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LLD. Chaotic Binary Sequences
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Abstract: Statistical properties of binary sequences generated by a class of ergodic maps
with some symmetric properties are discussed on the basis of an ensemble-average technique.
We give a simple sufficient condition for such a class of maps to produce a Bernoulli se-
quence, that is, a sequence of indepéndent and identically'distributed (i.i.d.) binary random
variables. _Th‘is condition is expressed in terms of binary function, which is a generalized
version of the Rademacher function for the dyadic map.

I. Introduction

A lot of pseudorandom numbers with good properties are frequently used for variety of
engineering applications in cdmputer science [1]. It is also well known that a sequence
of independent and identically distributed (i.i.d.) binary random variables is necessary
as a model for an information source in information theory and communication theory
[2]-[4]. In particular, in modern digital communication systems, such as spread spectrum
(SS) communications or cryptosystems, binary sequences play an important role. For such
binary sequences, linear feedback shift register (LFSR) sequehces have often been used
[5]-(8]. | |

It is, however, worth noting that as earlier stated [9][10], some nonlinear ergodic maps are
good candidates of pseudorandom number generators. It is well known that the Bernoulli
map (or the dyadic map) and the tent map can produce sequences of i.i.d. binary random
variables. However, if we calculate such dynamics with the help of a computer with its
necessarily limited accuracy, the period of the sequences generated from such piecewise
linear maps is very short. Such a situation motivated us to use the logistic [9] and the
Chebyshev maps [11]. In most of various applications of chaos, a number of investigators
have proposed techniques to use a chaotic real-valued trajectory itself rather than its binary
version, that is, analogue techniques. Binary sequences play an important role in modern
digital communication systems. Such a situation led us to define two types of binary. se-
quence based on a chaotic real-valued orbit generated by ergodic maps [12]; one is referred
to as a chaotic threshold sequence and the other as a chaotic bit sequence. The ensemble-
average technique is useful in theoretically evaluating statistical properties of chaos. Note
that statistics of chaotic real-valued sequences have already been studied [13]—[15]. Never-
theless, there is few discussion about binary sequences. We shall concentrate our attention
on correlation functions of binary sequences which are recognized to be the most impor-
tant statistics. Furthermoréﬁ in practical engineering applications, it is also important to



evaluate statistics of finite-period sequences which are random variables as functions of a
seed. The empirical measures of such random variables are also important in estimating
the performance of communication systems. If the random variables are i.i.d., the central
limit theorem holds automatically [4]. Fortet [16] & Kac [17] showed that the central limit
theorem holds for random variables generated by the R-adic map.‘ This implies that the
empirical measures of statistics of such random variables tend to the Gaussian distribution.
In order to evaluate the variance of the distribution, not only the 2nd-order but also the
higher-order correlation functions have to be estimated. ’
We define various types of binary function to get binary sequences based on a chaotic
real-valued orbit generated by ergodic maps, each of which is formed by adding modulo 2
threshold sequences. We exactly evaluate the mean and the correlation function of threshold
sequences. Furthermore, using the Perron-Frobenius operator of some ergodic maps, we
give a simple sufficient condition for a class of binary functions to produce a fair Bernoulli
sequence, that is, a sequence of i.i.d. binary random variables. Such a class of binary
functions enables us to define a new Boolean function whose variable is not binary-valued
but real-valued, that is, a generalized version of the Rademacher function for the dyadic

map [2]-[4].

II. Chaotic Threshold and Bit Sequences and Their
Correlation Functions

'Perhaps the simplest mathematical objects that can display chaotic behavior are a class of

one-dimensional maps [15] v
Wni1 = T(wn), - (1)
where w, = ™(wg) € I,n =0,1,2,--- and 7(-) : I — I is a nonlinear map, where I denotes
an interval. It is known that the ensemble-average defined by

(F). = [ F)f w)dw @)

is useful in evaluating statistics of { F(7"(w))}22, under the assumption that 7(w) is mixing
on I with respect to an absolutely continuous invariant (or briefly ACI) measure, denoted
by f*(w)dw.

Let G(w) and H(w) be any two L; functions of bounded variation. Consider two se-
quences {G(7"(w))}, and {H(7(w))}5%,- The 2nd-order cross-correlation function be-

tween the two sequences from a seed w = wy is defined by
(b6, H)) = [ G)H(T (@) w)dw, 3)
where £ = 0,1,2,---. The cross-covariance function is also defined as

(FREGH) = [(Gw) = (CNH(T"(w) = (H)f (w)dw (4)



= (/G H)) — (GY(H). (3)

Note that when G = H. these denote the auto-correlation function and auto-covariance
function, respectively.

If the interval [ is given by I = [d, €], then the P-F operator P, of the map 7 is defined
by [L5] :

T dw

This operator is very useful in evaluating the correlation functions because it has the fol-

d
PHW =7 [ H (6)

lowing important property:
/G(w)PT{H(w)}dLu = /G(T(w))H(w)dw. (7)
1 1
Using this property, we get

(026G, H) = | PHG(w)f*(w)} H(w)dw. (8)

The above cross-correlation function (p®(€; G, H)) is of major importance to the inves-
tigation of statistical properties of sequences {G(7"(w))}5Lo and {H (T™(w))}2%,-

For several maps, such as the tent map, the logistic map, and the Chebyshev maps
whose invariant density functions are known, the auto-correlation functions of real-valued
sequences were already evaluated [13].

In our previous study. we proposed three simple methods to obtain binary sequences
from chaotic real-valued sequences {7"(w)}22, with an ergodic map 7(-) as follows [12]. As
will be seen, both of them can give efficient methods to generate simultaneously different
sequences of i.i.d. binary random variables for some ergodic maps, the first of which is used
by the second and the third.

Method-1: We define a threshold function ©;(w) as

0 forw<t
Oulw) = { 1 forw>t (9)
and define its complementary function
B(w) =1 - 64(w). (10)

Using these functions, we can obtain a binary sequence {©4(7"(w))}32g. which is referred
to as a chaotic threshold sequence. Here define

pa(t) = (G)f)z/:f*(w)dw, (11)
®) = [ fl). (12

q-(t)



Note that p.(t) is a monotonically decreasing function of ¢.
Method-2: We write the value of w(|w| < 1) in a binary representation:
Iu}l = O.Al(u))AQ(w)-“Ai(uJ).“-, Ai(W) € {0,1}. (13)

The i-th bit 4;(w) can be expressed as

2i_1
Ai(w) = (-1 {0z (w) + Oz ()} (14)

r=1

Thus we can obtain a binary sequence {A;(w,)}3%, which we call a chaotic bit sequence.
Since O(w) can be regarded as a Boolean function whose variable, seed w, is not binary
but real-valued, 4;(w) can be rewritten by

Ailw) = D{0-5(w) © 05(w)} (13)
r=1

where @ denotes modulo 2 addition.

III. Correlation Functions of Chebyshev Threshold
and Bit Sequences

The Chebyshev map of degree k with I = [—1,1] is defined by[11]

T(w) = cos(k cos™ w) , (16)

whose invariant measure f~(w)dw is known to be
dw .
(w)dw = ———. 17

Now we give the following theorem.
Theorem 1: For the Chebyshev map of degree k£, we have

PH{(OUw) ~ (ONF (@)} = Ts(F (DO rtofe) ~ (Orto))f () (19
where
(©;) = -j;cos‘l t, (19)
-1 (w<0) .
s(w) = { 1 (w>0). (20)
Thus we can get
PH(O4(w) = (ONF ()} = ms(FV D) O (@) = (Ore) ), (21)

k(



“where

(Y(w) = %cos(kecos‘lw) (22)
k[

= T——;sin(kfcos'lw). (23)
_w—

If we apply this to eq.(8), we obtain the following corollary.
Corollary 1: The correlation function of the Chebyshev binary sequences of degree k is
evaluated as

(B2(6:0,,0,)) = 25((7*V(NF (000110, O)), (24
where for a,b e I,
(72(0;04,04)) = (Omaxfap)) — (Oa)(Os). (25)

Next consider the correlation function of Chebyshev bit sequences, (5 (£; A;, A;)),
which is rewritten as

20-12/—1
FEAA) = X T {(P(605.04) - (9(6:60£,05)
r=] s=1
—(PUE0-5,0.2)) + (PP(60_5,0_2)) ) (26)

Therefore, we can get the following corollary.
Corollary 2. The correlation function of the Chebyshev bit sequences of degree k is
evaluated as

2 1 2-12-1
(PG A)) = (—1y+s
r=1 s=1
{S((Tf)’(‘ZL‘))(@Q)(O’ Ore(z) Os)) - <ﬁ(2)(0,97f(_’,) O_+)))
57V (=0 050,02 ) — (BP0 00, 02} (@)

IV. Piecewise Monotonic Maps

Now we consider a piecewise monotonic map 7 : [d,e] — [d,e] that satisfies the following
properties:

(i) There is a partition d = dy < d; < --- < dy, = e of [d,e] such that for each
integer i = 1,---, N, (N, > 2) the restriction of 7 to the interval [d;_;,d;), denoted
by 7; (1 < i < N,), is a C? function; as well as

(ii) 7((di_1,d;)) = (d, e), that is, 7; is onto;

(iii) 7 has a unique ACI measure denoted by f*(w)dw.



The conditions for 7 to have a unique ACI measure are discussed in ref. [18].
For the above map, we have [13]

N-
P.H(w)=Y_l|gi(w)|H(gi(w)) (28)
i=1

where gi(w) = 77 (w).
For any map 7(-) defined on the interval I = [d, e], we can give here a generalized version
of Method-2, referred to as Method-3, as follows [20].

Method-3: We write the value of i — € [0,1] in a hinary representation:
w—d
“:_ = 0.B1(w)Bo(w) - Biw) -+, wedel Bilw)e {01} (29)

The i-th bit B;(w) can be expressed as

Bi(w) = Y (=1)""'O(c—g 5 4a(w). - (30)

Its complementary function is given by

Bi(w) =1 — Bi(w). - (31)
We can obtain a binary sequence {Bi(7"(w))}3%,. Note that B;(w) can also be rewritten
in the form of modulo 2 addition of threshold sequences. If the interval I = [0,1], then
Ai(w) = Bi(w). Thus each of { 4;(7™(w))}52, and {Bi(7"(w))}5 is referred to as a chaotic
bit sequence.

Tausworthe [5] and Lewis & Payne [6] gave the methods to obtain a real-valued random
variable represented in a binary expansion by using shift register binary sequences. In
our methods, on the contrary, we intend to get binary sequences from chaotic real-valued
trajectories. This implies that our methods are inversions of Tausworthe and Lewis &
Payne’s generators.

Next consider H(w) = ©,(w)f*(w). For t € (dp-1,d), we have

0 fori<m

1 fori>m. (32)

Oy(gi(w)) = {

Hence it suffices to consider only the case where ¢ = m. We can easily get

o W O, y(w) for 7'(¢t) >0
Orlgm(w)) = { Brplw) for (1) <0. (33)



Thus, for t € (dp,—1,d,), we can obtain

P {0:(w)f"(w)}
N,
NG (D)|Orry (W) [ (gm (W) + D Ngilw)lf(gi(w)) - for 7'() >0
— i=m+1 .
= . . N, (34)
| ()@ (W) F(gm(w)) + D |G (gslw))  for 7'(t) <.
i=m+1 :
We now consider a class of ‘the above ﬁieéewis‘,e monotonic méps satisfying
. _. B S ) v -
[gi()If (gi(w)) = = f(w), 1<T< N, | - (3)

N,

which is referred to as an equidistributivity property [20]. Note that this class contains well
known maps, such as the R-adic map, the tent map, the logistic map, and the Chebyshev
map of degree k, where N, = R, 2,2, k, respectively. Thus we give the following interesting
lemma [20] which is very useful in evaluating correlation functions of chaotic threshold and
bit sequences. | ' o ' R

Lemma 1: For the piecewise monotonic maps satisfying eq.(35), we can get

P{(0:(w) = p-(t) fr(w)} = ,\1 S(T (O (w) = pr(7(1))) f(w) (36)

where s(w) is the signum function deﬁnéd b)lf
~1 for-w‘<0' -
.s(w)—{ 1 forw>0. : ' (37)
Corollary 3: The covariance function between two chaotic threshold sequences {0 (W)},
and {Oy(7"(w))}52, generated by the piecewise monotonic maps satisfying eq.(33) is eval-
uated as o '

(P2(E:01,00)) = (7Y (1) (72(0; O, O0)) (38)
where |
(F2(0:0,00) = polmaxlt,t]) = p(Op(t). (39)
1 for (=0
s — !
(T )(u)) = H T’(TT—I(w)) f0_1' ( > 1. (40)

r=1
~ This corollary makes it easier to calculate the covariance function between bit se-
quences {A;(T™(w))}, (respectively, {Bi(7™(w))}oZ,) and {A4;(7"(w))}5L, (respectively.
{B;(1"(w))}2,) as follows. o



Remark 1: The covariance functions (5 (¢; A;, A;)) and (5®(¢; B;, B;)) are represented
respectively as

i1 93

[

1

)
|

(PG ALAD) = 30 (-1 {(00(6:04,04) = (PP(605,0-2)
r=1 s=1 - - - -
—(P(60-£,0.2)) + +(P2(66-5,0-2)}, (41)
21211
(p?(€; Bi, B;)) = (= 1)+ (54 (6 O(e—d 4 Oe—a) L4d))- - (42)
r=1 s=1

Note that, as will be seen, (5®(¢; B;, B;)) has a simple form for some ergodic maps.

Remark 2: For piecewise monotonic maps satisfying the equidistributivity property eq.(35),

we have [ ' ] o
)0 _ | pr(max[d;,t]) — p(di)p-(t) for £=0
(77(6;04,01) = { 0 Cofore>1 ()

which implies that there are some correlations between {©4, (7"(w))}3%, and {©,(7"(w) ) 1,
only when ¢ = 0. Of course, if the sequences are completely independent of each other, the
covariance functions should have zero value for all £.

V. Symmetric Binary Functions

Now, we introduce here a new binary function. To do this, define a partition d = ¢, < #; <
-+ < tay = e of [d, e] such that '

tr+toy—r=d+e, r=20,1,---,2M, . ) (44).

and T denotes the set of symmetric thresholds {t,}2M. Then we get a binary function

Cr(w)= Y (=1)7'0(w), (45)

which is referred to as a binary functzon with symmetric threeholds* (or briefly a symmetric
binary function) [20].
Next let us restrict our attention to the map satisfying

ffld+e—w)= f(w), welde¢, - (46)

which is referred to as a symmetric property of the invariant measure. Note that such a
class of maps contains well known maps, such as the R-adic map, the tent map, the logistic
map, and the Chebyshev map. ' :



Remark 3: For the maps with the symmetric property of the invariant measure eq.(46),

we get

(Cr) =3 (47)

Furthermore, we consider a somewhat restricted class of piecewise monotonic maps
satisfying eq.(33) which also satisfy the symmetric property of the map

Td+e—w)=1(w), we€ldel. _ (48)

Such a class includes the tent map, the logistic map, and the Chebyshev map of even degree
k. The fact that 7 is monotonic and onto gives '

T(d; ):doré. | }”(49)

The following lemma [20] plays an important role in estimating the covariance functions
of symmetric binary sequences {Cr(7"(w))}3%, as shown in Corollary 4.

Lemma 2: For the piecewise monotonic maps satisfying both eq.(35) and eq.(48), and
their symmetric binary functions, we can get

P{Cr(w)f™(w)} = (Cr) [ (w)- : (50)

Corollary 4: Consider the piecewise monotonic maps with both eq.(35) and eq.(48). De-
note two different sets of symmetric thresholds by T = {t,}?*) and T' = {t,}24{], where
d=tyg<t, <+ <ty =, (

tottoay,=d+e, r=01---,2M, (53
| (

t;‘+t',2ﬂ11’—1‘=-d+e’ 7':(),1,"',2.’MI.

Then we can obtain
B —{(C){(Cr) for£=0

2 Q% .
<ﬁ(_)(€; CT-, CT')) = { 0 T for ¢ > 1 (05)
where '
% = (Cr)=7, | (56)
G = [Crw)Criw)f(w)do = | 4o )

(‘L_J 15 (r)) N ('U I%@)) , (58)
r=1 s=1

Ig(T) = [pr(t%)apr(t:?r—l)]- - (59)

C
ITTI
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Remark 4: Assume.

e _ T _ .
M - 2 * t7‘ "'pf (1 21‘4-)5 1 Z ]-a (60)
! — j-]. ! - -1 _ T : 6].

Then we can get .
Q5 = 7 for7# T - (62)
(“‘”[C’T,CT:)_O f01 aue>o o | . (63)

Remark 5: When M = 2i~! and ¢, = (e — d)r/2' + d, we have
Cr(w) = Bi(w). (64)

This implies that for the piecewise monotonic maps with both eq.(35) and eq.(48), we can
obtain -

(32t B, B].»:{ Qi = (BB;) for (=0 (65)

where - o . NP
Qi = (Bi)= % (66)

Qi = /B (w)B;(w d,u—/ dw, (67)

I ='(- ﬂ(Uj s)) | (e

) = [plte= 05 +a)plie— 922 +d). (69)

**Note that we can easily get Q;; = 1 for ¢ # j, that is, (5*(0; B;, B;)) = 0, for the maps
with the uniform invariant density f*(w) = 1. On the other hand, for the maps with the
nonuniform invariant densities, such as the logistic and the Chebyshev map, we can get

lim Qy=g forij (10)

or j—o0

Remark 6: Consider the R-adic map Sg(w) defined by
Sp(w)=Rw mod 1, R = 2‘, 3,4,---, wel0,1]. (71)
For the R-adic map with even R,
(2(¢; B;, B)))sp =0 forall¢. : (72)

Note that the symmetric blnarv functlon is a generalized version of the Rademacher
function for the dyadic map [2]-[4].
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VI. m-Distributivity of Chaotic Binary Sequences -

In the previous section, we discussed the second-order correlation functions of chaotic binary
sequences. Now consider m binary functions G;(w) (i = 1,2,---,m). For m binary events
91,92, 9m (g; € {0,1},4=1,2,---,m), a joint probability defined by

Prob(gm. gm-1,---,01) =
P1OD(Gon (@) = gimy Gt (T (W) = Gt -+, Ga(Tm=tHm=2t 4 () = g1), (73)
ei20(1_<_z'gm—1)

must be investigated to test the independency of sequences {G;(7"(w))}32, from a statis-
tical point of view. To do this, the higher-order (the m-th order) orrelatlon functlon is
introduced as follows.

<,0(m) m—1: € 817Hm5Hm 1s° H].))
= / () Hpes (771 (0)) Hyoa 76172 (1)) -
Hy(7im-1ttm2t=tl( ) f*(w)dw for all integers ¢; > 0, (74)
where each of H;(w) denotes an L; real-valued function (¢ = 1,2,---,m). It is, in gen-

eral, difficult to evaluate such higher-order correlation functions explicitly. However, it is
simplified if the following condition is satisfied. :
Now define a class of piecewise monotonic maps for which there is a nontrivial real-valued
function H(w) satisfying
P {H(w)f*(w)} = (H)f(w). (75)

which is a general version of cq.(50). Note that it is obvious that H(w) = 1, called the
trivial function, satisfies eq.(75) for any map if f~*(w) exists. HoWever, we concentrate our
attention on nontrivial functions satisfying eq.(73) primarily because eq.(73) is of crucial
importance as a sufficient condition for a binary function to produce a sequence of i.i.d. bi-
nary Iandom variables [20], as well as one of necessary conditions for a real-valued sequence
{r™(w)}22, to be independent.

Theorem 2: For any real-valued functions H,(w) (n = 2,3, -- -, m) satisfying eq.(75), and
foré, >1(n=12,---,m—1), ’

(p(m (ém 1,6 7"'1€1;H'm7va—l7°"-,H1)> = H(Hn> (76)
n=1
Note that, in the above theorem, H;(w) need not satisfy eq.(75).

Next, let ﬁm = UplUj - - - Un—1 be an arbitrary string of m binary digits where U, €
{0.1} (0 < n < m —1). Then there are 2™ possible strings. Let &) = uul? ) | be
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the r-th string with binary elements u{"-€ {0, 1}. Furthermore, for any L; binary function
G(w), introduce a binary random variable

Tu(w; G, ) = Gw)uy) + Gwym) (77)
where G(w) = 1 — G(w) and ﬁﬁfj =1 —u{". Then the probability of the event ") in an
infinite binary sequence {G(7"(w))}3%, is given by

Prob(@?);G) = /{ 1‘[ o (7"(w): G ;,’,T’)} £ (w)dw
= <p(m) ]- 1-, Tt 17 FO(Ga "‘m))a Fl(G7 2_1"(7771‘.))1 Tty Fm—l(Ga 17(7?))) (78)

m—1

We can give the following co1'011a1*y [20].

Corollary 5: For any binary function B(w) satisfying eq.(73), we can easily get
Prob(@}); B) = (B)*(1 — (B))"™*, (79)
where s is the number of 1 in {ulr}md,

The above corollary implies that {B(7"(w))}3%, is a sequence of i.i.d. binary random
variables in the sense that it can realize a Bernoulli sequence with probability (B). Note
that we can get a fair Bernoulli sequence when (B) = %, that is, an m-distributed binary
random sequence.

Example 1: For the piecewise monotonic maps satisfying eq.(35), the binary function
Od( /) satisfies eq.(75). It follows that

Prob(@");04,) = p.(d;) g (d;)™ . | (80)

Example 2: For the piecewise monotonic maps with both eq.(33) and eq.(48), the binary
functions B;(w) and Cr(w) satisfy eq.(73). It follows that

1

Prob(if); Bi) = o forallr, - (81)
1 _

Prob(?'/,’(,,’:);CT) = 5m for all r, (82)

which implies that each of { Bi("(w))}2% and {Cr(1™(w))}>2, is a sequence of i.i.d. binary
random variables [2].
Example 3: For the R-adic map with even R, eq.(81) holds.

We now give a simple mean of generating a sequence of multi-dimensional i.i.d. binary
random vectors. For simplicity, we consider an infinite sequence of two-dimensional (2-D)
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binary random vectors {(G1(7"(w)), Ga(7>"*1(w)))}32,, where the probability of the event
(@, @) is given hy

m—1 ‘
Prob((@), i#7); (G1, G / { [T T Gy, T (72 ), Gz.,ﬁi:")} fr(w)dw
= (pum)(l,]-,l)rﬂ(Gl/ﬁ(n:) ,FO(GQ,Um )a"'7rm—l(Ghﬁ%))zrm—l(Gzzmnz)))>' (83)
N )

2m—1

Thus we can give the following corollary [20].

Corollary 6: For the piecewise monotonic maps with both eq.(35) and eq.(48), we can

obtain
Prob((@7), #""):(B;, B;)) = 11;; for all 7 and r', (84)
: 1
Prob((i'"), @™)): (Cp, Cy)) == for all r and . - (83)

This implics that using a decimation by 2 of the bit sequences { Bi(7"(w))}3%, and {B;(7"(w))}7Ze
(or {Cp(T™(w))}22 ° o and {Cp(7"(w))}22,), we can easily get a sequence of 2- Di. i d. binary
random vectors { (r2™(w)), By(T "“(d 1)}, (or {(Cp(72(w)), Cp(7 4 (w)))}3%,)-

Note that Corollary 6 can be gencralized to the case f01 a sequence of N-dimensional
binary random ’»u,t01s ’

It is also important to investigate distributions of statistics of chaotic binary sequences.
Note that sequences of such statistics are not, in general, i.i.d. even if the binary sequences
are i.i.d.. Fortet [16] & Kac [17] showed that the central limit theorem holds for random
variables generated by the R-adic map Accordmg to the Fortet- hac s theorem, the variance

a- of the distribution of the sum —= Z G(Sp(w)) is given by

o2 = (0?(0; G, G))s, + 2 fj(p”’(n; G.Gswr (86)

n=1
where G : [0,1] — R is of bounded variation or satisfies Holder’s condition and (G)s, = 0.
In order to evaluate the variance of such distributions, not only the 2nd-order correlation
functions but also higher-order ones ought to be investigated. To do this, the following
remark is useful.

Remark 7: If the map 7 satisfies eq.(33), the higher—order correlation function of chaotic
threshold sequences for any real ¢, € [d, e] and integer ¢, > 0 can be calculated by its
recursive form as

(p(‘m)(ém—lz em—?ﬂ T 761; G.)t‘m? etm—l’ T (-)tl )> =
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1 (e : i v
&7[m_1 "’ﬁ(‘('flm_1 )'(tm))(P( : 1)(Em‘—Q, RN eméx[r’m—l(tm)ﬂ,m—'l‘]’ Otm—?’ Tt @'h » ‘
1 | | |
i {rtt) = st )|
'<p(m_l)(€m-—25°' : 1el;eim_‘17@tm_27' v 7®t1)>17 m Z 2a (87)

where
(6V(O4,)) = p.(t1). o (88)

Note that eq.(87) enables us to calculate the higher-order correlation function of chaotic
bit sequences even if the map 7 doesn’t satisfy the symmetric property eq.(48).

VII. Concluding Remarks

We have giveii sifnple methods to generate a sequence of i.i.d. binary random variables by
means of modulo 2 addition of threshold sequeﬁces. The correlation functions of various
types of chaotic binary sequence have been exactly evaluated by the ensemble-average
technique based on the Perron-Frobenius operator. We have also given a sufficient condition
for a binary function to produce a sequence of i.i.d. binary random variables. Stch a binary
function is a generalized version of the Rademacher function for the dyadic map [2]-[4].
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