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STARLIKE AND CONVEX FUN CTION OF COMPLEX ORDER
- INVOLVING A CERTAIN FRACTIONAL |
INTEGRAL OPERATOR

BREAY - B¥E ¥ %2 (Jae Ho Chai)

Abstract

Let the classes S5(b), Ko(b) and Cy(b) consist of functions which are starlike,
convex and close-to-convex of complex order b introduced by Nasr and Aouf [2],
[3]. The main object of the present paper is to investigate the starlike and convex
fanctions of complex order involving a certain fractional integral operator. Futher

relevant connections are also pointed out with various earlier results involving the
Haramard product.
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1. Introduction and definitions

Let A denote the class of functions of the form :
(1.1) o (z) =z+ Zanz
: n=2 "

which are analytic in the unit disk 4 = {z : |z| < 1}. A function f(z) belonging
to the class A is said to be starlike of complex order b (b € C\ {0}) if and only if
z271f(2) # 0 (z € U) and

(1.2) Re{1+ (zﬁ(?-l)}w (z € U).

We denote by S5(b) the subclass of A consisting of functions which are starlike of
complex order b. Futher, let S7(b) denote the class of functions f(z) € A satisfying

zf'(z) _
f(2)

Here the inequality (1.2) is equivalent to

w  e{(ZQ))o

If f(z) € S;(b), then f(2) satisfies (1.4) which implies that

i)

Thus 51 (b) is a subclass of S3(b). .
A function f(z) belonging to the class A is said to be convex of complex order b

(b e C\ {0}) if and only if f'(2) # 0 (z € U) and
1zf"(2)
b f'(2)

We denote by Ko(b) the subclass of A consisting of functions which are convex of complex
order b. Furthermore, let X'y (b) denote the class of functions f(z) € A satisfying

zf"(2)
f'(2)

(1.3) 1|<b (beC\{0}).

(1.5) R.e{1+ }>0 (z € lU).

(1.6) <l (beC\{0}).

We note that

(1.7) f(2) € Ko(b) <= 2f(2) € Sg(b)



and
(1.8) , f(z) € K1(b) <= 2f'(2) € S1(b)
for b € C\ {0}.

A function f(z) belonging to the class A is said to be close-to-convex of complex
order b (b € C\ {0}) if and only if there exists a function g(z) € Ky(c) (c € C\ {0})
satisfying the condition

-'(1.9)  Re {1+ (f,'é"'; 1)}>6 (zey).

We denote by Cy(b) the subclass of A consisting of functions which are close-to-convex
of complex order b. Also let C;(b) denote the class of functions f(z) € A satisfying

(1.10)

£z _
7(2) -?'<'b'

for some g € Ko(c) (c€ C\ {0})
. We also have K;(b) C Ko(b) and C;(b) C Co(b).

Remark. Settingb=1—a (0 < a < 1), we observe that So(l—a) =8*(a), Ko(1—a) =
K(a) and Co(1 — o) = C(a), where S*(a), K(a) and C(a) denote the usual classes
of starlike, convex and close-to-convex of real order a, respectlvely Indeed letting
b=ia (o € R), we obtain that f € S3(ic) implies that Im(zf" (2)/f(z)) > —a.

For the functions f;(z) (7 = 1,2) defined by

(1.11) fi(z) = Z%,nﬂz S (1 - az1 = 1),

n=0

let (f1* f2)(z) denote the Hadamard product or convolution of fi(z) and f3(z2), defined
by :

o0

(1.12) (fi* f2)(2) = ) @141 G212
n=0
Let a, b, c be complex numbers with ¢ # 0, -1, -2, - - - . The Gaussian hypergeometric
function 5 F3(z) is defined by |
(113) _ zFl(Z) '=—2F1(a, b; (64 Z)
S YCNONE
~ (o), n



where ()),, denotes the Pochhammer symbol defined, in terms of I'-function, by

_T(A\+n)
M ="y
1 (n=0)

='{’%<,H1>*-4<A+n—1>' (neN:={1,2,3,}).

Many essentially equivalent definitions of fractional calculus have been given in the
literature (cf.,e.g, 9], [10,p.45]). For convenience, we recall here the following definitions
due to Owa [4] and Saigo [8] which have been used rather frequently in the theory of
analytlc functlons

Definition 1. The fractional mtegral of order A (A € C) is defined, for a function f(z2),
by

(1.14) D) = 15 / — (‘)l P R >0,

where f(z) is an analytic function in a simply-connected regxon of the z—plane contammg
the origin, and the multiplicity of (2 = ¢)*~! is removed by requiring log(z — ¢) to be
real forz—C>0 :

Definition 2. For a,B,m e C and Re(a) > 0, the fractional integral operator Ig’; Aon s
defined by '

(1.15) "””f(z) O)* L2Fi(a+ B, —na;1— —)f(odc,

where the function o F is Gauss’s hypergeometric function defined by (1.13).

The definition (1.15) is an interesting extension of both the Riemann-Liou- ville
and Erdélyi-Kober fractional operators in terms of Gauss’s hypergeometric functions.
Indeed, in its special case, it is treated alike the definition (1.14).

It is easy to observe that
(1.16) Iy *"f(2) =D;%f(2)  (Re(a) > 0).

By using the fractional integral, we now introduce the linear operator Q* given by
(1.17) QR f(2) = (2 NZ2DXf(z2)  (Re(M) < 0)

for f(2) € A



a,B,7 ;

The operator Z,"" is also modified by defining Jo.s @B i1 the form

[(2-Ar@+a+n)
I'2-pB+mn)

(1.18) | wPnf(z) = PIEPf(2)

for f(2) € A and min{Re(a + 1), Re(—8 + 1),Re(-0)} > —2.
2. Main results B

In order to prove our main results, we shall require the following lemmas to be used
in the sequel.

Lemma 1. (Jack [1]) Let w(z) be analytic in U with w(0) = 0. Then if |w(2)| attains
its mazimum value on the circle |z| = r (r < 1) at a point zy, we can write

(2.1) zbu}'(zo) = k w(zp),
where k is real and k > 1.

Lemma 2. (Ruscheweyh and Sheil-Small [7]) Let ¢(z) and g(z) be analytzc inU and
satisfy

$(0) =g(0) =0, ¢ (0) £0,  and g'(0) #0.
Suppose that for each o (Jo| = 1) and p (|p| = 1)

1+ poz

#(2) » ( )()#0 (z €U\ {0)).

Then, for each function F(z) analytic in the unit disk U and satzsfymg the mequalzty
Re{F(z)} > 0 (z €U), we have

» (6 *G)(2) |
(2.2) | Re ((¢*g)(z)) >0 (zeld),

where G(z) = F(z)g(z).

Lemma 3. ([7]) Let ¢(z) be convez and g(z) starlike in U. Then, for each function
F(2) analytzc in the unit dzsk U and satzsfymg Re{F(z)} > 0 (z e U), we have

(¢ * Fg)(z)
(23) Re <W) >0 (Z € U),



Lemma 4. (cf., Owa, Saigo and Srivastava [5]) Let o, 8,7 € C and Re(a) > 0, and let
k> Re(8—-mn)—1. Then

C(k+ DO(k=B+n+1) 4 g
T Tk—-B+nlk+a+n+1) '

(24)  IgPmek=

Applying the above lemmas, we derlve
Theorem 1. Let the function f(z) defined by (1.1) be in the class Sg(b) and satisfy

(25) b+ (A2 es) #0 (z et (0]
for each p (lp| = 1) and o (|o| = 1), where

o= 2-6+m, W
29 : hE) =z r;2=:2 (2=PF)n1(2+ al+ Mn—1 “o

and for a,B,n € C with Re(a) > 0 and min{Re(a + 1), Re(—8 +n),Re(-p)} > -2.
Then Jg., B f(z) belongs to the class So (b).

Proof. Note from (1.18), (2.4) and (2.6) that

(2=B+Mn-1(1)n
BIn-1(2+ a+n)n-1

Joazﬁ nf(z) =z+ z (2

n=2

anz™ = (h * f)(2),

which readily yields

, ' a,B,m ' h(z) * (Z(n + b)an+1z"+1)
SRTRE I Wi w

TP f(2) b(h+f)(2)

_ (hx[(b=1)f +2f])(2)
GrbDE

asa1—1

Therefore, putting ¢(z) = h(z), g(z) = bf(z) and F(2) = 1+ l/b[(zf'(z))/f(z) — 1] in
Lemma 2, we conclude from (2.7) that

| (TSP f(z))
Re{lf b( ‘;ﬂnf( ) —1)}>0,

which completes the proof of Theorem 1.




Corollary 1. Let the function f(z) defined by (1.1) be in the class S§(b) and satisfy

| u(z)*(11+”“z)bf( #0 Geu\(op

for each p (Ip’l =71) and o (|| = 1), where
(2.8) - »u(z)‘= z+ Z (—é——(le” (Re(A) < 0).

Then Q* f(2) belongs to the class Sg(b).

Proof. Setting a = —@ = —\ in Theorem 1 and taking Remark 2 into account, we have
Corollary 1.

Corollary 2. Let h(z) be convez and let f(z) € S1(b) (|b] < 1), where h(z) is giv.en by
(2.6) with the same assumptions of a, B and N in Theorem 1. Then .70 @B, Mf(z) = (h <
f)(2) belongs to the class S§(b).

Proof. From the hypothesis, we obtain
fz ) €S s’ (0)=5"  (jo| <1).
By applying Lemma 3 in view of Theorem 1, we have the desu‘ous result lmmedla.tely

Theorem 2. Let the function f(z) defined by (1.1) be in the class ICo(b) and satisfy

(29) h(2) » (11+ 22 oef @ £0 (= €U\ (0]
for each p (Jp| = 1) and o (|o| = 1), where h(z) is gwen by (2.6) and for a,B,n € C with

Re(a) > 0 and min{Re(a + n),Re(—p + n),Re(=0)} > —2. Then Jy ﬁ"’f(z) belongs
to the class Ko(b).

Proof. Applying (1.7) and Theorem 1, we observe that
f(2) € Ko(b) == =f'(2) € S5 (b) = T5"2f'(2) € S3(b)

<= (h*zf')(2) € S§(b) <= 2z(h * f)(2) € S(b)

= (h* f)(2) € Kolb) <> T5P" f(2) € Ko(b),

which evidently proves Theorem 2.

Taking a = —3 = —) in Theorem 2, we get



Corollary 3. Let the function f(z) defined by (1.1) be in the class Ko(b) and satisfy
(210) s (FEZ e 0 (= U\ (0D

for each p (|p| = 1) and o (Jo| = 1), where u(z) is given by (2.8). Then Q* f(z) belongs
to the class Ko(b). '

Corollary 4. Let h(z) be convez and let f(z) € K1(b) (|b] < 1), where h(z) is given
by (2.6) with the same assumption of a, B and 7 there Then J, 0"";‘6 Mf(z) = (h < f)(2)
belongs to the class Ko(b).

Theorem 3. Let the function f(z) defined by (1.>1) be in the class A and satisfy
(2.11) , _ . .
JeL @)y |AISE @) AT (@) e () |

7@ |~ 9@ PIBY
for some 0> 0 6 > 0 and g(z) € Ko(c). Suppose also that a,B,n € C 'wzth Re(a) > 0

and min{Re(a + 1), Re(—B + n),Re(—B)} > —2. Then Jg @B £(2) belongs to the class
C1(b). : '

Proof. If we define
o, ’
- - ()

for f(z) € A and ¢g(z) € ICo(c), then it is an elementa.ry matter to show that w(z) is
analytic in I and w(0) = 0. Noting that
(JO ,ﬁ,nf(z))n _ z(Jg;ﬂ'"f(z))’g”(z)
- g'(2) {g(2)}? '
we know that the condition (2.11) leads us to
lbw(2)|° |2 (2)]° < lbl”+6
Suppose that there exists zp € U such that

(2.13) ax lw(z)] = lw(z0)l =1 (w(20) #1)-

Then, using Lemma 1, we see
Jbw(z0)| [bz0w(20)|” = [bl**&° > [bI7**,
which contradicts (2.11). Therefore we conclude |w(z)| < 1 for all z € U. This implies

that
(Telm(2))
- g'(2)

which completes the proof of Theorem 3.

-1 <BI°t (zel)

bzu'(z) = -

-1 <pl (z€l),

Letting @ = —f = —\ in Theorem 3, we have



Corollary 5. Let the function f(z) defined by (1.1) be in the class A and satisfy

. : (Q)\f(z))l z(ﬂ’\f(z))” B (Q"f(z))’ "(z) é
S 16 7] W@y

for some o0 > 0, § >.0, and g(z) € Ko(c). Then Q*f(z) belongs to the class C; (b).

<t (zeu

Putting g(z) = z € Ko(1), Theorem 3 gives
Corollary 6. Let the function f(z) defined by (1.1) be in the class A and satisfy

’ o, n 6 a—l;6
(2.15) oL gy -1 | ggen sy < (z €U)
for some 0 > 0 and 6 > 0. Then Jo",';ﬁ Mf(z) belong.é to the class Ci1(b).

Theorem 4. Let the function f(z) defined by (1.1) be in the class A and satisfy
(2.16) '

,ﬁ n ‘ ' o.Bim £( )Y
TP 1) TP (@)
< |b| 1+ (1 —a)(1—b])] (z €U)

for some a < 1 and |b|] < 1. Suppose also that a,3,n € C with Re(a) > 0 and

min{Re(a + n),Re(—8 + 7),Re(—pB)} > —2. Then J&;ﬁ’"f(z) belongs to the class
ST (b).

Proof. If we set

: P a8
2.17) i) = X ( (ToPmf(2)Y

b\ TPf(2)

then the function w(z) is regular in I and w(0) = 0. By using the logarithmic differen-
tiation on both sides of (2.17), we have

(TP f(2))"
(TP f(2))

_1> (fEA)v

bzw'(2)
1+ bw(z) |

= bu(z) +

This yields

2 TSP f(2)) TSP f(2))
-1 1-—
a ( :ﬁmf( ) ) + ( a) O,f,nf( )

= bw(z) {1+(1—a) (bw( )+ z“"("))} .

(2)
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Assume that there exists zp € U such that (2.13) holds true for the function w(z) in
(2.17). Then, writing w(zo) = €%, and using Lemma 1 we deduce

'bw(zo){l +(1 —a) ( )(20) + zouzi:f)o)) }

= |b||1 + (1 — a)(k + be'®)|
> blil+ (1 —a)(3 - B,

which contradicts (2.16). Thus we obtain

1 ( 2(Tow " f(2)) 1)
b\ T5lmi(z)

which completes the proof of Theorem 4.

|w(2)] = <1 (zeu),

Taking a = —f = — A in Theorem 4, we have

Corollary 7. Let the function f(z) defined by (1.1) be in the class A and satisfy

A2 2@
( P1(2) 1)”1 )P (2

or some a < 1 and |b] < 1. Then Q*f(z) belongs to the class S} (b).
1

<P+ -a)i-p)] (e

Theorem 5. Let the function f(z) defined by (1.1) be in the class A and satisfy

(2.19) , ,
| (2 Ton " f(2) 2T f(2)" ( a)
! -1 l1—-a u
l( TEP1) ) HO A Gemmay | < MU ) ¢
for some a < 1. Suppose also that a,3,n1 € C with Re(a) > 0 and min{Re(a +
n),Re(—B+n),Re(—0)} > —2. Then .Y(,Tf'"f(z) belongs to the class S5 (b).

The proof of Theorem 5 is much akin to that of Theorem 4, and we omit the details
involved.

Theorem 6. Let the function f(z) defined by‘(l.l) be in the class A and satisfy
' a 3,17 vy | §
. 142[b
i 2 < (T2 Gew
(Jo 2 (@) 1+ o]

for some o > 0 and § > 0. Suppose also that a, 3,1 € C with Re(a) > 0 and min{Re(a+
n),Re(—=B+n),Re(—F)} > —2. Then ._T‘J'T;ﬂ'"f(z) belongs to the class Cy(b).

(220 |TgLrsEy -] 1+

Proof. Define the function w(z) by

(221) wlz) = TSP @Y -1}
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Then it follows that w(z) is analytic in U with w(0) = 0. Substituting for J3 B £(2)
into the left-hand 51de of (2.20) from (2.21), we get

(TSP F ()|
(TP f(2)) |

Assume that there exist a point zg € U satisfying (2 13) for the function w(z) in (2.21).
Then, applying Lemma 1, we obtain

o 14 bw(2) + 2/ (2)) |°
1+ bw(z2)

sy 1 |1+

= |bw(z

1+ b(w(z0) + 200/ (20)) [ _ ’

1+ bw(zo)

_k
1+ bw(zo)

e 14 2]b|
2 o (1+|b[

lbw(z0)|°

which contradicts the condition (2.20). Hence we have J5; B £(2) € Cy (b).

Theorem 7. Let the fu‘nctioﬁ f(2) defined by (1.1) be in the class A and satisfy

zf"(z)  zg"(2) |26 —-1| -1 ) 1] 1
e re(TR-TR)mmany g <
zf"(z) 24"(2) |26-1| -1 . 1] _ 1
e (G - g) <mmoren Yl

Jor some g(z) € Ko(c). Then f(z) belongs to the class Co(b).

Proof. Let us introduce the function w(z) by

w0 (-

for some g(z) € Ko(c) and f(2) € A. Differentiating both side of (2.24) logarithmically,

we obtain
t ') ') (@-Dal(s) | w(e)
7@ T g 1E@- s T 1w

Suppose that there exists 29 € U such that (2.13) holds true for the function w(z) in
(2.24). Then, letting w(zo) = €' and 2b— 1 =|2b — 1|¢*?, and using Lemma 1, we have

e (- ) e (P ) e ()

k|26 - 1](|2b — 1|+ cos(8 +¢)) K
1426 —1° +2/2b— 1| cos(6 + ¢) 2
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for kK > 1 and 2y € 4. Hence, let B
‘ |2b— 1|+ ¢

h(t) = 2 '
4 | 1+ 26— 11" +2[2b - 1]t
If b -1/2| <1/2, then h(t) is monotone increasing and

(—1<t<).

Re (Zof"(zo) _ Zog"(zo)) < 1261k &k
\ F'(20) g(z0) / " |2b-1]+1 2
[26—1] -1
—2(26-1|+1)

If, on the other hand, |b — 1/2| > 1/2, then h(t) is monotone decreasing and
Re (Z_of”(zo) _ Zog"(zo)) s [2b—1k kK

f'(20) g(20) /T |26—1]+1 2
|26—1] -1
=2(26-1]+1)

These contradict (2.22) and (2.23), which evidently completes the proof of Theorem 6.
Corollary 8. Let the function f(z) defined by (1.1) be in the class A and satisfy

2T "(2))"  2¢"(2) 26-1-1 .| 1] 1
(229 Re( (TeLm(z)y () -1+ I Ib 2‘ <2
or ‘

ATow™(2))"  29"(2) [26-1]—-1 .| 1] 1
(2.26) Re( TPy 9@ ) -1ty lb 2| 72

for some g(z) € Ko(c). Suppose also that o, ,m € C with Re(a) > 0 and min{Re(a +
n), Re(—B + n),Re(—0)} > —2. Then j(ff’"(z) belongs to the class Co(b).

Theorem 8. Let the functioh f (z) defined by (1.1) be in the class A and satisfy

zf'(z) zf'(z) —|26-1| -3 ) 1 1
e Re(TR-08) > qm ey Y Poalss
z2f"'(2)  zf'(2) -|126-1-3 . . 1)1
em  re(Fe - <ty Y p-3l> 2

Then f(z) belongs to the class S§(b). -

Proof. The proof of Theorem 8 runs parallel to that of Theorem 7 with
!
L) ) 1wt
R ANIC) 1-w(2)

and we omit the details involved.
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Corolfarjr 9. Let the function f(z) defined by (1.1) be in the class A and satisfy

2Tl 2 TgP) | —|2b—1]-3 1 1
(2.29) Re ey e o) > BT if ‘b—il <3
or |

2(Ton (@) A Ie @)\ _ —l2b—1] - 1)1
(2.30) Re ( (T ,B,n(z)), %c:;ﬁ,n(z) ) 2(12b -1+ 1) tf lb 2| =)

Suppose also that a, B, € C with Re(a) > 0 and min{Re(a+n), Re(—8+1n), Re(-0)} >
—2. Then ](;ff "1(z) belongs to the class S§(b). :

10.
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