0000000000 .
10100 1997 O 7-34 7

Calculus of Classical Proofs
from Programming Viewpoint

Ken-etsu Fujita (#EH Ei)
Kyushu Institute of Technology
Department of Artificial Intelligence
Iizuka, 820, Japan
Tel: +81-948-29-7622
Fax: +81-948-29-7601

email: fujiken@dumbo.ai.kyutech.ac.jp

Abstract

We provide a natural deduction systems A, of classical propositional logic and
prove proof theorctical and computational properties of the system. The intro-
duction of A... is a consequence of our observations of the existence of a special
form of cut-freec proofs in LK, which we call LJK proofs with invariants. We
first show the existence of LJK proofs with invariants for any classical theorem.
Although LJK proofs arc classical proofs, they have the disjunction property in
some sense, and we can derive a general form of Glivenko’s theorem from them.
We show the following property: a strict fragment of A... that is complete with re-
spect to classical provability; a translation from arbitrary proofs to LJK proofs; the
Church-Rosser property and the Strong Normalization of A..c; and an isomorphism
between Aq.. and Parigot’s Ap-calculus. Secondly, we introduce a call-by-value ver-
sion of Acz. and prove the following propertics: the Church-Rosser property; the
CPS-translation from A”.. to A™ and its correctness; and a computational use of

€xrc
v

the logical inconsistency in A7,., extended with a certain signature.

1 Introduction

The computational meaning of proofs has been investigated in the wide field of not only
intuitionistic logic [Howa80][HN88][Naka95] and constructive type theory [NPS90] but
also classical logic [Grif90][Murt91][Pari92|[BB93][RS94] and modal logic [Koba93]. Al-
gorithmic contents of proofs can be applied to obtain correct programs in the sense of
satisfying logical specifications. In this paper, our motivation is to study a computational
aspect of a simple classical natural deduction system based on our proof theoretical ob-
servations of a special form of cut-free proofs in LIV, and to apply such a proof theoretical
property to programming via the Curry-Howard isomorphism.

In sequent calculi, we can usually distinguish classical systems and intuitionistic sys-
tems by a cardinal restriction on the right side of the sequent [Szab69][Take87]. Especially
in some systems like L'.J [Mae54], the Beth-tableau system in [TD88], and IL> [Sche91],
this restriction is critical. We first show that at most two kinds of formulae on the right
side are enough to prove arbitrary theorems in classical propositional logic. To verify

this, we introduce the notion of LJK proofs.with 1nvar1ants On the other hand, struc-
tural rules in logic are so important and fundamental that they drastically change logical
systems without logical symbols-and the decidability of logical systems depend on them.
This notion is obtained by carefully considering the use of right contraction rules. Careful
consideration naturally leads to separation of the succedent into two parts, i.e., a contrac-
tion allowed part and a forbidden part. In one of them, we can expect some disjunction
property. We discuss that the right contraction rules can be applied to certain subfor-
mulae among the given formulae. The subformulae to which the right contraction rules
are applied arc specified in terms of the notion “invariant” of LJI proofs. Moreover, the
invariant notion plays an important role in embedding classical proofs into intuitionistic
proofs. That is, depending on the invariant we have distinct embeddings.

Simple examples of LJK proofs (to be defined later) of the Peirce’s law are given
below. The following proof! will be called an LJK proof of (A D B) D A) D A with
an invariant A, and proof2 an LJK proof with an invariant ((A D B) D A) D A. In
LJK proofs, the right side of each sequent is such that every occurrence of the right
side, except for at most one occurrence, is the same as the invariant. From proofI, one
can easily obtain =A — (A D B) D A) D Aand — ((A D B) D A) D -—Ain LJ,
respectively. In proof2, the application of the right contraction rule is delayed to the end,
and the proof is translated into a proof of =(((4A D> B) D —1) DA)—-((ADB)DA)DA
in LJ, which is a consequenc ¢ of Glivenko’s theorem. -

proofl:
A—A .
A-AB ¢
SAASB 0 A—-A_
(ADB)DA—=AA
- — C
(ADB)DA— A 5
é
—-((ADB)DA) DA _
proof?:

A— A .
w —
(ADB)DAA—- A
A—-((ADB)DA)D A~
A—-((ADB)DA)DAB .
)
—-((ADB)DA)DAADRB A-»AD
- —
(ADB)DA—-((ADB)DA)DAA 5
—-((ADB)DA)DA((ADB)DA)DA .
—-((ADB)DA)D A

The cxistence of LJRK proofs with invariants is important not only in formal logic but
also in programming based on the notion of proofs-as-programs. The notion of LJ K proofs
makes it possible to construct a binary-conclusion classical natural deduction system. The
system is a natural extension of intuitionistic natural deduction NJ with at most two
consequences [Fuji94]. Morcover, LJK proofs are useful for embedding classical proofs
into intuitionistic proofs [Fuji9s], and Glivenko’s theorem is obtained as one of the by-
products.

Section 2 is devoted to pmhmmcmes In Soctlon 3, we introduce a sequent (al(ulub
»LJ K and prove proof theoretical properties of the system.

— W

IThe terminology of LJK proofs in this paper was called y-head form proofs in [Fuji97-1][Fuji97-2].
Both denote the same style of proofs.

In-Section 4, according to the existence of LJK proofs, we provide a simple natural
deduction system ... of classical propositional logic using the classical rule of a variant of
the ezcluded middle. In A.,., we study a computational property of classical proofs, and
discuss the meaning of the existence of LJK proofs from a programming viewpoint.. We
show a direct translation from any proof in M. to LJK proofs. We also prove that ...
has the Church-Rosser property. Finally, a comparison with the related work; Parigot’s
Ap-calculus, Aa of Reholf & Sgrensen, and Felleisen’s A, is given to make clear a relation
and distinction to the other, by which we obtam an isomorphism bctwecn Aeze and the
Aft- calculus, and the Strong \Iormah/atlon of Aeze-

In Section 5, we introduce a call-by-value version of \..., which is called)\j,’rc We
prove that A, . has the Church-Rosser property in Section 6. In Section 7, we provide the
CPS-translation of A7, -terms and show the correctness of the translation with respect
to conversions. In Section 8, we extend A’ with a signature so that a computation in
type-free A-calculus can be simulated in a system that becomes logically inconsistent.
In Section 9, we briefly investigate the relation to some existing systems: M. of de
Groote[Groo95] and Felleisen'’s A [FFKD86][FH92]. Section 10 is devoted to concluding
remarks and remaining problems.

2 Preliminaries

To define a candidate for invariants to which only the right contraction is applied, we
resolve a formula into its components and assumptions, as done in tableau systems [NS93].
This decomposition method can give the candidates strictly positive subformulae of the
given formula with respect to D and A, and it gives the corresponding assumptions.

Definition 1 (Resolution of Formula) LetT be a sequence of formulae. The rewriting
relation = is defined as follows.

([F},‘Al D ‘42) = ([F,AAI],‘AQ);

([T], A1 A Ag) = ([T], 41); ([T), 42) . ©

Definition 2 (Candidate for Invariants and Assumption List) Given a formula A,
then by the above method resolve the formula starting from ([], A) such that

Py=([],A) = P= - = P = ([T, Au); ([Tr2), A2): 5 ([Thn)s Akn) = -+ =

P =([Tul,An); ([Ti2)s A); -5 ([Cim]s Aim). This process clearly terminates, and we col-
lect all the second elements by projs in each Py, i.e., proja(Po) = [A], -+, proja(Pr) =
(A1, Agn], - proga(P) = [An, - -+, Aim). The candidate for the invariants CI(A) is
defined as a finite list such that [[proga(Fo)], [proja(P1)], -+« [Arts -, Akals - [An, -+, A
For cach [Agi, -+, Ar] in CI(A), the assumption list Assume([Ag1,- -, Ara), A) is de-
fined as [[Ti1], -+, [Tkn]] taking the corresponding assumptions. <

It is clearly stated that for each P, = ([Ti1], Ak1; [Cro), Ak2; -+ 5 [Tin), Akn) on the
resolution of A, LJ derives — A from 'y — 4“, «-.,and Ty, — Ag,. For exam-
ple, let A be (-=B D B) A (C v =C). CI(A) = [[4],[--B > B,C V ~C],[B,C V
=C]]. Assume([B,C V —~C},A) = [[--B],[]]- Lct Peirce be ((A D B) D A) D A,
Assume([A], Peirce) = [(A D B) D A] and Assume([Peirce], Peirce) = []. Here the
candidate [D] is called the innermost invariant with respect to the formula Peirce, and
[Peirce] is the outermost invariant.. It will be clear that all of the candidates can be
invariants of LJK proofs, namely, the right contraction rules can be applied only for one
of them if the given formula is provable.

10

Since we cannot use Glivenko’s theorem, which is derived as a corollary, we first
consider the problem of calculating truth tables of classical theorems in intuitionistic
logic?. For instance, Peirce is a classical theorem. However, A — Peirce and ~A —
Peirce are derivable in LJ, respectively. Let Literal(T') be a sequence consisting of
literals using all distinct propositional letters in T'. For example, Literal(Peirce) is A, B
or A,=B or ~A, B or ~A,~B. Then the problem of calculating truth tables in LJ is
stated as follows:

Lemma 1 (Calculating Truth Tables in LJ) IfT" — A is provable in the proposi-
tional fragment of LK, then T, Literal(T', A) — A is provable in LJ for any Literal(T', A).

Proof. Tt is enough to show that “Literal(A) — AV ~Ain LJ” implies “if — A in LI,
then Literal(A) — A in LJ”, which is proved without the use of Glivenko’s theorem. 0.

3 Sequent Calculus LJK

Usually LJ is defined as a subsystem of LK by a cardinality restriction on the succedent.
However, to specify LJK proofs, we introduce a sequent calculus obtained by combining
LJ and LK such that an intuitionistic part and a clagssical part are distinguished in the
succedent. A sequent of the system LJK?3 has the form of ' — A;[A], where A consists
of at most one occurrence, and [A], which will be called an invariant, consists only of
a finite number of the occurrence of A, including empty. The succedent consists of two
parts, that is, the first part before the semicolon has at most one occurrence and the
contraction is forbidden, roughly speaking, simulating intuitionistic proofs. The second
part only has the right contraction. Our intuition bhehind this sequent calculus is that
sequential intuitionistic proofs can be combined into a proof of any classical theorem by
means of the right structural rules.

LJK:
(Axioms)
B — B;
(Structural Rules)
I' = A;[A] I'— ;4] ' = A;[A]
croamd Y ToEEm Y roaam W

C,C.T' = A;[4] I'— A;A A [A]

cToaA ¢ Toaal 2
T,C,D,11 — A;[A]
TD,C 1= A4 ¢
[— A;[A] [— ;A [A] (= 51)

Tooaa % TS A4

2Pprofessor Hiroakira Ono explained this problem.
3The notion of LJK proofs was introduced independently of Girard’s LC [Gira91] and LU [Gira93].
However, LJK could be regarded as a fragment of LC. A

11

' = B;[Al; B,II - A;[A], I'— AA (A AT ;[A],

D — &AL A,) D= A AL A,)
(Logical Rules)
CAD,T — A;[A4] (A =) CADT = A 4] (/\——>2)
PQRM]anM“qM
I' - BAC;[4]

CL—Aid] DI A

EEEN
[- B;[4] T — C;[A]

F=pveE Y tToBven ¢V
F—-)B, [A]] C,1II— Aa[/'l]z B,F—>C,[‘4]

B> O, 0= A AL A,) T Bo5C A Y

[— B;[4] B,T - ;[4]
-B,T"— ,[A] F—>"!B,[A]
Definition 3 (LJK Proofs with Invariants) An LJK proof of T — A;[A] with a set
of invariants ¥ denoted by Py : I' — A;[A] is defined by a proof of the sequent in LJK
such that a set of formulae ¥ denotes all formulace appearing in cach succedent after the
semicolon throughout the proof of the sequent, that is, ¥ is a collection of all A;’s such
that for some I and A', a sequent IV — A';[A;] appears in the proof. <

By the above definition, L.JK proofs with empty invariants can be identified with L.J
proofs. As a variant of LJK, it is also possible to construct a sequent calculus with at ‘
most two occurrences in the succedent part[Fuji97-2], which is complete with respect to
classical provability in the propositional case. A sequence =¥ denotes a sequence in some
order obtained by all negated formulae in .

Lemma 2 (Embedding of LJK Proofs) If we have Pq; : T — A;[A] in LJIK, then
I',-¥ — A is provable in LJ.

Proof. By induction on the derivation. O

By the contraposition of this lemma, we can check which subformula of the theorem
can be invariant. For instance, in the case of Peirce’s law there are only two invariants
among the theorem, that is, proof1 and proof2 in the introduction.

Let I'/=A be a sequence of deleting all the formulae = A from T". The following lemma
plays an important role in our discussion.

12

Lemma 3 (From LJ Proofs to LJK Proofs) IfT' — B is provablein LJ, thenT'/=A —
B: A is provable with an invariant A in LJK. Especially, cut-free LJK proofs with some
invariant are obtained from cut-free L.J proofs. ’

Proof. By induction on the derivation. O

Corollary 1 (Cut-Free LIK Proofs) If we have Ppyy : T — A; [A] in LIK, then
there exists a cut-free LIK proof of T' — A; A with the invariant A.

Proof. From the above two lemmata and the cut-climination property of L.J. O

Theorem 1 (Existence of LJK Proofs) If we have T — A in LK, then for any V¥ in
CI(A), there is a cut-free LIK proof of I' — A; with invariants ¥.

Proof. Let [A;,---,A,] be ¥ in CI(A) and Assume([Ay,-- -, Ay], A) be [T, -+, IL,]. If
I' - Ain LK, then by the observation of Definition 2, we have Sy : I',II} — A;, -,
and S, : I,1I, — A, in LK, and morcover, LJ derives I' — A from 5y, ---, and S,.
Here, we consider S; for 1 < i < n whose succedent is not of the form of negation, since
the provability is the same in propositional LK and LJ. From Lemma 1 (Calculating
truth tables), if I',II;,—» A; in LK, then I',II;, Literal(T,II;, A;) — A; in LJ for any
Literal(T',I1, A;). Let T',II, A; consist of n kinds of prepositional letters. Then there are
2" possibilities of Literal(T,II;, A;). Hence, 2" — 1 applications of the cut rules lead to
an LJK proof of I',II; — ; A; with an invariant A;, and it is to be cut-free by Corollary
1. Thus I’ — A; with invariants [Ay,---, A,] derived from them. O

According to Lemma 2 and Theorem 1, in the case of the outmost invariant we obtain
Glivenko’s theorem. The next corollary shows that the succedent part before the semicolon
has the disjunction property in this calculus.

Corollary 2 (Disjunction Property) If — B, V Bs; [A] is provable with an invdm’ant
A in LIK, then either — By; A or — Bs; A is provable with the invariant A in LIK.

Proof. From the above two le‘mmata and the disjunction 1)I01)€1'ty of LJ, since "A is a
Harrop formula. O

" The notion of invariants gives a general form of Glivenko’s theorem in the sense that if
I' — A: is provable with invariants ¥, then a formula obtained by replacing cach invariant
A; € ¥.in A with =—A; is also provable from I' in LJ. The obtained formula is denoted
by A¥. For instance, see proof1 and proof2 in the introduction.

Proposition 1 (Double-Negation Translation) If ' — A is provable in LK, then
' — AY is provable in LJ for any ¥ in CI(A).

~ This proposition vg_ives another double negation translation depending on the invari-
ants, namely, which subformulae of the theorem are applied by the right contraction rules.
It could be considered as a general form of Glivenko's theorem; however, the embedded
formulae by distinct invariants become intuitionistically equivalent since A D =B
-—(A D B) and =—A A —-=B < =~(AA B)in LJ. The notion of invariants explains
the double-negation of strictly positive subformulae with respect to' D and A gives an
embedding into LJ.

13

4 Application to Programming

In constructive programming, one can use proofs of logical specifications as programs sat-
isfying the specifications [HN88][NPS90]. The constructive proofs are deduced in systems
based on intuitionistic logics or constructive type systems. It has become well-known by
the work of Griffin [Grif90], Murthy [Murt91], etc., that classical proofs of II3 statements
can be interpreted as programs with control operators. Based on the Curry-Howard iso-
morphism [Howa80], the key notion of LJK proofs also provides a simple method to
obtain exception-handling programs. According to our discussion in the previous section,
we present a simple classical natural deduction system A, and analyze the computational
content of the proofs. It will be observed that an invariant computationally plays the role
of a type of exceptional parameter. We give a translation from any proof in A to a
certain proof in A.,., which corresponds to the notion of LJK proofs with invariants. We
also prove that A... has the Church-Rosser property. The Strong Normalization of g
is obtained as one of the by-products from the existence of an isomorphism between A.ge
and Parigot’s Ap-calculus [Pari92).

4.1 Natural Deduction System ...

According to the proofs of Theorem 1, Lemma 2, and Lemma 3, we restate the following
proposition, which is applied to obtain a classical proof from intuitionistic proofs. This
proposition can be regarded as a form of a generalized Glivenko’s theorem in the sense of
[Seld89). :

Proposition 2 Let[Ay,- -+, A,) be in CI(B), and Assume([Ay,-- -, Ay), B) be [[IL1], - -, [IL,]].
I'->Bin LK f I1I;,-4; = A; in LJ for1 <i<n.

This approach would be different from the existing ones in the sense that classical
proofs are derived from two intuitionistic proofs by applying the classical cut-rules with
the invariant A;, or equivalently the excluded middle. From now on, we consider the
implication fragment of the system for simplicity. Hence, cach list of invariants consists
of one element. Then Proposition 2 shows that we can derive a classical proof of I' — B
from an intuitionistic proof of I',II,mA — A. According to this result, we present a
classical natural deduction system and analyze the computational meaning of proofs in
this system. The types are usually defined by type variables, a constant L and —. The
terms are defined by two kinds of variables x and y, wherc y is used only for negation
types - A defined as A — 1. FV(M) stands for the set of free variables in M.

)\e.'c(::

Types
Ai=a|LlL|A- A
Contexts

Fo=()|a:AT | y:-AT
Terms

M=z |XaM|yM| MM | raise(M) | [y:=AlM
Type Assignment

I'e:AFM: B

Thaz:D(z) e AsB D

14

'FM;:A—-B T'HMy: A FEFM:A Iy

' MM :B (= E) TFyM: L Jif Ny =-A#-1

T,y:~AFM:A

FEM:1L i
(LE)ifA#L T+ [poAd - 4 9

T+ raise(M): A

The side conditions of the inference rules exclude trivial rcasoning without loss of
generality.

The system A, without (exc) is denoted by A~+, and the system A~* without (LE)
is denoted by A ™.

The classical rule (exc) is a variant of the law of the excluded middle. This rule is
introduced independently of (L E'), which is in contrast to the double-negation elimination
rules, such that (L¢): infer F A from =A F L and that C: infer A from ——A. We
computationally call the rule (exc) a rule of local ezception-handling. The type A in
(exc) is computationally called a type of exceptional parameter.

In the application of (L), y:—A in I is used as a major premise in the usual sensc
of (— E), and only this kind of negative assumption is discharged by (exc). This style
of proof is called a regular proof in [Ando95]. In the Aa-calculus [RS94], not only regular
but also non-regular proofs are considered. However, from a non-regular proof we can
simply construct a regular proof that has the same assumptions and the same conclusion.

The reduction rules (¢2), (e3-1,2), and (¢4-1,2) below are logically obvious, but they
are computationally important. The reduction rule (¢5) is logically a kind of permutative
reductions in the sense of [Praw65][Praw71][Ando93], which is also called the structural
reduction in [Pari92].

Term Reductions:

(el) (Ax.M)N o M[z:=N]; (e2) (raise M)N b (raise M);
(€3-1) y(raise M) > M; (€3-2) y([yr:~AJM) > yMy, == y;
(e4-1) [y:mAM > M ify¢g FV(M); (e4-2) [y:~A](raise yM) o> [y:—A]M;
(e5) ([y:~(A — B)]JM)N »> [y:=B]((M[y < N]) N),

where M [y < N] is defined as follows:

zly < N] = ;

(Az.M)[y < N] = \a.M[y < NJ;

(yM)[y < N] = y(M[y < N]N);

(YM)ly < N =y (Mly« N]) ify #y;

(MiM)[y < N] = (Mily < N])(Maly < NJ);

(raise M)[y < N| = raise(M[y < NJ]);

([.-~ A M)y <« N] = [y .-~ A'|(M[y < N)).

We identify [y:—A][yi:—A] - - - [yn: 2 A|M with [y:=A]M [y, -, ¥, := y] for technical
simplicity. We sometimes use the term [y]M without type information. The reflexive
transitive closure of > is denoted by »7,., and the binary relation =, is defined as the
reflexive, symmetric, and transitive closure of >. The relations >3, >3 and =5 are usually
defined.

Proposition 3 There exists a term M such that T' by, M : A iff A as a formula is
classically provable from T'.

Proposition 4 (Subject Reduction) LetT'Fy . M : A. If Mo N, thenT k), N :
A.

15

Definition 4 (\...-Proofs with Invariant) We say that M is a Aexe -proof with an in-
variant A; if for some T' and A there is a deduction of U'ky,,, M : A and the rule (exc)

is used at most once in the deduction where, if used, the type of exceptional parameter is
A, ©

By Proposition 2, with respect to the implicational fragment we obtain that I’ — B in
LK it T, Assume(A;, B) — ; A; in LJK for any A; € CI((B)iff ', Assume(A;, B),~A; —
A; in LJ iff T', Assume(A;, B),—~A; A; in A~L. By an application of (exc) where the
type of exceptional parameter is A;, the last statement implies I' . A. In this sense the
above definition gives a corresponding notion to that of sequent calculus. Moreover, from
the above observation there is a strict fragment of A, which is complete with respect
to classical provability, such that the restricted term has the following syntax M with a
single use of (exc):

Mc == [y|M; | Az.Mg;
My i=x | Ae.M; | MiM; | yM; | raise(M;) .

For instance, the term P = Ax;.[y]a1(Axy.raise(yzs2)) of the form M is a proof of
Peirce’s law.

Let C[] be a context with a single hole [| such that C[] == [] | C[|M. We denote
C[M] by the term obtained by replacing [] in C[| with the term M. Then we have
ClraiseM] v7,, raiseM. If k ¢ C[M], then we have that PAE.CIkM] v, M, which
can be applied for implementing a simple exit mechanism. Here, the context C[]is
abandoned, and the term M to be passed on has the same type as that of exceptional
parameter of P. This is the reason why the type A in the definition of (exc) is called a type
of exceptional parameter. In terms of ML [MTH90], informally [y: —A]M may be read
as let exception y of A in M handle (yx) => x end, based on the correspondence
of L with exn (type of cxceptions in ML)*.

As a counterpart of Theorem 1, the following proposition shows that the restricted
terms Mc, which would represent some standard form of classical proofs are complete
with respect to classical provability, and that the existence of invariants allows an effective
way to determine which type has to be assumed in writing programs as classical proofs.
Moreover, any invariant in C'I(-) can be computationally characterized as the type of
exceptional parameter.

Proposition 5 Let A as a formula be classically provable. Then for any A; € CI(A),
there ezists a Aee.-proof Mc of the type A with the invariant A;.

In the next section, we give a concrete translation to the LJK proofs in A.... From
the definability in classical logic, the following examples are demonstrated in this strict
fragment.

Example 1 (Definition of x) A4 X B ==(A — —B):
(M,N) = z.aMN; fst=Az[ylraise(z z129.y71); snd = Az.[y|raise(zdz T2.y72).
Then it is obtained that fst(Ny, No) vZ.. Ny and snd(Ny, Ny) br,. Na.

*Although we can write and use the ML program fun Peirce(w) = let exception y of ’1la in
w(fn z => raise(y z)) handle (y x) => x end as the proof P, whose type can be inferred as ((’1a
=> ’8) -> ’1a) -> ’1a by the ML system, the correspondence is informal in the sense that ML is
a call-by-value language and the occurrence of y in exception y is treated as a name of an exception
rather than a variable, like in [y]M. See also section 8.

16

Example 2 (Definition of +) A+ B =-4 — B!

inl(M) = Azv.azM; inr(M) = dvz.aM; when(M, [z1] N1, [z2] V2) = [y]mzse(M()n:l yN1)(Aza.yN>)
when(inl(M), [21] Ny, [22] N2) b e Nifx; == M);

when(inr(M), [x1] N1, [22) N2) b}, No[zs 1= M].

Proposition 6 (Church-Rosser Theorem) If M7, Ni and Mv7, N2, then Ni>, .M !
and Nyo* M’ for some M'.

€exc

Proof. Similarly to the proof in section 6.

4.2 Translation to LJK Proofs

According to Theorem 1, we can always obtain LJK proofs with some invariants for any
classical theorem. This suggests a translation from arbitrary classical proofs to LJK
proofs. We give the translation in terms of A...; however, it is also possible in other
classical systems, ¢.g., in the Au-calculus. This analysis gives a new reduction relation to
Aese, Which shifts the invariant into the inside. To cstablish this translation, we use an
auxiliary type system A~1 consisting of simply typed A-calculus with the intuitionistic
absurdity rule. The translation is obtained in the following way:

(1) Given a proof M of type A in A.... Compute an embedding G(M) into AL

(2) A proof of [y: —A]raise(G(M)Az.yz) iS & Acee-proof of A with an invariant A;

(3) To get a Acac-proof of A with an invariant A;, apply the shift reduction (to be defined
later) i-times to [y:—Ajraise(G(M)Az.yz), where CI(A) is [Ag, -+, A,] and 0 <@ < n.

Definition 5 The embedding of G from the proof terms of Aeze to N~ is defined.
G(x) = Ak.kx;
G(A\x.M) =)\h k(Az.raise(G(M)(Am.kE(Av.m))));
G(yM) = M\k.k(G(M)Am.ym);
G(MN) = Xk.G(M)(Am.G(N)An.k(mn)),
G(raise(M)) = M\k.G(M)Az.x;
G(ly: —14] M) = M\y.G(M)(Am.ym). <

Proposition 7 If we have T'F M : A in Agge, then T'F G(M) : ==A in A7L.
Proof. By induction on the derivation. O

We define an invariant shift reduction relation o, for Acq.-proofs with some invariant,
which changes an outer invariant to an inner invariant:
[y:=(A — B)|M v, \r.[ly:~B](Mzly := Mk.y(kz)]).
The 4 applications of >, are denoted by »% for i = 0,1,2,--

Let [Ag, A1, -+, A,] be CI(A). Then we assume on the ordering that A9 = A is the
outermost invariant and A, is the innermost invariant, and that A; = A} — A, for some
A} where 0<i<n-—1.

Lemma 4 Let [Ag, A1, -+, A,] be CI(A). If we have F F M : A in Az, then for any i
in 0 <i<n, M such that [y:~A]raise(G(M)Ak.yk) v M’ is @ Aczc-proof of A with an

invariant A;. -

Proof. By case analysis on the number of 1.

17

Case of ¢t = 0:
IfT - M : Ain Ay, then T'F G(M) : ==A in A7+, Hence, [y: —~A]raise(G(M)N\k.yk) is
a Aeze proof of A with an invariant A = Aj.

Caseof i =k+1where0<k<n-1:
Assume that Az --- 2. [y : " A] N iS @ Aeze-proof of A with an invariant A, where A, =
Al — Apyr. Then Axy - - 2.y : 2 AN oy M gives a Aege-proof of A with the invariant
Ag41 by the following replacement of each yO with (Ak.y(kx))O:

» [k: A% [z: A3
[y : —‘4’4k—|;1]] X Ak+1 9
Ak.y(kz) - A O: A
- (Mky(kx))O - L

[y:=A]" O CAp

yO L Nly := Ak.y(kz)) : 4k | [z: A]®
Nly := Me.y(kz)]a : App .
N: A) [y:=Ap1)(Ny := Meey(ka)|x) © Apgr
[y: AN = A Axy - Ty o Ael [(Ny i= Aky(ka))z) - A
AZyc-apyi AN DA b A2z -+ 2 [y A (N]y == Mky(ka)lz) : A © O

The formula (invariant) to which only the right contraction rules are applied in terms
of sequent calculus is changed to the inside by the reduction rules &,. On the other hand,
the shift of the invariant is characterized in terms of Theorem 1 on page 39 of [Praw63],
that is, the application of (L) can be restricted to atomic formulae where V is defined in
terms of the other connectives. Moreover, with respect to A ..-proofs with the innermost
invariant, the application of (exc) is to be a strictly positive and atomic subformula of
the conclusion in the implication fragment (possibly with A). In the more gencral case
of adding a primitive V, it would not be possible to postulate (exc) only for an atomic
formula. ,

It is stated that b, and (e3) have a strong connection, such that ([y:=(A — B)]M)N»,
(Az.[y: =B} M[y := Az.y(zx)]e))N g ly: Bl(My := Az.y(zN)]N), which leads to the
same result as the one by (e5), since we have that My := Az.y(zN)| > My < N].

4.3 Comparison with Related Work

In the following subsection, we briefly compare A... with some of the existing ones (not
a call-by-value style); Au-calculus[Pari92], Aa[RS94], and a variant of A [FFIKD86]. As
regards the relation between Ay and .., we can obtain an isomorphism between them,
and the Strong Normalization of A.... Our observation on the relation between Aa and
Aeze SUggests a generalization of some reduction rule of Aa, which can lead to an isomor-
phism between them. In relation to M., we discuss that adding what kind of reduction
rule to A\, makes them isomorphic.

4.3.1 Relation to Parigot’s \y-Calculus

To study computational interpretations of classical proofs, Parigot [Pari92] introduced
the Ap-calculus of 2nd order classical natural deduction with multiple conclusions. The
Api-calculus has elegant properties; from a proof theoretical point, in contrast to the well-
known NI, A\i has no operational rules like double-negation elimination or the absurdity
rule but has multiple conclusions and structural rules. The positive fragment of Ay is
complete with respect to positive fragment of classical logic, namely, to prove, for example,

18

Peirce’s law, we do not have to use L that is not a subformula of the theorem. On the
other hand, in NK, Aa[RS94], Aczc, and a variant of Ap & la Ong [Ong96], we have to
use L in the proof, which is not contained in the conclusion. Morecover, since in Ay the
name [a] always appears as the form [a]M for some term M, the notion of regularity in
[Ando95] is involved in the system.

From a computational side, in Ay [Pari92][Pari93-1][Pari93-2] some proof terms of
theorems may contain free name ¢ of L, e.g., the term A\xy.pa.[0)(z1(Azq.pé.[a]22)) of
type -—A — A has a free name é. To keep our usual intention of closed terms, we adopt
a variant of A\u-calculus & la Ong [Ong96] and study the relation between Ay a la Ong and
Aeze- At first appearance the Ap-calculus has a single conclusion, however the remaining
conclusions are placed on the left side after the semicolon.

The system of Ap is defined in the following. The types are usually defined from
atomic types including L using —. The context I' and terms are defined as usual. The
set of types with names is denoted by A.

ALt

Fu=()]|x:AT,

A= ()| A% A,

M=z | MM | x.M| [a]M | pa.M;

ARz T(x)
Me:A;A-M: B IMAFM:A—-B T5AFRN:A
"AFAM:A—- B AFMN:B
LAFM:A I‘AAI—]LI_L]‘Al?_éJ_
A A% [a]M e L AR paM: A

The reduction relation >, of f-reductions, structural reductions, (S1), and (S2) in

[Pari93-1] is considered, namely,

(Az.M)N v, M[z := N}

(na.M)N >, po.Mla < NJ;

(S1): [o]u. M v, M} := af;

(52): poja]Mve, M if a & FreeName(M).
The binary relations > and =, arc usually defined. As by-products, we obtain the Strong
Normalization property of Acze and an isomorphism between ... and Ap with respect to
conversions.

Definition 6 (Translation from A .. to Au)

rT=21z; Ar. M = \x.M;

yM = [y|M; MN =M N;

raise(M) = pa.M where a is a fresh name; WM = pyylM. <

For this translation, we separate a context in A... into two parts as follows:
[u=T | Dy

Dyo=()|x:ATy; Teu={)]y:nATs.

yi—l‘A, F2 = Ay,_r_g.

Proposition 8 If we have I'1,I'2 by, M : A, then T ;T by, M 1 A

Lemma 5 For any Ac..-term M, M[z := N] = M[z := N} .

19

Lemma 6 My « N] = M[y < N]

The above proposition and lemmata can be proved ‘by straightforward induction.
Lemma 7 If M >e,. N, then Mo, N.

Proof. By induction on the derivation M >... N. O

From Lemma 10, Proposition 8, and the Strong Normalization of Ay [Pari93-1][Pari93-2],
we obtain that well-typed A...-terms are strongly normalizable®.

Corollary 3 Well-typed \...-terms are strongly normalizable.

Definition 7 (Translation from \u to A...)

<e>=x; <AMM>=A.<M> <MN>=<M><N>;
<lag]M>=a<M> <pa.M> =[a|raise(<M>).

<AYA> =a:mA<A>. O

Proposition 9 IfT5 ARy, M : A, then T, <A> k), <M>: A.
Lemma 8 <M> [z := <N>] = <Mz := N]>
Lemma 9 <M> [o & <N>| = <M[a < N|>
The above proposition and lemmata can be proved by straightforward induction.
Lemma 10 If M, N, then <M >0b>, <N >.

Proof. By induction on the derivation M >, N. O

Proposition 10 For any Ac..-term M, <M > > M.
For any Ap-term N, <N> o> N.

Proof. By the definitions of the translations. O

From Lemmata 10 and 13 and Proposition 10, with respect to conversions there is an
isomorphism between ... and Ap.

Corollary 4 (Acec 2 At) Acoe and Ay are isomorphic in the sense that M =, N iff
<M> =i <N> and that M =, N iff M =, N.

In terms of the right structural rules of sequent calculus, the operator p in Ay works
both for the right contraction and the right weakening. In A, the right contraction can
be simulated by (exc), and the right weakening by (L) and (raise). The logical aspect of
the operator u can be split into two primitive ones of A..., which is also computationally
justified under the isomorphism, and applied to define proof terms of classical substruc-
tural logics in [Fuji95].

4.3.2 Relation to Ap-Calculus of Rehof and Sgrensen

S0f course, we can establish the strong normalization property of A, directly.

20

For the purpose of establishing the Curry-Howard isomorphism in classical logic, Re-
hof and Sgrensen [RS94] introduced the Aa-calculus by restriction of Felleisen’s control
operator C to avoid a breakdown of neat properties like the Church-Rosser property. The
Aa-calculus is natural and has good properties not only of proof theory but also of typed
calculus. In relation to Aege, the Aa-calculus treats both regular proofs and non-regular
proofs, in other words, there is no distinction of variables that are bound by A-abstraction
or A-abstraction. Of course any non-regular proof can be translated into a regular proof
without changing assumptions and the conclusion, such that cach variable y that is ab-

‘stracted by A is replaced with Az.yz. To study the relation between Aa and Acpe, wWe
consider the Aa-proofs under this modification. ‘

The definition of Aa[RS94] is brleﬁy given below The syntax of Aa-terms is dehnod
as follows:

M:u=z|Xx.M|MM|Az.M

The reduction rules are defined as (d1), (d2), and (d3) together with S-reductions.
(d1): (Az.M)N v Az.Mlx := Az.2(zN)); : ' ‘

(d2): Az.aMv> M ifx ¢ FV(M),
(d3): Az.z(AdaxM)v M ifx,d g FV M)
The type inference rules are (— I), (— E), and the following (L.).

Ne:A—- LEFM:L
I'FAz.M: A (L)

Definition 8 (Translation from Ax to A...)
2°=x; (Ax.M)° = dx.M°;
(MN)° = M°N°; (Az.M)° = [2]raiseM®. O

Proposition 11 (1) If we have T' 5, M A, then T' -y, M°: A,
(2) If we have M > N in Aa, then M° =cpe N° i Aege.

The above proposition can be verified by induction. Especially (2) is confirmed using
that (M[y := Az.y(zN)])° »j M°[y <= N°], where to prove (2), in contrast to Lemma 10,
the case of (d1) introduces conversions instead of reductions. From (2), equivalent Aa-
terms are translated into equivalent A...-terms with respect to conversions (correctness
of the translation).

Definition 9 (Translation from). to \a)

zt=z; (Az.M)" =iz M*;

(yM)*t = yM*; (MN)* = M*N+;

(raiseM)*t = Ad.M™* provided d ¢ FV(M); ([y]M)*t = AyyM+. O

Proposition 12 IfT'Fy, M : A, then Tk, M7T: A.

As regards the statement that if we have M o, N, then Mt =5 Nt in A, where =4
is the reflexive, symmetric, and transitive closure of > in Aa, our reduction rule of (c4-2)
fails even if we drop (e3-1) and (e3-2). Our observation suggests adding a new reduction
to Aa, instead of (d3), such that Az.eAd.M > Az.M where d € FV(M): (d4). Here, the
new rule (d4) is a general form of (d3). The dropped (d3) rule can be recovered by (d2)
and (d4), and moreover the simulation of Felleisen’s A, [FFKD86] by Aa (call-by-value
variant), which is observed in [RS94] is not lost. Then we can obtain that M* p* Nt
in Aa if M beye N without (e3-1) and (e3-2). Moreover, we have that (M tYsr . M and

CT(‘

21

that (M°)* o* M in Ax with (d4) instead of (d3). Hence, as in Corollary 4, there is an
isomorphism between A.,. witout (e3-1),(e3-2) and Aa with (d4) instead of (d3).

With respect to the remaining ruleb (e3-1) and (e3-2), they can be simulated in A\a by
usmg the following rule:

yAz.M > Mz =y,
where the type of the variable y is of the form A — L. All the above modification of Aa
can lead to an isomorphism between them (Ax ~ Aeze).

4.3.3 Relation to a variant of)\.-Calculus of Felleisen®

For reasoning about a call-by-value language, Felleisen, et al. [FFKD86][FH92] in-
troduced the A.-calculus extending the type-free A,-calculus of Plotkin [Plot75] with the
control operator C and the abort operator A. By Griffin [Grif90] the A.-calculus has been
applied to extend the Curry-Howard isomorphism to classical logic from a computational
interest. It is a distinct point that A. has the usual reduction rules and the computation
rules used only at the top-level, which bring the computation of the top-level continuation
to a stop. Since P.de Groote [Groo94] proved that there is an isomorphism between Ay
and a call-by-name variant of A, the relation may be obvious. However, we observe that
the computation rules in A. are necessary to simulate some of the compatible rules in
Aeze and that A .. would be simulated in \. with some reduction rule. According to the
observations in [Groo94][RS94], we consider a call-by-name variant of). as follows: The
terms are defined as usual.
Mu=x| M| MM|FM
The reduction rules are the f-reduction, (F), and (Fi,p) as follows:
(Fr): (FM)N > FAMAFE(fN))): (Fiop): FM o> F(AM(AFES)).
The operator F has the type =~A — A, which is a variant of and can be defined by
Felleisen's C, see [RS94]. In addition, the computation rule is (Fr): FM sy MAz.a that
is applied only at the top-level.

Definition 10 (Translation from). to A..)
(@y=2; (Ax.M)= Iz (M),
(MN) = (M)(N); (FM) = [ylraise({M)\z.yz). <

Proposition 13 (1) If we have T'ky, M : A, then Tk, ,, (M) : A.
(2) If we have M >N in A, then (M) =... (N).

The above proposition can be proved by a straightforward induction.

Definition 11 (Translation from \... to \.)

T=1x; M.M=\x.M:

yM =yM; MN=MN;

raiseM = F(Mv.M) where v is a fresh variable; [y]M = F(\y.yM). ©

Proposition 14 If we have Ty, M : A, then Ty, M.

erc

With respect to the correctness of the translation, the reduction rules (e2) and (e5)
can be simulated by (Fr). We also have that (M) o7, M. In contrast, the compatible
rules (4-1) and (4-2) can be simulated by the use of the non-compatible (Fr). Morcover,
for (e3-1) and (e3-2), they can be simulated in). by using the following reduction rule
Fg: '

6See also 9.2 Relation to Felleisen’s A..

22

y(FM)v> M(Az.yx),

where the type of y is of the form —A. This reduction rule is a special form of Cy
in Barbanera and Berardi [BB93], which is also used in [Groo94] to simulate (S1) of
Ap in the A-caleulus. With the help of (F,,,) and (Fg), we can show that (FM (FM) =
F(Ay.y]—"()\-v.(-bﬂ)\af.yar)) b F(Ay.(Av.(M)Az.yz) \k.yk) > F(Ay.(M)(Az.yz)), and then we
have that (FM) = FM in)\, which can lead to (M) = M in A.. Hence, there is an
‘isomorphism between A, and A without (e4-1) and (e4-2), denoted by Ac = Acge, Which
is consistent with A, ~ A (Corollary 4), and Ay ~ A, [Groo94]. However, comparing
with the proof of Ay =~ A, the proof of (M) = M in), needs one more reduction rule,
i.e., F, which would reveal another aspect of the relation between Mgz, and Ap.

5 Call-by-Value Language \!..

We provide a simple natural deduction system ¢, of classical propositional logic, in which
the reduction rules are based on a call-by-value strategy. Since there is an isomorphism
with respect to conversions between A... and Parigot’s Ap-caleulus[Pari92], A2, can also
be regarded, in some sense, as a call-by-value variant of Au-calculus.

The notion of values is defined as variables, A-abstractions, and terms of the form
yV for a value V as in [Groo93], where the variable y works as a value-constructor for
any value V. On the other hand, since a term of the form [y]M, like a packet opened
by (ev4-1), is not regarded as a value, (Az.M;)[y]M> does not become a j-redex, but
another redex that is dual to the structural reduction in [Pari92], which is logically a kind
of permutative reduction in the sense of [Praw65][Praw71][{Ando93].

Values

Vie=a| Ae.M | yV

Term reductions
evl) (Az. M)V b?

cre

Mz = V];
ev2-1) (raise M)N Dﬁr(, (raise M); (ev2-2) V(7mse M) vb.. (raise M);

(
(
(ev3d-1) y(raise M) »%,. M; (ev3-2) y([yi)|M) »v.. yMy = yl;
(
(

exrc

ev4-1) [y]M >y . JLI if yg FV(M); (evd-2) [y](raise yM) D(v([y]M;

evs-1) ([YMN vt BI(Mly < N)N); (ev5-2) V(M) o2, WI(VIMIV =),
where My < N] and M [N = y] arc defined respectively as follows:
z[y < N| = ;

(Az.M)[y < N] = Xz.M[y < NJ;

(yM)[y < N] = y(M[y < NIN);

(YM)ly < N =y My« N]) ify £y;

(Mlj\fz)[y = N] = (J\/f] [y = JV])(A[Z[:U <~ JV]);

(raise M)y < N] = raise(M[y < N));

(Y :=ANM)[y < N] = [y :~A|(M[y < N]).

T[N = y] = a;

Az.M)[N = y] = Av.(MIN = y));

(YM)[N = y] = y(N(M[N = y]));

(YM)[N =y =y (MIN = y]) ify' #y;

(M MR)[N = y] = (Mi[N = y])(Ma[N = y]);

(raiseM)[N = y] = raise(M[N = y]);

(YIM)[IN = y] = [yI(M[N = y]).

The binary relation >V, is defined by the reflexive transitive closure of by, and the

cre

congruence relation is denoted by =¢,.. The relation b3, is defined as usual. We sometimes

23

use the term [y:—AJM instead of [y|M

Proposition 15 There cxists a term M such that T F a,, M o Aiff A as a formula is
classically provable from T'.

Proposition 16 (Subject Reduction) LetT' Fyo M : A. If M2, N, then T Faz,.
N A

Although Aepe 18 simple, the data typeb of pair and case-analysis given below are
naturally implemented by the definability in classical logic.

Example 3 (Definition of +) A+ B =-4 — B:

inl(M) = Av.raise(xM); inr(M) = M. M; when(M, [z1]Ny, [22]N2) = [y](Aza.No)(MAz1.yNy).
- Then we can obtain the following computation:

when(inl(V), [x1] Ny, [x2] No)otn N[z := V] when(inr(V), [21] Ny, [22] Na o2
V].

N)[Tz =

exrc

Let a context £]] with a hole [] be as follows:
E[1:=1] | VIE]) | (E[DM.
We denote £[M] by the term obtained by replacing [] in £[] with the term A. Then we
have E[raise Moy, raiseM and E[[y|raise(yM)] o, [ylraise(yE[M]) where y & FV(M).

Here, the continuation £ with respect to [y]raise(yM) is accumulated as an argument of
y.

Example 4 (Exit Mechanism by a Proof of Peirce’s Law)

Let Py be Axy.[yla1(Azz.raise(yas)) of the type ((A — B) — A) — A. We consider the
following two cases. The first case is called a normal case, and the second is an exceptional
case.

(1) Cascof k ¢ FV(M):

PiAkM = (Azy.[ylzi(Aza.raise(yxs))) Ak M b2,
(2) Case of k ¢ FV(E[V]):

PidkE[RV] vlx. [YIE[raise(yV)] vz [ylraise(yV) sl [y]V L. V.

e€erc erc

[y]M b2 . M.

In the second case, the context £[] is abandoned, and the value V to be passed on has the
same type as that of the exceptional parameter of Pj, which can be applied to implement
a simple exit mechanism. This is the reason why type A in the definition of (exc) is a type
of exceptional parameter. In terms of ML [MTH90], informally [y: —A]M may be read
as let exception y of A in M handle (yx) => x end, based on the correspondence
of L with exn (type of exceptions in ML),

When an exception arises, we often use an exception handler to continue the com-
putations. From a programming viewpoint, we show three general programs, including
programs for normal and exceptional cases. These general programs can be written in the
restricted syntax.

(1) £ = Axg.lylg(x(Mk.raise(yk))) : (A— B)— C) - (C - A) — A

LV1V, provides the following computation: If V; returns a normal value V, then the
result of £V]V2 is VoV. If V] raises an exception with a value V', then the entire result
becomes V. That is, £ computes a composition of V5 and V) of a normal case. This type
is a substitution instance of Lukasiewicz’s formula.

(2) H = Mxf.[yle(Nk.raise(y(fk))) : (A—- B) - C)=»(A=C)—=C

7See also section 8.

24

HV, V, gives the following computation: If ¥ returns a normal value V', then the whole
result is V. If V; raises an exception with a value V', then the result of HV;V, becomes
V,V'. Namely, H can be regarded as a handler of an exceptional case.

(3) G = Aegf.lylg(a(Mkraise(y(fF))) : ((A— B) = C) = (C = D) > (A= D) =
D

G is obtained to combine the roles of £ and H into one program.

In all of the above, the type of exceptlonal return, if it happens is the same as the
type of exceptional parameter.

To demonstrate simple examples we assume the constants and the constant functions
used below, and the reduction rules and the inference rules are also assumed:
if true then M else N v M, if false then M else N o N;
fix f.M o> M[f := fixf.M];

P A= BaAr M:B .
TFfixf e M:A— B (fiz

(i) Let prod be

X' Xexit. (fixf.Ml. if | = nil then 1

else if car(/)=0 then exit 0 else * (car(l)) (fCcdr)))V

with the type int list — (int — int) — int.
To compute the product of all integers in the integer list I, using Example 4 we doﬁn(,
Prod as AL.P;(prod !) with the type int list — int. Prod(l) makes it possible to
return 0 immediately as an exception if [contains 0. For instance, we compute neither *
1 2 nor * 0 3 in the following:
Prod [1,2,0,31 5" [y] (fiz f.---)[1,2,0,3]1 v" [y] * 1 ((fixf.---)[2,0,3])
p* [y] * 1 (x 2 (fixf.---) [0, 3]) > [y] * 1 (x 2 (raise (y 0))) v* [y] raise (y 0)
>* 0.
Instead of P;, when we usc G in the above, the program G(prod [) f g computes g 0 if
[contains 0, otherwise £ n where n is the product of .

(ii) Let quot m n : int be
(fixf.\ab. if a<b then 0 else + 1 (f (- a b) b)) mn
where m,n : int. Using Example 3, define g a b : int + string by
if b=0 then inr(‘‘error’’) else inl(quot a b).
To compute the quotient, Quot m n : stringisdefined as when(g m n, [7(]makestring(z;),
[1172]172).

6 Church-Rosser Property of A\,

In this section, we prove that A2, has the Church-Rosser property by the well-known
method of parallel reductions [Bare84][Plot75][Taka89] and the Lemma of Hindley-Rosen,

see [Bare84].

Proposition 17 (Church-Rosser Theorem) If Ml Ny and Mg, No, then Nyvg.
M' and Ny’ M' for some M'.

€re

To prove this proposition, define two parallel reductions, 3> and >3, on Ae,.-terms,
for technical reasons (commutativity of the two parallel reductions).

25

(1) x> x;

(2) if M >, N, then A\z.M >; A\z.N;

(3) if M > N, then raise M > raise N;

(4)if M; > N; (i = 1,2), then MMy > N Ny;

(5) if M >, Ny and V >, N; then (Az. M)V > Nz := NyJ;

(6) if My > Ny, then (raise M;)Ms > raise N, for any My;

(7) if My >1 Ny, then V(raise M) > raise N; for any V;

(8) if M; > N; (i = 1,2), then ([y|M) My > [y]((Ni[y < N:])’V))
(9) if V> Ny and M > N,, then V([y]M) > [y](N1 (N2 [Nl = y]));

10) if M >, N, then [y]M >, [y]N;
(1) if M > N, then yM >, yN;
(12) if M > N, then y(raise M) > N;
(13) if M > N, then y[y|M >, yNy = y].

Lemma 11 IfV > M, then M is a value.

If M > A‘T! and V > l\r’rg. then AI[II? = ‘r] >]\]’1 [.’IT = 1‘7\[2].
If M; > N; (1 =1,2), then M[y < M) >, Ni[y < No.
If M > Ny and V > N,, then M[V = y] > N|[Ns = y].

Lemma 12 For any N, if we have M >, N, then N > M*! for some M*!.

Proof. By induction on the derivation of >>;. Here, M~ can be inductively given as
follows:

(1) 2! = a;

(2) (Az. 1’\1)*1 Az M

(3) (raise M)*! = raise M*';

(1) (A M)V) = M o= V)

(4-2) ((raise M)N)*! = raise M,

(4-3) (V(raise M))*! = raise M,

(44) (WMN) = [y = NN,
(4-4) (V([y] M) = [y](VHMV = y)),
(4-6) (MN)' = M*' N

) (WM = e

(6-1) (y(raise M))' = M~

(6-2) (y[y M) = y”*‘[m =yl

(6:3) (yM) =yM*. O

To cover the remaining reductions, we define >>5 inductively as follows:
(1) 2 > a3
(2) if M >, N, then Ax.M >3 Az.N;
(3) if M >y N, then raise M >>5 raise N;
(4) if M; >9 N; (i = 1,2), then M M5 > N1 Ny;
(5) if My >9 Ny, then (raise My)Ms >y raise Ny for any Ms;
(6) if M, >9 Ny, then V(raise M) >, raise Ny for any V;
(6) if M >, N, then [y|M >, [y|N;
(7) if M >3 N, then [y|M >, N where y & FV(M);
(8) if M > N, then [y]|(raise yM) >, [y]N;
(9) if M >, N, then yM >, yN;
(10) if M >, N, then y(raise M) >y N.

26

Lemma 13 For any N, if we have M >3 N, then N >, M*? for some M*?.

Proof. By induction on the derivation of >>3. Here, M*2 can be inductively given as

follows:

(1) 22 = =35

(2) \x.M)*? = \o.M*%;;

(3) (raise M)*? = raise M*?;;

(4-1) ((raise M)N)*? = raise M*?,

(4-2) (V(raise M))*% = raise M*?,

(4-3) (MN)? = MN"2;

(5-1) ([M) = M2 if y ¢ FV(M),
([yl(raise yM))=? = [y|M~2,
(
(y
(

(5-)
) [y]]\/[)*2 [y] A/I*Z”
6-1) (y(raise M))*? = M2,
(2) (yM)2 =yM*2. O

It is clear that M >; M and M >, M. Let >} and >} be the transitive closures
of > and >, respectively. Now we can obtain that >7 and >} are commutative. For
this, it is enough to show the following lemma [Bare84].

~Lemma 14 If we have M >, M; and M >y My, then My > N and M, >3 N for
some N.

Proof. Some of the essential cases are as follows:
Case of ([y|(raise yM))N > [y|(raise y(M[y < N]|N))N, and ([y](raise yM))N >,
([y]M)N:
([YIM)N >, [y]M[y < N]N, and [y](raise y(M[y < N|N))N >, [y|(raise y(M[y <
NIN)) > [y]M[y < N]N.
Case of V([yl(raiseé yM)) > [y]V(raise y(VM[V = y])), and V([y](raise yM)) >
V([y|M):
V([y]M) > [y]VM[V = y], and [y]V (raise y(VM[V = y])) >» [y](raise y(VM[V =
Y1) > [YlVM[V = y].
Case of y[yi](raise y1 M) > y(raise yM[y, := y]), and y[y1](raise y1 M) >» y[y:1| M:
yln|M > yMly := y], and y(raise yMy, := y]) > yM[y :=y]. O

From Lemmata 12 and 13, we obtain that >, and >, have the diamond property,
and so have >7 and >3. Moreover, from Lemima 14 and the Lemma of Hindley-Rosen
[Bare84], (>>; U >»)*. has the diamond property. Since we have (3> U >>3)* = blr,
Proposition 18 (Church-Rosser) is confirmed.

7 CPS-Translation of)\, -Terms

We provide the translation from a variant of A}, to A™, which logically induces Kuroda’s
translation and is applied to show the strong normalization property with respect to the
strict fragment of A, .. This translation, with an auxiliary function ¥ for values, comes
from Plotkin[Plot75] and de Groote[Groo95]. It is proved that the translation is sound
with respect to conversions.

Definition 12 (CPS-translation from A . to A7)
T = Mc.kz; Ma.M = Ak.k(Dz.M);

yM = M\e.k(My); MN = Ak M(Am.N(An.mnk));

raise(M) = \k.MA\x.z; [y|M = My My.
U(z) =z; U(Ae.M)= e M; O(yV)=y¥(V). o

Lemma 15 For any value V, V o3 ANk kU(V).
Lemma 16 For any term M and value V, F[I.——:—V]D;; Mz = ¥(V)].
Lemma 17 For any term M where k ¢ FV(M), k. Mk vz M.

The above three lemmata can be proved by straightforwa,rd induction.
Lemma 18 For any term M and N, M[y := Am.N(An.mny)] =5 M[y < N].

Proof. By induction on the structure of M. We show only the following case:
Case of yM: '
yM[y := dm.N(n.mny)] = Ak.k(M[y = Am.N(An.mny)]Am.N(An.mny))
=5 Ak.k(My < N]Am.N(An.mny))
=3 AkE((A' My <= N]Am.N(An.mnk'))y)
= AkE(Mly < N|Ny) = y(M[y < NIN) = (yM)[y < N]. O

Lemma 19 For any term M and N, M[y := An.¥(V)ny] =5 M[V = y].

Proof. By induction on the structure of M. Ounly the following case is shown:
Case of yM:
yMly == M. 9 (V)ny] = Me.k(My)[y = A U(V)ny]
= Me.k(M[y := AU (V)ny](An.B(V)ny))
=p AkE(M[V = y](An. T (V)ny))
=5 Me k(O MV = gl An.B(V)nk'))y)
=p AkE((AE.(Am.M[V = y](An.mnk'))¥(V))y)
=p ARR((AR(AR"E"T(V))(Am. MV = y](An.mnk')))y)
=p ML V(Am.M[V = y](A\n.mnk")))y)
= AEVMV = yly) = y(VM[V = y]) = (yM)[V = y]. O

27

To show the following translation property, we place a restriction such that A’ with

(ev3-1): y(raise V), V instead of (ev3-1), for technical reasons.

Lemma 20 If Mo, N, then M =5 N.

Proof. By induction on the derivation of M o.,. N. We show some of the cases:

(ev5-1) (WMN b2, ([5]M)]y = N]:

([WIM)N = k. [y] M (Am.N(An.mnk))

= Me.(A\y.My)(Am.N(An.mnk))

g Ak My := Am.N(An.mnk)](Am.N(An.mnk))

= Ay.M[y := Am.N(An.mny)](Am.N(An.mny))

=5 A\y.(\e.M[y := Am.N(An.mny)|(Am.N(An.mnk)))y
=5 \y.(0k.-Mly < N](m.N(n.mnk)))y

= Ay(M[y < NNy = [y](M[y < N])N.

(ev5-2) V([y]M) b2, ([yIM)[V = y]:

VM) = Me.V(m.[y] M (\n.mnk))

28

= M.V (Om.(\y.My)(An.mnk))

bg Ak.V(Am.My := An.mnk]An.mnk)

b5 Ak.(Aky kB (V))(Am. My := An.mnk]An.mnk)
bs Mk.(Am. My := An.mnk]An.mnk)¥(V)

by MM [y = A8 (V)nk]An.B(V)nk

= \y.M[y := M. ¥(V)ny]An. ¥ (V)ny

=5 \y.-M[V = y|An.¥(V)ny

=5 Ay.(Am.M[V = yl(An.mny))¥ (V)

=5 \y. (M TV Om MV = y](An.mnk)))y

= My VMV = yl)y = pIV(M[V = y]). O

Now we have confirmed the soundness of the translation in the sense that equivalent
AU -terms are translated into equivalent A-terms.

exrc

Proposition 18 (Soundness of the CPS-Translation)
If we have M =%, N, then M =5 N.

€rc

The translation logically cstablishes the double-negation translation of Kuroda.

Definition 13 (Kuroda’s Translation)
A?= A where A is atomic; (A — B)!= A!— =B
(x: AT =a:ALTY, (y:—mA) =y:—ALTL O

Proposition 19 If we have T' by M 1 A, then T4 by~ M : ~—A%

It is also derived that A", is consistent in the sense that there is no closed term M of

F.,. M : L, and hence no closed term of the form raise(M) cither. -

8 A

. with Signature

From the programming side we extend A, with a signature. The signature is used to
introduce constants or to declare global variables, such as exception constructors (names
of exceptions) in ML or special variables in LISP. In the following, the term [c]M is
treated as a packet which can be opened by a reduction. We show that A7, with a certain
signature can simulate computations of type-free A-calculus.

Avge + X
Ai=a|l|A- A
Fo=()]|2:AT|y:mAT;, Tu=()]|cAzL;
M:i=z|c| e M| yM | MM | raise(M) | [y|M | [¢]M;
Vio=a|c| M| yV |V,

| Lhs M:A) =421

I'kyc: E(c) ks a:T(2) FksyM: L
F,IZ/‘lI‘EJ\/IIB F*“E l\/f]l“l—)B F"g ;7\421‘4 \
Trseil A8 D T Fy MM, : B (= B)
The M:1 . T,y:—Abs M: A
= iIf AZ£ 1 . 22C
Ty raisedl) 4 1 7 DM a (9
Ty M: A

m (Exc) if S(c) = -A

(Az. M)V ¥ Mz :=V];
V(raise M) |>€T(7az'se M); (raise .M)N S
y(raise M) »e, Mi o y([n]M) oo yMly == yl;
WM vb,, M ify ¢ FV (M), [y](raise yM) o?
(WIM)N op,, [yJ(M [y < N)N); - V([ylM) v
(ev6-1) [c)(raise V) bl V;

(ev6-2) [c|(raise V) bl raise 'V ifc#E i (ev6-3) [(]X pY

(raise M);

(Y] M;
[.’l/](V(A‘f[V = y]));

cre
cre
"/7'

crec cre

Since the occurrence ¢ in the definition of the reduction rules is treated as if it were
a global variable, we computationally call (Exc) a rule of global exception handling. In
terms of ML, let exception c of A in M handle (c x) => x end may be regarded
as the term [c: —A]M rather than [y : =A]JM®. Among the reduction rules, (ev6-1) is
essentially used for encoding type-free A-calculus in the next subsection.

8.1 Computational Use of “Inconsistency”

We show that the computation of >3, in type free A-calculus can be slmula‘rcd in \?
with the following signature. This simulation would be regarded as a computational use
of logical inconsistency.

Definition 14 (lam and app)
Let x be (& > @) > o = «. Let S, be E:—(x — x). Let F be A\x122.72 and id be Az.x.
lam = Azv.raise(Ex) : (x = %) = %, app = Ar1&2.([E]F (21 id))xy i % — % — . O

For a term of type free A-calculus:
M:i=z| M| MM
the following encoding into * is defined by using lam and app.

Definition 15 (Encoding of Type-Free A-Calculus in \!,.+X.)
[]:Terms — x is defined as follows: :
[2] =2; [Ae.M]=lam(Az.[M]); [MN]=app[M][N]. ©

Proposition 20 Let V' be a value, i.e., a variable or a \-abstraction.
(1) [M[z := N]] = [M][z := [N]].

(2) [V'] is also a value.

(3) app(lam(V')) o= vV where v is fresh.

(4) If we have M >, N in the type-free \,-calculus a la [Plot75], then [M] bix
AL

97(

Proof. We verify only (4):
[()\1 MV = app(lam(Ae.[M]))[V] = app(Av.raise(E(Az.[M]))[V] ot ([E]F (raise(E
([Elraise(E(Az.TM))[V] ol Qe [MD[V] bl [M]lz:=[V]]=[Mz:=V]]. O

[N in

ere

FT(cacC

In the above proof, (ev6-1) with the call-by-value computation is essentially necessary.
For instance, Turing’s fixed point combinator Y = (Azf.f(zaf))\af.f(z2 f) can be simu-
lated as [YV o=, [V(YV)] for any V. This encoding would be regarded as a counterpart
of [Lill93] that simulates recursive types with exceptions of M L. :

Now the system A?,. with the signature becomes logically inconsistent, so that A*
with Girard’s paradox [Coq86][Howe87] can also be interpreted in this system by a similar
method. Of course, this encoding is impossible in AY,. with cmpty signatures, which is

logically consistent.

¢

8See also footnote 4.

cxre

29

EQx.[M))))

30

9 Comparison with Related Work

We briefly compare \?,, with some of the existing call-by-value styles: A7, of de Groote[Groo93],
and A, of Felleisen[FFKD86][FH92]. The comparison reveals some similarities and dis-
tinctions between them.

9.1 Relation to _;, of de Groote

Based on classical propositional logic, P.de Groote [Groo95] introduced the simply
typed A-calculus A7, for formalizing the cxception-handling mechanism as in ML. At
first appearance, A7, is a small subsystem of A_;,, and the two systems seem similar;
however, quite different permutative reduction rules are used in them.

In the following, we consider a simplified version of A_,, [Groo95]. The term is defined
by two distinct variables, x (A-variables) and y (exception variables only with negation
type):

M:=zx|y| M| MM | (raise M) | (y.M|z.M).

The value is defined as follows:

Vi=a| M| yV.

The typing rules are (— I), (— E), (LF), and the following excluded middle.

y:mrAFrM:B T,2:AFN:B
'+ (y.M|z.N):B

The reduction rules® are bg,,, (raiseje) (i.c., ev2-2), (raise g (i.c., cv2-1), and
(handlesmpio) 1 (.V|T.N) been V if y & FV(V);

(handle/ralse (y.(raise yV)|x.N) begn (y.N[z = V]|z.N);

(handlej) : V{(y.M|2.N) bepn (y.V M|z .V N);

(handlegy) : (y-M|2.N)O bey (y.MO|2.NO).

Now we have the following natural translation from A_., to AY

cre’

Definition 16 (Translation from).}, to Al,.)
(x)°=x; (y)° =Akyk;, (A M) =)\J.M°,
(MN)° = M°N°; (raise M)° = raise M°; ({y.M|x.N))° = [y](Ay.M°)(Ax.y/ N°). ©

Proposition 21 If we have ' M : Ain A, then T by M°: A.

Lemma 21 If we have M >, N in A, then M° =7 . N°.

The above proposition and lemma can be proved by straightforward induction. In
terms of the inverse translation, AU, can be regarded as a fragment of A_;,. However,
(ev5-1) and (ev5-2) could not be interpreted in A;,. (handlei) and (handleyg) arc
simple permutative reductions. On the other hand, (ev5-1) and (ev5-2) are types of
permutations, but the segment, in terms of [Praw65], is separated, and we have to shlft

the lower rule up to both the immediately higher one and the separated ones.

Definition 17 (Translation from)}, to A,

()t =2; Aa.M)T=dxM*t;, (MN)yr=M*t*Nt;
(yM)t =yM*: (raise M)* =raise MT; (YM)* = (ypM* | z.2). ©

9Here, we take an important subset of the reduction rules from the original A7, to discuss the relation.

31

Proposition 22 If we have T by, M : A, thenT by~ Mt : A

Comparing with (cv4-1), (ev4-2), and (handlegmyie), (handle/raise), the latter rules
are restricted to a value'®. This restriction to a value breaks down the Church-Rosser
property. For example, ([y]x;)x; leads to 2125 and [y]a;zs in A2, under the restriction,
and similarly in AZ,. In contrast, the value restriction makes it possible to simulate
(ev4-1) and (ev4-2) by the rules of Felleisen’s \. as described in the next subsection.

—

9.2 Relation to Felleisen’s).
We compare !, with a variant of A, of Felleisen''. We observe that the computation

rules in A, are necessary to simulate some of the compatible rules in A0 12

According to observations in [RS94], we consider a variant of \. as follows. The terms
and values arc defined as usual.
M:=z| M |MM|FM
The reduction rules are by, (Fr), (Fr), and (Fiop) as follows:
(Fr): (FM)N v, F(ARMAf.E(fN))); (Fr): VIFM) b, F(NLMAfEVE)));
(Fiop): FM . F(AeM(MNf.ES)).
The operator F has the type ==A4 — A, which is a variant of and can be defined by
Felleisen’s C, sce [R,894]. In addition, the computation rule is (Fr): FMop MAz.z, which
is applied only at the top-level.

Definition 18 (Translation from A, to \?,.)
r=z; M= M; MM=M M,; FM=yrase(M(\r.yr)). ©

Proposition 23 IfT'F, M : A, thenT Fao M :A.

With regard to the reduction rules, (F},,) can be translated such that F(\e. M(Af.kf)) =
[y]raise((Ak.M(Af.Ef))Aa.yx) o [ylraise(M(Af.yf)) = FM. However, (F) and (Fg)

- could not be simulated in A?,.. The reason may be explained by the definition of (ev3-1)
and (ev3-2). In the definition, the permutations [y < N] and [N = y] can be replaced
with the substitutions [y := Az.y(zN)] and [y := Az.y(Nz)], respectively (denoted by
(ev3-1’), (ev5-2")). Then (Fy) and (Fg) can be simulated in A?,.. In a call-by-name sys-
tem, the above replacement gives no mismatch, since we have M|y :=)\x.y(atN)]b;; My =
N]and M[y := A\z.y(Nz)]p} M[N = y]. However, in a call-by-value system, the situation
is not exactly the same. We do not know whether the CPS-translation in section 4 can
also be established, even with (ev5-17) and (ev5-2)). ’

A proof of double-negation eclimination is used to interpret F in the above and C in
[Groo94]. We often adopt the following operational semantics [FFKD86][FH92]: £[CM]o
M(Az.A(€[x])). This rewriting rule can be simulated in part by a proof of Peirce’s law
Py, instead of a double-negation elimination. Consider the case M of \k.E' [£V] where
k & FV(E'[V]). Then ECAL.E'kV]] o* E'NAEIV]))] »* E[V], and E[PI.E[kV]] box,

E[lYE [raise(yV)]] vz Llylraise(yV)] ooz [ylraise(yE[V]) b2, E[V]. When k ¢ FV (M),

cexe exrc

we have that £[CAk.M]>* M, and E[PA\k.M] b2, E[M]. In this sense, P; behaves like

€xc

call/cc, for instance see [HDM93], rather than C.

Definition 19 (Translation from)\!,_ to \.)

@y =z; (x.M)y=Az(M); (MM = (M){M);
(YM) = y(M); (raiseM) = F(Qv{M)); ([ylM) = Fdyy(M)). &

10This restriction seems to be not essential in Aczns Dy personal communication from P.de Groote.
See also 4.3.3. with respect to a call-by-name version of \..
120f course, any reduction rule in A?_, is compatible.

exc

32

Proposition 24 IfT'Fy. M : A, thenT k(M) : A.

With respect to the reduction rules, (ev2-1) and (ev2-2) can be simulated by (Fp)
and (Fpg), respectively. In contrast, the compatible rules (ev4-1) and (ev4-2) with the
restriction to a value, as mentioned in the previous subsection, can be simulated by
the use of the non-compatible (Fr). A. can simulate (ev5-1’) and (ev5-2’), but with
a value restriction such that the term before the reduction has the form ([y]V)N and
V([y]V"), respectively. Finally, the remaining rules (ev3-1) and (ev3-2) with the value
restriction of (y[y1]V) can be simulated in A. by using the following reduction rule (Fg):
y(FM) > M(Az.yz), where the type of y is of the form —A. This rule is a special form
of C in Barbanera and Berardi [BB93]. Here, y(F M) otr. MAz.yx. Moreover, using
(Fip) and (Fj4), we have that (FM) = (M). We also have that ([y]V) »i7. [y[{V), and

(raise M) vVr. raise (M). From the above observations, Ay, with the value restrictions

cre crC

and A\, with (Fj) have, in some sense, an isomorphism with respect to conversions.

10 Concluding Remarks

We have shown a simple natural deduction system A... of classical propositional logic
according to our observations of LJK proofs in sequent calculus. We have proved proof
theoretical and computational propertics of Acz.. The Church-Rosser property and the
Strong Normalization hold in the calculus, and there is an isomorphism between Ac.. and
Mt with respect to conversions. We have shown that from the existence of LJK proofs
there is a strict fragment of \..., which is complete with respect to classical provability and
would serve as a standard form of classical proofs. Here, we observed that the invariant
to be applied by the right contraction rules, in term of sequent calculus, computationally
corresponds to the type of exceptional parameter, and the type can be specified as a
strictly positive subformula with respect to — and A. Such a simple fragment is also
available in other systems, like Ap, AL, [Groo95], etc. Morcover, this fragment would
serve as a useful guide to writing programs as classical proofs.

We also have provided the call-by-value calculus, A2, based on classical propositional
logic. There is a strict fragment of the form M in AY ., which would represent some
standard form of classical proofs. We also observed that every strictly positive subformula
with respect to — can be the type of value to be passed on, which makes it possible to
implement a simple exit mechanism. To model the exception-handling of ML, we have
extended \',, with a signature, so that the computation of type-free A-calculus can be
simulated in it.

To find similarity between A, and A., we placed a value restriction on Af,.. The notion
of values has to be reconsidered. The term of the form yV is regarded as a value following
de Groote[Groo95], which is based on some analogy of exceptions in M L. However, the
mechanism of exception handling in A, and A!,. is different from that in ML, which
has great resemblance to the global exception in AL+ . A simple exit mechanism
can be implemented mainly by (cv4-1) and (ev4-2). Here, in (ev4-2): [y](raise yM) >
[y] M, the term M that is passed on and is an argument of y is not restricted to a value
for establishing the Church-Rosser property.'> Without the loss of the Church-Rosser
property, this observation may lead to the assumption of another point such that yAf is a

value instead of yV. Nevertheless, the CPS-translation of A...-terms is also obtained more

BInstead of (ev4-2), if we had [y](raise yV) > [y]V, then ([y](raise yx1))zs >~ [y](raise y(xq22)) and
z1x9 (not confluent).

33

easily with a minor modification, and morcover, we can obtain that M o3 N if M o2 N
without (ev5-1) and (ev5-2)M. :

Besides the Strong Normalization of)\;’m there are other problems to be considered.
Aze+Xe can interpret Ax as in subsection 8.1. In turn, similar to the CPS-translation in
section 7, we can obtain that if T by, M : A in !, +X,, then T'9 F M’ : ~—A? in \x,
where the constant E in ¥, can be interpreted using the proof of Girard’s pdradox of the
type L = Ilz:x.z . Here, is there a translation such that if M o>l . N in X!, .4+ ., then
Tr(M) =5 Tr(N) in Ax? The positive answer could show snnulatlon of the Y combinator
in)*

Recently, we have become aware of the work by Ong and Stewart [0S97]. They ex-
tensively studied a call-by-value programming language based on a call-by-value variant
of Parigot’s Ay-calculus[Pari92]. We also have to relate their work to ours, since the call-
by-name version ... is isomorphic to Ap-calculus.

BiEe | |
199743 H4H»5 6 H ifﬁ%ﬁﬁ%i&ﬂ%*ﬁﬁf BT Bﬁfﬁéhtaﬁﬁﬁ GH & Kripke
ERGmOFBHEIZET 52MARICT, BMEE L W72V HARETRICESE L 7.

References

[Ando95] Y.Andou: A Normalization-Procedure for the First Order Classical Natural Deduction with
Full Logical Symbols, Tsukuba Journal of Mathematics, Vol.19, No.1, pp.153-162, 1995.

[Bare84] H.P.Barendregt: The Lambda Calculus, Its Syntax and Semantics (revised edition), North-
 Holland, 1984.

[BB93] F.Barbanera and S.Berardi: Extracting Constructive Context from Classical Logic via Control-
like Reductions, Lecture Notes in Computer Science, 664, pp.45-59, 1993.

[Coq86] T.Coquand: An Analysis of Girard’s Paradox, Proc. 1st Logic in Computer Science, pp.227-236,
1986.

[Groo94] P.de Groote: On the Relation between the Apu-Calculus and the Syntactic Theory of Sequential
Control, Lecture Notes in Artificial Intelligence, 822, pp.31-43, 1994.

[Groo95] P.de Groote: A Simple Calculus of Exception Handling, Lecture Notes in Computer Science,
902, pp.201-215, 1995.

[FFKD86] M.Felleisen, D.P.Friedman, E.Kohlbecker, B.Duba: Reasoning with Continuations, Proc.
Annual IEEE Symposium on Logic in Computer Science, pp.131-141, 1986. :

[FH92] M.Felleisen, R.Hieb: The Revised Report on the Syntactic Theories of Sequential Control and
State, Theoretical Computer Science, 103, pp.131-141, 1992.

[Fuji94] K.Fujita: Extending NJ with Two Consequences, The First Workshop on Non-Standard Logics
and Logical Aspects of Computer Science (NSL ’94), Kanazawa, Japan, December 5-8 1994.

[Fuji95] K.Fujita: On Embedding of Classical Substructiral Logics'®, Theory of Rewriting Systems and
Its Applications, Kyoto University, RIMS, Vol.918, pp.178-195, 1995.

[Fuji97-1] K.Fujita: p-Head Form Proofs and its Application to Programming, Computer Software,
Vol.14, No.2, pp.71-75, 1997.

[Fuji97-2] K.Fujita: p-Head Form Proofs with at Most Two Formulas in the Succedent, Transactions of
Information Processing Society- of Japan, Vol.38, No.6, 1997.

[Gira91] J-Y.Girard: A New Constructive Logic: Classical Logic, Math. Struct. in Comp. Science, Vol.1,
pp.255-296, 1991.

4 This implies the Strong Normalization of the strict fragment M of AY
(ev5-2).

15The revised version will éppear in Studia Logica, under the title “On Proof Terms and Embeddings
of Classical Substructural Logics”.

with neither (ev5-1) nor

exre?

34

{Gira93] J-Y.Girard: On the Unity of Logic, Annals of Pure and Applied Logic, 59, pp.201-217, 1993.

[Grif90] T.G.Griffin: A Formulae-as-Types Notion of Control, Proc. 17th Annual ACM Symposium on
Principles of Programming Languages, pp.47-58, 1990.

[HDM93] R.Harper, B.F.Duba, D.MacQueen: Typing First-Class Continuations in ML, J.Functional
Programming, 3 (4) pp.465-484, 1993.

[HN88] S.Hayashi, N.Nakano: PX A Computational Logic, The MIT Press, 1988.

[Howa80] W.Howard: The Formulae-as-Types Notion of Constructions, To H.B.Curry: Essays on com-
binatory logic, lambda-calculus, and formalism, Academic Press, pp.479-490, 1980.

[Howe87] D.J.Howe: The Computational Behaviour of Girard’s Paradox, Proc. 2nd Logic in Computer
Science, pp.205-214, 1987.

[Koba93] S.Kobayashi: Monads, Modality and Curry-Howard Principle, Proc. 10th Japan Society for
Software Science and Technology, pp.225-228, 1993.

[Lill95] M.Lillibridge: Ezceptions Are Strictly More Powerful Than Call/CC, Carnegie Mellon University,
CMU-CS5-95-178, 1995.

[Mae54] S.Maehara: Eine Darstellung Der Intuitionistischen Logik In Der Klassischen, Nagoya mathe-
matical journal, pp.45-64, 1954.

[MTH90] R.Milner, M.Tofte, and R.Harper: The Definition of Standard ML, The MIT Press, 1990.

[Murt91] C.R.Murthy: An Evaluation Semantics for Classical Proofs, Proc. 6th Annual IEEE Symposium.
on Logic in Computer Science, pp.96-107, 1991. '

[Naka95] H.Nakano: Logical Structures of the Catch and Throw Mechanism, PhD thesis, University of
Tokyo, 1995.

[NPS90] B.Nordstrom, K.Petersson and J.M.Smith: Programming in Martin-Lof’s Type Theory, An
Introduction, Clarendon Press, 1990.

[NS93] A.Nerode and R.A.Shore: Logic for Applications, Springer-Verlag, 1993.

[Ong96] C.-H.L.Ong: A Semantic View of Classical Proofs: Type-Theoretic, Categorical, and Denota-
tional Characterizations, Linear Logic ‘96 Tokyo Meeting, 1996.

[0S97] C.-H.L.Ong and C.A.Stewart: A Curry-Howard Foundation for Functional Computation with
Control, Proc. 24th Annual ACM SIGPLAN-SIGACT Symposium of Principles of Programming

Languages, 1997.

[Pari92] M.Parigot: Au-Calculus: An Algorithmic Interpretation of Classical Natural Deduction, Lecture
Notes in Computer Science, 624, pp.190-201, 1992.

[Pari93-1] M.Parigot: Classical Proofs as Programs, Lecture Notes in Computer Science, 713, pp-263-276,
1993.

[Pari93-2] M.Parigot: Strong Normalization for Second Order Classical Natural deduction, Proc. 8th
Annual IEEE Symposium on Logic in Computer Science, 1993.

[Plot75] G.Plotkin: Call-by-Name, Call-by-Value and the A-Calculus, Theoretical Computer Science, 1,
pp- 125-159, 1975.
[Praw65] D.Prawitz: Natural Deduction: A Proof-Theoretical Study, Almqvist&Wiksell, 1965.

[Praw71] D.Prawitz: Ideas and Results in Proof Theory, Proc. 2nd Scandinavian Logic Symposium,
edited by N.E.Fenstad, North-Holland, pp.235-307, 1971.

[RS94] N.J.Rehof and M.H.Sgrensen: The Aa-Calculus, Lecture Notes in Computer Scicence, 789,
pp.516-542, 1994,

[Sche91] H.Schellinx: Some Syntactical Observations on Linear Logic, J.Logic Computat., Vol.1, No.4,
pp-537-559, 1991.

[Seld89] J.P.Seldin: Normalization and Excluded Middle.l, Studia Logica XLVIII, 2, pp.193-217, 1989.

[Szab69] M.E.Szabo: The Collected Papers of Gerhard Gentzen, North-Holland, 1969.

[Taka89] M.Takahashi: Parallel Reductions in A-Calculus, J.Symbolic Computation, 7, pp.113-123, 1989.

[Take87] G.Takeuti: Proof Theory (second edition), North-Holland, 1987.

[TD88] A.S.Troelstra and D.van Dalen: Constructivism in Mathematics, An Introduction, North-
Holland, 1988.

