\ (0,0)) satisfy
98000 (&,m)| < Ca,p(|é] + In|)~I>I=1#!

for (&,m) # (0,0) and any o, B € (N)™. If o(D) denotes the bilinear operator

o(D)(a () = [ [t o(e, ma@hondean,
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then :
lo(D)(a, B)||L2mm) < Cllallpo@m)llhllLz@m)-

Proof of Lemmd 5.2 We have
[(Dz1)™2, flg(z1) = ((Day)?(fg) — F({Day) %)) (1)

2 : ' ,
- (‘1’> / / e €I (1 11y Y4 — (14 a2 Y4)F(E0)d () derdny,

™

where

Fen) = / e~ £(3)da.

We easily see that

1+ |& +m )Y~ (14 |y B4

_ SUSTR/
(1€ +m)M4 + (L4l 2)2) (L + & +maf2)M2 + (1 + [m [2)1/?)

Therefore Lemma 5.3 gives

I{D=21)2, fgllzz, < Cll(Day) flizgs llglzz, -
In the same way we have
I(D20), Flglzz, < CIDa) Flisg lollzs, -
This completes the proof of the lemma. [

Lemma 5.4. We have

'.///lv|2(x1’le)ﬁ(wlv332)(‘<Dx1>h($1,xz))dm‘ldazzda:z’

> ~Cll(Day)ollz, 13 (D1 Jollez, s + lIvllzz, 19 IPlZz rz

T2 Ty

+ 5 Mlolza, 160w 2Rz, |2

Proof. We denote the left hand side of the inequality in the lemma by

I - KIvlz(Dml)h, h)LizLizlLii l'
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We find that by the Holder inequality and the Plancherel theorem
I (A, (e, B0z, g2 0z, |+ D) 20 e s
2 _l(h7 [<D$1>1 ﬁ]vh)ngLingl ! + H[(D-'Dl)l/zv ’U]h + ’U(D$1>1/2h“i§21.’2211131
> _[(hv [(Dw1>7 77]Uh)L32L§2,Lgl | + ”[(D:cl)l/z’v]h”igng?,Lgl
+ Hv<D:c1>1/2h”i?2L2 L2 +2 Re([(Dzl)1/2,’l)]h, U<D$1>l/2h)L22L22,L21
x 32/ Xy z x x
> —[|hllzee, 22, 22 [{De:), VlvhliLr ,r2 r2
2 x2
1
- 2”[<Dw1>1/27v]h”%2 2 2.+ _“'U(th)l/zh’”%? L? L2 -
z3 Ty Ty 2 _ g Tyl Twy
We now apply Lemma 5.2 to the above to get the desired result. [l

§6. Outline of the proof of Theorem 1.2. Since the proof of theorem is so
complicated, we consider following equation:

- A
(6.1) i0pu + Au = u/ Oz, [ul?dzy’,
T2

which have only one nonlinear term. The estimates of other terms are similar or easier,
so the essential part of the proof is not lost.
We define the operator K, and K, as

= Am o "2 / D-'Bl ™
K:v1 — gy (’U) = Z_ W - ”v(t1$1 )”L%2 dx, <Dm1> )

m=0
(¢ o] Am T2 : Dm2 m
K, = Zz(v) - Z m! (/ ||’U(t, :172')H%ild$2' (D >) ’
. —00 T2

m=0
and A2 = 1/63 (for the definition of é3, see Theorem 1.2). Then operating K,,0*J” to
(6.1) and taking L2-inner product with K,,8*JPu (|a| + |8| < 3), we have

1S (1K 02 TPu(t) | + || Key0™ IPu(t)|?)
|l +]BI<3
1 o 9
t oz 2 (@l |(D2) P K82 Pu®li, |,
3 |o|+|BIL3

+ [[lle(®)llzz, 1{Dzs) /2 K, 0% TPu(t) | 2, 1!232)
< CA+ AP A+ 1) u(®) ez (1 + 1wz 1) 1.3y

+z(

loa+BI<3

(6.2)

Im(K,,0%JPu / Oz, [u?dzy’, Ky, 8% TPu)
g .

).

oo
+ 1Im(Kw28°‘Jﬁu/ Oz, [u|?dzy’ | Ko, 0% TPu)
T2
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The second term of the left hand side of (6.2) means smoothing properties of solutions
to the equation. By virtue of Lemmab5.1-5.4 and the explection:

(6.3) u/ O, [uf?day = ué—;t/ Udg, U — udy, udzs’,
T2 x2

we have

109 By (u(t)) ]| + 1102, Fag ()| + (19, Fay (u(2))]
(6.4) lel+181<2

< O+ )2l Zenn o () | 20,

and _
(K, 03, Fo, (w(t)), Kz, 03, u(t))] + [(Kz, I3, Foy (u(?)), Koy 2 (1))
< CeCAMOI (1 4 lut) [Faege) {1+ AP + ) Hlu@) e lu® Ion e
(6.5)

ez, 14022 Ko 82, u(®) 22, |75

+ @)z, (D) 2 K T3, u®l s, [z, 3

where K, = K, (u) and F,(u(t)) = u f:: 0z, |ul?dzs’. Applying (6.4) and (6.5) to the
right hand side of (6.2), we have

1d

55 2 (1Ko TPu(®)|? + | Ko, 0 T Pu(d)|?)

la|+BI<3

1
(6.6) +( 1/2_06063) > (M@, 1(Dey) K2, 0 Pu®)lz, |I1s
465 ol HAI<3 '

2 -
+ ez, IDar)Kaa8® IPu(®)lzz, |3 ) < CO -+ 65]u(t) s
provided that 63 is sufficiently small and |

(6.7) sup [lu(®)5zqy < 463,
<t<T

(6.8) sup (14 [t]) 9% f[u(t) |50y < 463
~T<t<T
for some time T > 0. We choose 43 satisfying

1
4532

—Ce%% > 0.



118

Then we have
! . . t : .
(6.9) u@) a5y < %265 + Cés /O (1 + )7 flu(s) 5.3y ds.

Thus (6.6) shows that the nonliear term is controlled by the second term of the left
hand side of (6.2) and the right hand side of (6.6). Global existence theorem is obtained
by showing that (6.7) and (6.8) hold for any 7". In order to prove (1.9) and (1.10) for
any T > 0 we need (6.9) and the following inequality

v t
610)  [uOlfan) < P8+ Cs [ (145772 u(s) oo ds.

The inequality (6.10) is obtained by making use of the structure of nonlinear term
(6.3). Theorem 1.2 is obtained by applying the Gronwall inequality to (6.9) and (6.10).
It seems to be difficult to get the inequality (6.9) through the methods used in Theorem
1.1 because nonlinear terms are not taken into account to derive smoothing properties.
On the other hand the operators K, and K, are made based on the nonlocal nonlinear
terms (the second and the third terms on the right hand side of (1.4)). The similar
operators as those of K, and K, have been used in [4].

Remark. Our method does not work for the ‘hyperbolic-hyperbolic Davey- Stewartson
system. If we apply the similar methods to the local solutions of

2

we obtain

Sl.|g_

Z (HKzla“J’su(t)|I2wL | Kz, 0 TPu(@)]|?)
i Hii<

5 2 (llu®lsz, (D) K0 7Pu(t) 12, nm
03" ol iBl<3

+ [[lle(@®)ll 2, I1(D ¢2>1’2Km26‘*J’3u(t)HL2 Mzz)
< CA+ AL+ u®l a2 (L + [u®)l 220 @) o)

+ > (Im(Ky,0*JPu / Bmlulzd:cz,Kzla JPu)|
|a|+ua|<3

1
2

+ | Im(R.., 0% TPu / O, lufdzy’, Kopy 0°750)))
T2

[0 o] D,
> Z A™ [ [* Dz, \™ AL a2, des’ pids
le = - W(_/_oo “U(t le)lng d.'I:2 ZF:?;) =e Lz, (D 1)’
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~ ot Am T . D m Affl ”’U(t 13 )” da:1 Dg
= 3 20 [ oty oy D) " A o 0

m=0

We apply (6.4) and (6.5) to the right hand side of the above inequality to get

(6.11)

Q..l&

D (K0 TPu@) P + || K2, 0% TPu(t)|?)
|a|+:ms3

1
iz 2 (i, ||<Dm>1/21<maaﬂu(t>um Izz
3 |oHBIL3

+ [[Ilu®)llzz, 1(Day)? Ky 0 TPu(t)| 2

1
2

Mz
<CA+A)>%*1+ t)"liIU(t)llicz,z(t)(l + @322 @) lu@®)xsse

~ 2
FC 3 lu®llzz, I(Da)* Ka 0 TPu(@) 1z, |7
la|+{B8I<3

under the conditions (6.7) and (6.8). It is easy to see that the last term of the right
hand side of (6.11) can not be controlled by the second term of the left hand side of
(6.11). This is the reason why our method does not work for the hyperbolic-hyperbolic
system.
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