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to appear in the J.Monte Carlo Methods and Applications

On a robustness of the random particle
method

Shigeyoshi Ogawa,

Abstract

We are concerned with a robustness of the so-called random
particle methods that have been recognized as efficient tool for the
numerical analysis of nonlinear diffusions. Among these, we take
the random gradient method due to E.Puckette and we study the
stability of this method against a slight perturbation in statistical

- quality of random numbers. '

1 Random particle method

Every Monte Carlo method is established on a basic assumption that
random numbers with prescribed distribution is always available as nu-
merous amount as we want. The efficiency of the method should more
or less depends on the quality of random number generators. Hence it
is needless to emphasize the importance of studying, with every specific
Monte Carlo method, the robustness or sensitivity of the the method. It
is rather surprising therefore to find that, as far as the author knows, a
very few research has been done in this direction.

. From this viewpoint we take the random particle method due to E.Puckette
and we are going to check the robustness of this method. The reason of
taking this method as subject is simply because this is one of the well-
known and successful stochastic methods and because the author has
been interested in the stochastic simulation of nonlinear diffusions.

In his article [3] Puckette introduced a new scheme, which he called
the random gradient method, for the construction of numerical solution

ZKyoto Institute of Technology, ogawa@ipc.kit.ac.jp
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of the initial value problf_am for KPP like semi- linear equation:

Owu(t,z) = V&wQu(t, z) + f(u(t,z)), (0 <1 <T)
' (1)
u(0, z) = up(z),
where ug(z) is a decreasing function such that, 1 — ug(z) becomes
probability distribution function.

Here it is supposed that the f(z) is a real smooth, good enough to
assure that the solution can be found in the same class as the uo(z) and
such that,

() 0<f(z)< 34, suppfC0,1].

(Remark 1) In (3], Puckette treats the case, f(z) = z(1—z) regarding the
original form of the Kolmogorov equation ([1]). Here for the generality
we like to work under a slightly milder condition (f) for it does not bring
any essential difficulty to our discussion. '

1.1 Puckette’s scheme

Let us give here a brief sketch of the random gradient method following
[3], which is based on the following two ideas,

1. Discretization: On the whole line R! a certain number, say N, of
particles X? (1 < j < N) are distributed and the time interval [0,T]
is divided into equally spaced subintervals, [t;,t;11] (t; = '17?1"" 0<
t < K —1). The numerical approximate solution, say w(t,z) is
constructed step by step along this partition of the time interval.
Especially at each lattice point ¢; =4-At, At =T/K (0 < < K),
the numerical approximate solution @(t;,z), is constructed always

"in the class S of decreasing step functions of the form a(t;,xz) =
¥; wiH(X; —x), where H(z) is the Heaviside’s function, {wi} are
non-negative weights summing up to unity in 7, and {X;,0<;5 <
K}, are the coordinates at time ¢; of the particles which exhibit

~ random walks.

2. Operator Splitting: The weights w! and the coordinates Xi(1<
j < N) at time ¢; of those virtual particles are determined in such
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way that, the transition from X}~ to X simulates the diffusion
motion and that the evolution in time #; of the weights w; simulates
the nonlinear effect due to the term f(7).

Based on these ideas Puckette proposed the following algorithm,

Step 1) Determine the initial positions {z% < 29 < - < 2%} of N-particles
by the formula, z9 := ug'(1-j/N) (1 <j < N-1), 2} :=
ug'(1/2N), and set Tp(x) := ZH(I? — z)w) with w? =1/N.

J

Step 2) Suppose given the X} and the i-th approximate solution 7'(z),
construct the (7 + 1)-th approximate %*!(z) by the following pro-
cedures, (reaction) and (diffusion),

o reaction: Set 7" (z) := Rau'(z) = ¥; H(X; - x)wé-“

where, wj-“ = 'w; + At{f(ﬂi(X})) — f(@y( ;+1))}

o diffusion: Prepare the i.1.d sequence of random variables {f; :
1 <i< K, 1< j< N} each of which follows the normal law
N(0,2v - At).

Now set, w't!(z) := Da0 Y (z) = ©; H(X T —z)wit with Xt .=
Xi+¢.

Step 3) Rearrange the values {X;'} in the increasing order and change
the label ”7” in this way.

Step 4) Repeat above steps 2), 3) until (¢ + 1) = K.

1.2 Known results

Puckette[3] studied the convergence of this random particle method
and concluded that this method is sufficiently practical as numerical
scheme, sometimes much better than the other existing deterministic
scheme in the sense that his method can work independently of the size
of the diffusion coefficient v. Here is his main result.

Theorem 1.1 (Puckette [3]) Let the parameters v, At be such that
0<v<1 0< At <1, and let the pitch At be set in such way that
At = O(N~Y4). If the initial data u°(z) satisfies the condition, u® € C*
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and 9,u’ € L' N L™ ‘then the following estimates hold for some positive
constants, Cy, C1,Cy not depending on the parameters, v,At and N.

(p1)  Ellu(T,) =) < (1 +%){\/56Tllu° -2l + CLVvAt +
ln N}
\/_
(p2) Var(”fj,(T, ) =7 ()l)
S (]. + EO){\/I;GT”’U,O - ﬂ”lll + Cl\/I;At +'CQ

In N,
w2y,
here the symbol || - ||1 stands for the L'(R') norm.

(Remark 2) The constants Cp, C1, Co given in Puckette [3] are as
follows:

Co
YN’

Cy = Te*T{/ve?||0:u°]co +

Cy is such that At =

+ 228,00,
Cy = %5(3 +3VUT)C2 4+ 2[(B+6VT)(1+€") + M]E—'.
vT  Co

where B isa positive number such that X7 € [-B, B] vi.

(2)

By the reason explained at the top of this paragraph, we are concerned
with the robustness of the scheme against the change of statistical char-
acter of normal random numbers, {77;, 1<j< N} (0<i<K).

2 Question on the robustness of the scheme

and results

2.1 Perturbation in distribution

With digital computers the source of random numbers for Monte Carlo
method is supplied by pseudo random number generators. Usually these
are random numbers uniformly distributed over (0,1) and these numbers
are transformed into another random numbers that follows the desired
distribution, which is in our case the normal law N (0, 2vAt). Keeping this
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observation in mind, we will study the case where the random numbers
{n:} that should appear, in the real stage of computation, in place of the
normal random numbers {f;} is supplied in the following form:

Hypothesis H

(r1) 7% := v2vAt-T7;, where 7. are identically distributed random
numbers following a general distribution, say V.

(r2) All 7; are centered with variance unity and bounded, |7} < 3M
P-a.s. (4, )
Ezample 1. n:=V2uAt- V67, T ~ U(-1/2,1/2).

Ezample 2. n:=+2vAt-7 where 77 = %1 with equal probability.

2.2 Main results

In order to measure the deviation of a probability distribution, ¥
ifrom the normal distribution ®, we introduce the distance, §(¥,®) :=

/ |@~Y(z) — & (z)|dx where ¥, &' stand for the inverses of dis-
Rl
tribution functions.

Under this situation, we have the following result.

Theorem 2.1 (Ogawa) If the normal random numbers {1} is replaced
by a different random numbers {(}} satisfying the condition (H) above,
then the approzimate solution u'(z) (0 < i < K) constructed through the
random particle method satisfies the following estimates:. -

(01) BT, ) ()l € (14 ) (Ve[ — Wy + Cuyoat
0213&[ +TeT,/2u/At 5(T, @)},

(62) Var(u(T, ) ~ 1) € (1 + 5 {voeT ol — 2y + CuyFAe

1\1;% + Tl Jov /At - 6(F,))?,
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where Cy,Cy are the same constants given in (2), the Cew 15 also a
constant that will be given later and

Cy = 2Te" (B + MV8UT)(Ci2%e™ + C.u),

2.3 Errors in the approximation

Let us have a preliminary look about the nature of errors. Without
changing the mathematical setup of the problem we may suppose that
the random numbers {17]} {& :} are all supplied by modifying the random
numbers {¢ Z} uniformly dlstrlbuted over (0, 1) and supplied by the com-
puter. In other words, we will modify the condition (r2) in the hypothes1s
(H) by the next condition :

(r3) k= VowAIT(). &= V2UAL®TH(()).

We will denote by F;, D;, R; the operators correspondmg to the fol-
lowing initial value problems,

o Fi: Fuy(z) gives the solution of the problem (1)

e D;: Duw(z) gives the solution of the initial value problem,
O = vd2u, u(0,7) = v(z),

e R,: Ryu(x) gives the solution of the initial value problem of the

' d
ordinary differential equation, prie f(v), v(0,z) = u(z).

Notice that the operators D,, R, given in the Puckette’s algorithm stand
~ as numerical realizations of the operators D;, R, respectively, namely:
the random walk approximation to the Brownian motion or the numerical
solution of the ordinary differential equation by Euler scheme.

To see the effect of the perturbation in the distribution of random
numbers, we begin with the following inequality for the error, Er(N, At) :=
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||F£‘;u0(~) — (_ﬁAt_I_ZAt)KﬂO(')”l, of the approximation:

Er(N,At) < ||Ffu —(DAtRAt)K Oll; + |(DatRat)¥u® — (DasRas)*7|2
+l|(.DAtRAt)Kﬂ_O - (EAt—RAt)K'ﬂolll

=: Eri+ Erg + Ers,
(3)

Notice that the error Er; is caused by the Operator splitting, the Er;

by the discretization and only the error Ers is a random quantity. Since
the former two do not depend on the random numbers we can directly
use the estimates obtained in Puckette[3], namely:

ETl S Cl\/;At, E’I°2 S BT\/;”’U - _110”1 : (4)
where C; is the constant mentioned in the (2).
 Therefore we only need to analyze the last error Erg(NN,At) which can

be decomposed into the following form:

K-1
Erg = ” Z DAtRAt) K lDAt(RAt RAt)u] (DAtRAt) —J_I(DAt—DAt)RAtTLJ”l-
=0
‘As we see in Puckette[3], the Da;, Ra: as operators on appropriate
function spaces, verify the estimate, ||Da:Ra:| < €2', we get from the
above decomposition and from the definition of the 7 := Ra given
in the procedure (reaction), the following inequality,

Ery<e” Z (I(Rat — Rae)@|ls + |(Dac = Dac@ i}, (5)

Hence we see that the problem is reduced to establish the estimates for
the terms, |[(Ra: — Rae)® |1, ||[(Dat — Dad)@|)1.

3 Proof of the Theorem

Notice that we will be done when we establish the estimate as follows,
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Proposition 3.1 For Yy > 1, it holds the estimate,
6
P(Erg 2 7F(N,At)) < e

where,

F(N,At) = {Cg% +TeT\/2v/At - §(®,T)},

In fact, combining this with the well-known lemma 3.1 given below, we
can get the estimate,

B[ < (1+ 35 ) F(N, &)

and again combining this with the estimates in (4), we will get the desired
results (ol) and (02).

Lemma 3.1 For any random variable Z > 0 and any real number a, it
holds the following inequality,

ElZ] <ofl+ f:P(Z >ra)}.

For the verification of the Proposition 3.1 we need some auxialiary propo—
sitions concerning the errors ||Ra@ — Rasl|; , and  ||Da@ — Dasl|s
which will be given in the following subsections.

3.1 The error ||(Rat — Rat)@||s

Notice that the procedure Rat is just the Euler scheme for the numer-
ical approximation of the ordinary differential equation and so the error
of one-step approximation is of order (At)%:

sup |Rasti(z) — Rasi(z)| = Cour(AL)2. (6)

Remark 3) In Puckette [3] the number Lﬁ i1s used for the constant
( 18
Ceul .

Based on this fact we obtain the next,
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Proposition 3.2 Fiz a number B large enough to assure that the initial
positions of all particles XJQ (1 < j < N) are included in the interval
[-B,B]. Then for any v > 1 it holds the next estimate:

(R) P(||Ra@ — Ra@ly > 2CeuL,(AL)?) < ~—,

N~
where,” L, = B + M~,/8VT(In N).

For the proof of the Proposition we need the following, which is a variant
of the Hoeffding’s inequality,

Lemma 3.2 Let {Z;,2,,---,Z,} be independent random variables such
that, |Zx| < My, (1 <k <p), for some M;. Then for any B >0, it
holds the next inequality,

r -2
P(l Z(Zk — EZk)] > pﬂ) < 2e My
k
(Proof of Lemma3.2)
Let Z, = Zy + My, then 0< Z% <2M; and Z, — EZ), = Z, — EZL,

hence we have:

p 1 /3
P X (%~ E20] > pP) = <|—22M1<zk EZ) > 3hr)

Z,
Since, 0 < — IR <1 Yk, we get the estimate by applying the Hoeffding’s
inequality (cf. [5]) O

(Proof of Proposition 3.2) .

If all the particles at time t; are found within the interval [—L., L] ,
then we should have ||Ra:@' — Ra@ |1 < ZC‘eulL,,(At)2 by virtue of the
inequality (6), hence we get: -

P(“RAtﬂi - RAt-’LTiul > QCeu1L7(At)2)

PCj; X > L,) <SPI0 > Myy/aNvts(n V)
3 k=1
Remembering that the conditions in (H) imply, || < M - V2vAt and

applying the lemma 3.2, with M; = M+/2vAt, to the last term in the
above inequality, we get the conclusion. o -
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3.2 The error ||[(Das— Das)?1 -
Observe that,
|(Dai = Dae)o'lly < | Dad®’ = EDai®lls + | Do’ = EDally, (7)
where E' stands for the conditional expectation, namely: E’() =
E(|X},1<j<N,1<1<i-1).
For the bias term we have the following,

Lemma 3.3

|(Dat — E'Dac)v'||1 = V2vAt (8, ).

(Proof of Lemma 3.3)

Since, ¥(z) = > H(X;' - a:)w;, we have by definition of operators
j .

Day, Day, the following expressions,
Da'(z) = E°Y; H(é(a) + X7H —z)wi, € ~ &(=N(0,V2vAt))
EDad'(z) = E*Y; H(n(a) + Xt —2)wi, 7 ~ ¥, |

where E® stands for the average with respect to the random parameter
Q. '

By the hypothesis (r3), we may suppose that the random variables &, n are
constructed on a common probability space ([0,1], dz), using a uniformly
distributed random variable ((a) (a € ([0,1],dz)), namely:

(o) =7 (((a))VavAL,  n(a) =T (((a))V2vAt

with ¢(a) ~ U([0,1]).
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So we have,
|Da® — E'Da|s

- f| Zwi- E*{H(E(a) + X;" — ) — H(nj(@) + X5 — 2)}|dz
<Ea/dxzw |H(€ () + Xi™ = 2) - H(ni(a) + X5 = 2)

<E°‘Zw /]H (€i(0) + Xi™ — 2) — H(ni() + X" — z)|dz

= Ea%:wj €i(e) — 7i(e)| = E°|€} - nj| = E*VavAt|@™ () - ¥7H(¢(a)]
= VoAt - §(3, ). O

For the fluctuation term in the inequality (7), we have

Lemma 3.4 For any positive 3, it holds the next inequality,
P(|Da'(z) — E'Dai'(z)| > FNT') < 2¢722°

where, W' = max w;
j
(Proof of Lemma 3.4)

We have,
DA (z)—E'Dav(x Ew {H ni(0)+X; " —a) - E*H(nj(a)+X; ' ~2)}.

Hence by setting parameters as f =0 -w, M, =1uw/2 and applying
Lemma3.2 to the quantity in question, we get the conclusion. O

By the relation, wjt' := wi+At{f(@(X})) - f(@(X}41))}, given in the
Puckette s algorlthm we easﬂy see that w! < eTw? Vi, hence we see,

Nuw' < since we have w] = /N. Taking thls into account and putting
o = 'y,/ In N/N in the above Lemma 3.4 we find the next inequality,

5. iy i - 2
P(|Da0'(z) — E'Dagw'(x)] > 7e7 C5%(At)*VIn N) < T Vy>1. (8)

Now by the same reasoning that we employed in getting the estimate (R)
of Lemma 3.2 from the (6), we get from the estimate (8) the following:



Proposition 3.3 For any v > 1 it holds the next inequality,

_ — 4
P(||Dad@ — E' DA | > 2L eTVIn N(A)?C2) < —.
v 0 N'y

where, L) = L,+ Mv2vAt.
(Proof)
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Suppose that, X}‘l € [~Ly, L,] ¥4 and that the next condition holds,

| DA () — E'Da(z)] > 7eT Cy2(At)*VIn N.
Then we should have,

IDa@' — E'Da |1 < 2LLe"VIn N(At)*Cy?,

since, we have X € [- L’ , L] by virtue of the hypothesis (r2). Hence,

we have
P(||Das@ — E‘Das||1 > 2L VIn N(At)2Cq?)

< P(3j,|Xi| > L) + P(| Das® — E'Dad|y > 2L, VIn N(At)?Cy?)

N
2 2 -27y%(In N
; IZnJ>M\/81/zAtlnN))+ _-]-VT+2N 7(nN)
Ty |
< —. a
S 3

Combining the above result with Lemma 3.3, we obtain the next,

Proposition 3.4 For an arbitrary -y > 1, it holds

(D) P(|(Dat - Dad)Tl1 > Fy(N, A1) < 4,

where, F,(N,At) = 2L,C;%eTVIn N(At)? + MV2vAt - §(®, D).

3.3 Proof of Proposition 3.1

Set,

F/(N, At) = 2L, (C5 %" VI N + Coul)(AL)? + V20AL - §(2, T).



40

Then, from estimates (R), (D) and the inequality (5) we get the following,

. 6
"P(Er3 > ' KF,(N,At)) < R - (9)

On the other hand, we have,
Fy < v{2(ln N)(B + MV8UT)(C5 %" + Ceu)(At)? + V20AL - §(3, 1)}

Hence by taking the relation KAt =T into account, we get, K eTF§ S
vF(N,At) where

F(N,At) = 02135 + TeTy/2v/At - 6(3, xp)

and, Ch =2TeT(B+ M+/8vT)(Cy2e™ + Ceul). |

This with the estimate (9) implies the conclusion. O

4 Concluding Remarks

Our main result Theorem 2.1 shows that the effect of the contamina-
tion of the distribution of random numbers results as the apparition of
the term, 1/2v/At - (¥, ®). Since this term appears on the right hand
side of the inequality, at first look, our main theorem seems not quite sat-
isfactory. However we would be contented when we notice that the error
is measured in L!-norm, not in the uniform convergence norm. Qur result
tells us something more. Just remember that the advantageous property
of this particle method is in the fact that it works independently of the
size of the coefficient v. Our result assures that if v is comparably small
enough as the pitch At (or if we adjust the size of At in such way),
then the method still works even under a slight contamination in quality
of random nambers.

The study on the random particle methods has a long history and
there have been introduced many variants and modifications of the meth-
- ods. Among those done in recent years, we refer to the articles, [7], [4],
[6] etc. So far we have focused our discussion on the robustness of the
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random particle method due to E.Puckette. We think it necessary to
check the robustness of other methods and we like to do so in another
occaslion.
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