STARLIKE AND CONVEX FUNCTION OF COMPLEX ORDER INVOLVING A CERTAIN FRACTIONAL INTEGRAL OPERATOR

福岡大学·理学部 崔 宰豪(Jae Ho Choi)

Abstract

Let the classes $S_0^*(b)$, $K_0(b)$ and $C_0(b)$ consist of functions which are starlike, convex and close-to-convex of complex order b introduced by Nasr and Aouf [2], [3]. The main object of the present paper is to investigate the starlike and convex functions of complex order involving a certain fractional integral operator. Futher relevant connections are also pointed out with various earlier results involving the Haramard product.

Key words: fractional integral, Hadamard product, starlike and convex functions

of complex order

AMS Subject Classification: 30C45

1. Introduction and definitions

Let A denote the class of functions of the form:

$$(1.1) f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disk $\mathcal{U} = \{z : |z| < 1\}$. A function f(z) belonging to the class \mathcal{A} is said to be starlike of complex order b $(b \in \mathbb{C} \setminus \{0\})$ if and only if $z^{-1}f(z) \neq 0$ $(z \in \mathcal{U})$ and

(1.2)
$$\operatorname{Re}\left\{1 + \frac{1}{b}\left(\frac{zf'(z)}{f(z)} - 1\right)\right\} > 0 \qquad (z \in \mathcal{U}).$$

We denote by $\mathcal{S}_0^*(b)$ the subclass of \mathcal{A} consisting of functions which are starlike of complex order b. Futher, let $\mathcal{S}_1^*(b)$ denote the class of functions $f(z) \in \mathcal{A}$ satisfying

(1.3)
$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < |b| (b \in \mathbb{C} \setminus \{0\}).$$

Here the inequality (1.2) is equivalent to

(1.4)
$$\operatorname{Re}\left\{\frac{1}{b}\left(\frac{zf'(z)}{f(z)}-1\right)\right\} > -1.$$

If $f(z) \in \mathcal{S}_1^*(b)$, then f(z) satisfies (1.4) which implies that

$$\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{zf'(z)}{f(z)}-1\right)\right\}>0.$$

Thus $\mathcal{S}_1^*(b)$ is a subclass of $\mathcal{S}_0^*(b)$.

A function f(z) belonging to the class \mathcal{A} is said to be convex of complex order b $(b \in \mathbb{C} \setminus \{0\})$ if and only if $f'(z) \neq 0$ $(z \in \mathcal{U})$ and

(1.5)
$$\operatorname{Re}\left\{1 + \frac{1}{b} \frac{zf''(z)}{f'(z)}\right\} > 0 \qquad (z \in \mathcal{U}).$$

We denote by $\mathcal{K}_0(b)$ the subclass of \mathcal{A} consisting of functions which are convex of complex order b. Furthermore, let $\mathcal{K}_1(b)$ denote the class of functions $f(z) \in \mathcal{A}$ satisfying

(1.6)
$$\left| \frac{zf''(z)}{f'(z)} \right| < |b| (b \in \mathbb{C} \setminus \{0\}).$$

We note that

(1.7)
$$f(z) \in \mathcal{K}_0(b) \iff zf'(z) \in \mathcal{S}_0^*(b)$$

and

$$(1.8) f(z) \in \mathcal{K}_1(b) \Longleftrightarrow zf'(z) \in \mathcal{S}_1^*(b)$$

for $b \in \mathbb{C} \setminus \{0\}$.

A function f(z) belonging to the class \mathcal{A} is said to be close-to-convex of complex order b ($b \in \mathbb{C} \setminus \{0\}$) if and only if there exists a function $g(z) \in \mathcal{K}_0(c)$ ($c \in \mathbb{C} \setminus \{0\}$) satisfying the condition

(1.9)
$$\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{f'(z)}{g'(z)}-1\right)\right\}>0 \qquad (z\in\mathcal{U}).$$

We denote by $C_0(b)$ the subclass of A consisting of functions which are close-to-convex of complex order b. Also let $C_1(b)$ denote the class of functions $f(z) \in A$ satisfying

$$\left|\frac{f'(z)}{g'(z)}-1\right|<|b|$$

for some $g \in \mathcal{K}_0(c)$ $(c \in \mathbb{C} \setminus \{0\})$.

We also have $\mathcal{K}_1(b) \subset \mathcal{K}_0(b)$ and $\mathcal{C}_1(b) \subset \mathcal{C}_0(b)$.

Remark. Setting $b = 1 - \alpha$ ($0 \le \alpha < 1$), we observe that $\mathcal{S}_0^*(1-\alpha) = \mathcal{S}^*(\alpha)$, $\mathcal{K}_0(1-\alpha) = \mathcal{K}(\alpha)$ and $\mathcal{C}_0(1-\alpha) = \mathcal{C}(\alpha)$, where $\mathcal{S}^*(\alpha)$, $\mathcal{K}(\alpha)$ and $\mathcal{C}(\alpha)$ denote the usual classes of starlike, convex and close-to-convex of real order α , respectively. Indeed, letting $b = i\alpha$ ($\alpha \in \mathbb{R}$), we obtain that $f \in \mathcal{S}_0^*(i\alpha)$ implies that $\text{Im}(zf'(z)/f(z)) > -\alpha$.

For the functions $f_j(z)$ (j = 1, 2) defined by

(1.11)
$$f_j(z) = \sum_{n=0}^{\infty} a_{j,n+1} z^{n+1} \qquad (a_{1,1} = a_{2,1} = 1),$$

let $(f_1 * f_2)(z)$ denote the Hadamard product or convolution of $f_1(z)$ and $f_2(z)$, defined by

(1.12)
$$(f_1 * f_2)(z) = \sum_{n=0}^{\infty} a_{1,n+1} \ a_{2,n+1} z^{n+1}.$$

Let a, b, c be complex numbers with $c \neq 0, -1, -2, \cdots$. The Gaussian hypergeometric function ${}_2F_1(z)$ is defined by

(1.13)
$${}_{2}F_{1}(z) \equiv {}_{2}F_{1}(a,b;c;z)$$

$$:= \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!},$$

where $(\lambda)_n$ denotes the Pochhammer symbol defined, in terms of Γ -function, by

$$(\lambda)_n := rac{\Gamma(\lambda+n)}{\Gamma(\lambda)}$$

$$= egin{cases} 1 & (n=0) \\ \lambda(\lambda+1)\cdots(\lambda+n-1) & (n\in\mathbb{N}:=\{1,2,3,\cdots\}). \end{cases}$$

Many essentially equivalent definitions of fractional calculus have been given in the literature (cf., e.g, [9], [10,p.45]). For convenience, we recall here the following definitions due to Owa [4] and Saigo [8] which have been used rather frequently in the theory of analytic functions:

Definition 1. The fractional integral of order λ ($\lambda \in \mathbb{C}$) is defined, for a function f(z), by

(1.14)
$$\mathcal{D}_{z}^{-\lambda}f(z) = \frac{1}{\Gamma(\lambda)} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{1-\lambda}} d\zeta \qquad (\operatorname{Re}(\lambda) > 0),$$

where f(z) is an analytic function in a simply-connected region of the z-plane containing the origin, and the multiplicity of $(z-\zeta)^{\lambda-1}$ is removed by requiring $\log(z-\zeta)$ to be real for $z-\zeta>0$.

Definition 2. For $\alpha, \beta, \eta \in \mathbb{C}$ and $\text{Re}(\alpha) > 0$, the fractional integral operator $\mathcal{I}_{0,z}^{\alpha,\beta,\eta}$ is defined by

(1.15)
$$\mathcal{I}_{0,z}^{\alpha,\beta,\eta}f(z) = \frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_0^z (z-\zeta)^{\alpha-1} {}_2F_1(\alpha+\beta,-\eta;\alpha;1-\frac{\zeta}{z})f(\zeta)d\zeta,$$

where the function ${}_{2}F_{1}$ is Gauss's hypergeometric function defined by (1.13).

The definition (1.15) is an interesting extension of both the Riemann-Liou-ville and Erdélyi-Kober fractional operators in terms of Gauss's hypergeometric functions. Indeed, in its special case, it is treated alike the definition (1.14).

It is easy to observe that

(1.16)
$$\mathcal{I}_{0,z}^{\alpha,-\alpha,\eta}f(z) = \mathcal{D}_{z}^{-\alpha}f(z) \qquad (\operatorname{Re}(\alpha) > 0).$$

By using the fractional integral, we now introduce the linear operator Ω^{λ} given by

(1.17)
$$\Omega^{\lambda} f(z) = \Gamma(2 - \lambda) z^{\lambda} \mathcal{D}_{z}^{\lambda} f(z) \qquad (\text{Re}(\lambda) < 0)$$

for $f(z) \in \mathcal{A}$.

The operator $\mathcal{I}_{0,z}^{\alpha,\beta,\eta}$ is also modified by defining $\mathcal{J}_{0,z}^{\alpha,\beta,\eta}$ in the form

(1.18)
$$\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z) = \frac{\Gamma(2-\beta)\Gamma(2+\alpha+\eta)}{\Gamma(2-\beta+\eta)}z^{\beta}\mathcal{I}_{0,z}^{\alpha,\beta,\eta}f(z)$$

for $f(z) \in \mathcal{A}$ and min $\{\operatorname{Re}(\alpha + \eta), \operatorname{Re}(-\beta + \eta), \operatorname{Re}(-\beta)\} > -2$.

2. Main results

In order to prove our main results, we shall require the following lemmas to be used in the sequel.

Lemma 1. (Jack [1]) Let $\omega(z)$ be analytic in \mathcal{U} with $\omega(0) = 0$. Then if $|\omega(z)|$ attains its maximum value on the circle |z| = r (r < 1) at a point z_0 , we can write

(2.1)
$$z_0 \omega'(z_0) = k \ \omega(z_0),$$

where k is real and $k \geq 1$.

Lemma 2. (Ruscheweyh and Sheil-Small [7]) Let $\phi(z)$ and g(z) be analytic in \mathcal{U} and satisfy

$$\phi(0) = g(0) = 0,$$
 $\phi'(0) \neq 0,$ and $g'(0) \neq 0.$

Suppose that for each σ ($|\sigma| = 1$) and ρ ($|\rho| = 1$)

$$\phi(z) * \left(\frac{1 + \rho \sigma z}{1 - \sigma z}\right) g(z) \neq 0 \qquad (z \in \mathcal{U} \setminus \{0\}).$$

Then, for each function F(z) analytic in the unit disk U and satisfying the inequality $Re\{F(z)\} > 0$ $(z \in U)$, we have

(2.2)
$$\operatorname{Re}\left(\frac{(\phi*G)(z)}{(\phi*g)(z)}\right) > 0 \qquad (z \in \mathcal{U}),$$

where G(z) = F(z)g(z).

Lemma 3. ([7]) Let $\phi(z)$ be convex and g(z) starlike in \mathcal{U} . Then, for each function F(z) analytic in the unit disk \mathcal{U} and satisfying $\text{Re}\{F(z)\} > 0$ $(z \in \mathcal{U})$, we have

(2.3)
$$\operatorname{Re}\left(\frac{(\phi * Fg)(z)}{(\phi * g)(z)}\right) > 0 \qquad (z \in \mathcal{U}),$$

Lemma 4. (cf., Owa, Saigo and Srivastava [5]) Let $\alpha, \beta, \eta \in \mathbb{C}$ and $\text{Re}(\alpha) > 0$, and let $k > \text{Re}(\beta - \eta) - 1$. Then

(2.4)
$$\mathcal{I}_{0,z}^{\alpha,\beta,\eta}z^{k} = \frac{\Gamma(k+1)\Gamma(k-\beta+\eta+1)}{\Gamma(k-\beta+\eta)\Gamma(k+\alpha+\eta+1)}z^{k-\beta}.$$

Applying the above lemmas, we derive

Theorem 1. Let the function f(z) defined by (1.1) be in the class $\mathcal{S}_0^*(b)$ and satisfy

(2.5)
$$h(z) * \left(\frac{1 + \rho \sigma z}{1 - \sigma z}\right) b f(z) \neq 0 \qquad (z \in \mathcal{U} \setminus \{0\})$$

for each ρ ($|\rho| = 1$) and σ ($|\sigma| = 1$), where

(2.6)
$$h(z) = z + \sum_{n=2}^{\infty} \frac{(2-\beta+\eta)_{n-1}(1)_n}{(2-\beta)_{n-1}(2+\alpha+\eta)_{n-1}} z^n ,$$

and for $\alpha, \beta, \eta \in \mathbb{C}$ with $\operatorname{Re}(\alpha) > 0$ and $\min\{\operatorname{Re}(\alpha + \eta), \operatorname{Re}(-\beta + \eta), \operatorname{Re}(-\beta)\} > -2$. Then $\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z)$ belongs to the class $\mathcal{S}_0^*(b)$.

Proof. Note from (1.18), (2.4) and (2.6) that

$$\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z)=z+\sum_{n=2}^{\infty}\frac{(2-\beta+\eta)_{n-1}(1)_n}{(2-\beta)_{n-1}(2+\alpha+\eta)_{n-1}}a_nz^n=(h*f)(z),$$

which readily yields

(2.7)
$$1 + \frac{1}{b} \left(\frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z))'}{\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z)} - 1 \right) = \frac{h(z) * \left(\sum_{n=0}^{\infty} (n+b) a_{n+1} z^{n+1} \right)}{b (h * f) (z)} = \frac{(h * [(b-1)f + zf'])(z)}{(h * bf)(z)}.$$

as $a_1 = 1$.

Therefore, putting $\phi(z) = h(z)$, g(z) = bf(z) and F(z) = 1 + 1/b[(zf'(z))/f(z) - 1] in Lemma 2, we conclude from (2.7) that

$$\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z))'}{\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z)}-1\right)\right\}>0\ ,$$

which completes the proof of Theorem 1.

Corollary 1. Let the function f(z) defined by (1.1) be in the class $S_0^*(b)$ and satisfy

$$u(z)*\left(\frac{1+\rho\sigma z}{1-\sigma z}\right)bf(z)\neq 0 \qquad (z\in\mathcal{U}\setminus\{0\})$$

for each ρ ($|\rho| = 1$) and σ ($|\sigma| = 1$), where

(2.8)
$$u(z) = z + \sum_{n=2}^{\infty} \frac{(1)_n}{(2-\lambda)_{n-1}} z^n \qquad (\text{Re}(\lambda) < 0).$$

Then $\Omega^{\lambda} f(z)$ belongs to the class $\mathcal{S}_0^*(b)$.

Proof. Setting $\alpha = -\beta = -\lambda$ in Theorem 1 and taking Remark 2 into account, we have Corollary 1.

Corollary 2. Let h(z) be convex and let $f(z) \in \mathcal{S}_1^*(b)$ ($|b| \leq 1$), where h(z) is given by (2.6) with the same assumptions of α , β and η in Theorem 1. Then $\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z) = (h \prec f)(z)$ belongs to the class $\mathcal{S}_0^*(b)$.

Proof. From the hypothesis, we obtain

$$f(z) \in \mathcal{S}_1^*(b) \subset \mathcal{S}^*(0) = \mathcal{S}^* \qquad (|b| \le 1).$$

By applying Lemma 3 in view of Theorem 1, we have the desirous result immediately.

Theorem 2. Let the function f(z) defined by (1.1) be in the class $K_0(b)$ and satisfy

(2.9)
$$h(z) * \left(\frac{1 + \rho \sigma z}{1 - \sigma z}\right) bz f'(z) \neq 0 \qquad (z \in \mathcal{U} \setminus \{0\})$$

for each ρ ($|\rho| = 1$) and σ ($|\sigma| = 1$), where h(z) is given by (2.6) and for $\alpha, \beta, \eta \in \mathbb{C}$ with $\text{Re}(\alpha) > 0$ and $\min\{\text{Re}(\alpha + \eta), \text{Re}(-\beta + \eta), \text{Re}(-\beta)\} > -2$. Then $\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z)$ belongs to the class $\mathcal{K}_0(b)$.

Proof. Applying (1.7) and Theorem 1, we observe that

$$f(z) \in \mathcal{K}_0(b) \iff zf'(z) \in \mathcal{S}_0^*(b) \implies \mathcal{J}_{0,z}^{\alpha,\beta,\eta} zf'(z) \in \mathcal{S}_0^*(b)$$

$$\iff (h * zf')(z) \in \mathcal{S}_0^*(b) \iff z(h * f)'(z) \in \mathcal{S}_0^*(b)$$

$$\iff (h * f)(z) \in \mathcal{K}_0(b) \iff \mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z) \in \mathcal{K}_0(b),$$

which evidently proves Theorem 2.

Taking $\alpha = -\beta = -\lambda$ in Theorem 2, we get

Corollary 3. Let the function f(z) defined by (1.1) be in the class $K_0(b)$ and satisfy

(2.10)
$$u(z) * \left(\frac{1 + \rho \sigma z}{1 - \sigma z}\right) bz f'(z) \neq 0 \qquad (z \in \mathcal{U} \setminus \{0\})$$

for each ρ ($|\rho| = 1$) and σ ($|\sigma| = 1$), where u(z) is given by (2.8). Then $\Omega^{\lambda} f(z)$ belongs to the class $\mathcal{K}_0(b)$.

Corollary 4. Let h(z) be convex and let $f(z) \in \mathcal{K}_1(b)$ ($|b| \leq 1$), where h(z) is given by (2.6) with the same assumption of α , β and η there. Then $\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z)=(h \prec f)(z)$ belongs to the class $\mathcal{K}_0(b)$.

Theorem 3. Let the function f(z) defined by (1.1) be in the class A and satisfy (2.11)

$$\left| \frac{(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z))'}{g'(z)} - 1 \right|^{\sigma} \left| \frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z))''}{g'(z)} - \frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z))'g''(z)}{\{g'(z)\}^2} \right|^{\delta} < |b|^{\sigma+\delta} \quad (z \in \mathcal{U})$$

for some $\sigma \geq 0$, $\delta \geq 0$ and $g(z) \in \mathcal{K}_0(c)$. Suppose also that $\alpha, \beta, \eta \in \mathbb{C}$ with $\text{Re}(\alpha) > 0$ and $\min\{\text{Re}(\alpha + \eta), \text{Re}(-\beta + \eta), \text{Re}(-\beta)\} > -2$. Then $\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z)$ belongs to the class $\mathcal{C}_1(b)$.

Proof. If we define

(2.12)
$$\omega(z) = \frac{1}{b} \left(\frac{(\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z))'}{g'(z)} - 1 \right)$$

for $f(z) \in \mathcal{A}$ and $g(z) \in \mathcal{K}_0(c)$, then it is an elementary matter to show that $\omega(z)$ is analytic in \mathcal{U} and $\omega(0) = 0$. Noting that

$$bz\omega'(z) = \frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z))''}{g'(z)} - \frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z))'g''(z)}{\{g'(z)\}^2},$$

we know that the condition (2.11) leads us to

$$|b\omega(z)|^{\sigma}|bz\omega'(z)|^{\delta} < |b|^{\sigma+\delta}.$$

Suppose that there exists $z_0 \in \mathcal{U}$ such that

(2.13)
$$\max_{|z| \le |z_0|} |\omega(z)| = |\omega(z_0)| = 1 \qquad (\omega(z_0) \ne 1).$$

Then, using Lemma 1, we see

$$|b\omega(z_0)|^{\sigma}|bz_0\omega'(z_0)|^{\delta}=|b|^{\sigma+\delta}k^{\delta}\geq |b|^{\sigma+\delta},$$

which contradicts (2.11). Therefore we conclude $|\omega(z)| < 1$ for all $z \in \mathcal{U}$. This implies that

$$\left|\frac{(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z))'}{g'(z)}-1\right|<|b|\qquad(z\in\mathcal{U}),$$

which completes the proof of Theorem 3.

Letting $\alpha = -\beta = -\lambda$ in Theorem 3, we have

Corollary 5. Let the function f(z) defined by (1.1) be in the class A and satisfy

$$(2.14) \qquad \left| \frac{(\Omega^{\lambda} f(z))'}{g'(z)} - 1 \right|^{\sigma} \left| \frac{z(\Omega^{\lambda} f(z))''}{g'(z)} - \frac{z(\Omega^{\lambda} f(z))'g''(z)}{\{g'(z)\}^2} \right|^{\delta} < |b|^{\sigma + \delta} \quad (z \in \mathcal{U})$$

for some $\sigma \geq 0$, $\delta \geq 0$, and $g(z) \in \mathcal{K}_0(c)$. Then $\Omega^{\lambda} f(z)$ belongs to the class $\mathcal{C}_1(b)$.

Putting $g(z) = z \in \mathcal{K}_0(1)$, Theorem 3 gives

Corollary 6. Let the function f(z) defined by (1.1) be in the class A and satisfy

for some $\sigma \geq 0$ and $\delta \geq 0$. Then $\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z)$ belongs to the class $\mathcal{C}_1(b)$.

Theorem 4. Let the function f(z) defined by (1.1) be in the class A and satisfy (2.16)

$$\left| a \left(\frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z))'}{\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z)} - 1 \right) + (1-a) \frac{z^2 (\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z))''}{\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z)} \right| < |b| \left[1 + (1-a)(1-|b|) \right] \qquad (z \in \mathcal{U})$$

for some $a \leq 1$ and $|b| \leq 1$. Suppose also that $\alpha, \beta, \eta \in \mathbb{C}$ with $Re(\alpha) > 0$ and $\min\{Re(\alpha + \eta), Re(-\beta + \eta), Re(-\beta)\} > -2$. Then $\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z)$ belongs to the class $\mathcal{S}_1^*(b)$.

Proof. If we set

(2.17)
$$\omega(z) = \frac{1}{b} \left(\frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z))'}{\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z)} - 1 \right) \qquad (f \in \mathcal{A}),$$

then the function $\omega(z)$ is regular in \mathcal{U} and $\omega(0) = 0$. By using the logarithmic differentiation on both sides of (2.17), we have

$$\frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z))''}{(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z))'}=b\omega(z)+\frac{bz\omega'(z)}{1+b\omega(z)}.$$

This yields

$$a\left(\frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z))'}{\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z)}-1\right)+(1-a)\frac{z^2(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z))''}{\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z)}$$
$$=b\omega(z)\left\{1+(1-a)\left(b\omega(z)+\frac{z\omega'(z)}{\omega(z)}\right)\right\}.$$

Assume that there exists $z_0 \in \mathcal{U}$ such that (2.13) holds true for the function $\omega(z)$ in (2.17). Then, writing $\omega(z_0) = e^{i\theta}$, and using Lemma 1, we deduce

$$\left|b\omega(z_0)\left\{1+(1-a)\left(b\omega(z_0)+\frac{z_0\omega'(z_0)}{\omega(z_0)}\right)\right\}\right|=|b||1+(1-a)(k+be^{i\theta})|$$

$$\geq |b||1+(1-a)(1-|b|)|,$$

which contradicts (2.16). Thus we obtain

$$|\omega(z)| = \left| \frac{1}{b} \left(\frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z))'}{\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z)} - 1 \right) \right| < 1 \qquad (z \in \mathcal{U}),$$

which completes the proof of Theorem 4.

Taking $\alpha = -\beta = -\lambda$ in Theorem 4, we have

Corollary 7. Let the function f(z) defined by (1.1) be in the class A and satisfy

$$(2.18) \left| a \left(\frac{z(\Omega^{\lambda} f(z))'}{\Omega^{\lambda} f(z)} - 1 \right) + (1 - a) \frac{z^2 (\Omega^{\lambda} f(z))''}{\Omega^{\lambda} f(z)} \right| < |b| [1 + (1 - a)(1 - |b|)] \quad (z \in \mathcal{U})$$

for some $a \leq 1$ and $|b| \leq 1$. Then $\Omega^{\lambda} f(z)$ belongs to the class $\mathcal{S}_1^*(b)$.

Theorem 5. Let the function f(z) defined by (1.1) be in the class A and satisfy (2.19)

$$\left| a \left(\frac{z (\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z))'}{\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z)} - 1 \right) + (1-a) \frac{z (\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z))''}{(\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z))'} \right| < |b| \left(1 + \frac{1-a}{1+|b|} \right) \quad (z \in \mathcal{U})$$

for some $a \leq 1$. Suppose also that $\alpha, \beta, \eta \in \mathbb{C}$ with $Re(\alpha) > 0$ and $min\{Re(\alpha + \eta), Re(-\beta + \eta), Re(-\beta)\} > -2$. Then $\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z)$ belongs to the class $\mathcal{S}_1^*(b)$.

The proof of Theorem 5 is much akin to that of Theorem 4, and we omit the details involved.

Theorem 6. Let the function f(z) defined by (1.1) be in the class A and satisfy

$$(2.20) \qquad \left| (\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z))' - 1 \right|^{\sigma} \left| 1 + \frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z))''}{(\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z))'} \right|^{\delta} < |b|^{\sigma} \left(\frac{1 + 2|b|}{1 + |b|} \right)^{\delta} \qquad (z \in \mathcal{U})$$

for some $\sigma \geq 0$ and $\delta \geq 0$. Suppose also that $\alpha, \beta, \eta \in \mathbb{C}$ with $\operatorname{Re}(\alpha) > 0$ and $\min\{\operatorname{Re}(\alpha + \eta), \operatorname{Re}(-\beta + \eta), \operatorname{Re}(-\beta)\} > -2$. Then $\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z)$ belongs to the class $\mathcal{C}_1(b)$.

Proof. Define the function $\omega(z)$ by

(2.21)
$$\omega(z) = \frac{1}{b} \{ (\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z))' - 1 \} .$$

Then it follows that $\omega(z)$ is analytic in \mathcal{U} with $\omega(0) = 0$. Substituting for $\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z)$ into the left-hand side of (2.20) from (2.21), we get

$$\left| \left(\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z) \right)' - 1 \right|^{\sigma} \left| 1 + \frac{z \left(\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z) \right)''}{\left(\mathcal{J}_{0,z}^{\alpha,\beta,\eta} f(z) \right)'} \right|^{\delta} = \left| b\omega(z) \right|^{\sigma} \left| \frac{1 + b(\omega(z) + z\omega'(z))}{1 + b\omega(z)} \right|^{\delta}.$$

Assume that there exist a point $z_0 \in \mathcal{U}$ satisfying (2.13) for the function $\omega(z)$ in (2.21). Then, applying Lemma 1, we obtain

$$\begin{aligned} \left|b\omega(z_0)\right|^{\sigma} \left|\frac{1+b(\omega(z_0)+z_0\omega'(z_0))}{1+b\omega(z_0)}\right|^{\delta} &= \left|b\right|^{\sigma} \left|(k+1)-\frac{k}{1+b\omega(z_0)}\right|^{\delta} \\ &\geq \left|b\right|^{\sigma} \left(\frac{1+2|b|}{1+|b|}\right)^{\delta}, \end{aligned}$$

which contradicts the condition (2.20). Hence we have $\mathcal{J}_{0,z}^{\alpha,\beta,\eta}f(z)\in\mathcal{C}_1(b)$.

Theorem 7. Let the function f(z) defined by (1.1) be in the class A and satisfy

(2.22)
$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)} - \frac{zg''(z)}{g'(z)}\right) > \frac{|2b-1|-1}{2(|2b-1|+1)} \quad if \quad \left|b - \frac{1}{2}\right| < \frac{1}{2}$$

or

(2.23)
$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)} - \frac{zg''(z)}{g'(z)}\right) < \frac{|2b-1|-1}{2(|2b-1|+1)} \qquad if \left|b - \frac{1}{2}\right| > \frac{1}{2}$$

for some $g(z) \in \mathcal{K}_0(c)$. Then f(z) belongs to the class $\mathcal{C}_0(b)$.

Proof. Let us introduce the function $\omega(z)$ by

(2.24)
$$1 + \frac{1}{b} \left(\frac{f'(z)}{g'(z)} - 1 \right) = \frac{1 + \omega(z)}{1 - \omega(z)}$$

for some $g(z) \in \mathcal{K}_0(c)$ and $f(z) \in \mathcal{A}$. Differentiating both side of (2.24) logarithmically, we obtain

$$\frac{zf''(z)}{f'(z)} - \frac{zg''(z)}{g'(z)} = \frac{(2b-1)z\omega'(z)}{1+(2b-1)\omega(z)} + \frac{z\omega'(z)}{1-\omega(z)}.$$

Suppose that there exists $z_0 \in \mathcal{U}$ such that (2.13) holds true for the function $\omega(z)$ in (2.24). Then, letting $\omega(z_0) = e^{i\theta}$ and $2b - 1 = |2b - 1|e^{i\phi}$, and using Lemma 1, we have

$$\operatorname{Re}\left(\frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z_0 g''(z_0)}{g'(z_0)}\right) = \operatorname{Re}\left(\frac{(2b-1)k\omega(z_0)}{1 + (2b-1)\omega(z_0)}\right) + \operatorname{Re}\left(\frac{k\omega(z_0)}{1 - \omega(z_0)}\right)$$

$$= \frac{k|2b-1|(|2b-1|+\cos(\theta+\phi))}{1 + |2b-1|^2 + 2|2b-1|\cos(\theta+\phi)} - \frac{k}{2}$$

for $k \ge 1$ and $z_0 \in \mathcal{U}$. Hence, let

$$h(t) = \frac{|2b-1|+t}{1+|2b-1|^2+2|2b-1|t} \qquad (-1 \le t \le 1).$$

If $|b-1/2| \le 1/2$, then h(t) is monotone increasing and

$$\operatorname{Re}\left(\frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z_0 g''(z_0)}{g'(z_0)}\right) \le \frac{|2b - 1|k}{|2b - 1| + 1} - \frac{k}{2}$$
$$\le \frac{|2b - 1| - 1}{2(|2b - 1| + 1)}.$$

If, on the other hand, $|b-1/2| \ge 1/2$, then h(t) is monotone decreasing and

$$\operatorname{Re}\left(\frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z_0 g''(z_0)}{g'(z_0)}\right) \ge \frac{|2b-1|k}{|2b-1|+1} - \frac{k}{2}$$
$$\ge \frac{|2b-1|-1}{2(|2b-1|+1)}.$$

These contradict (2.22) and (2.23), which evidently completes the proof of Theorem 6.

Corollary 8. Let the function f(z) defined by (1.1) be in the class A and satisfy

(2.25)
$$\operatorname{Re}\left(\frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z))''}{(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z))'} - \frac{zg''(z)}{g'(z)}\right) > \frac{|2b-1|-1}{2(|2b-1|+1)} \quad if \quad \left|b-\frac{1}{2}\right| < \frac{1}{2}$$

or

(2.26)
$$\operatorname{Re}\left(\frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z))''}{(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z))'} - \frac{zg''(z)}{g'(z)}\right) < \frac{|2b-1|-1}{2(|2b-1|+1)} \quad if \quad \left|b-\frac{1}{2}\right| > \frac{1}{2}$$

for some $g(z) \in \mathcal{K}_0(c)$. Suppose also that $\alpha, \beta, \eta \in \mathbb{C}$ with $Re(\alpha) > 0$ and $min\{Re(\alpha + \eta), Re(-\beta + \eta), Re(-\beta)\} > -2$. Then $\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z)$ belongs to the class $\mathcal{C}_0(b)$.

Theorem 8. Let the function f(z) defined by (1.1) be in the class A and satisfy

(2.27)
$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right) > \frac{-|2b-1|-3}{2(|2b-1|+1)} \quad if \quad \left|b - \frac{1}{2}\right| \le \frac{1}{2}$$

or

(2.28)
$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right) < \frac{-|2b-1|-3}{2(|2b-1|+1)} \quad if \quad \left|b - \frac{1}{2}\right| > \frac{1}{2}.$$

Then f(z) belongs to the class $S_0^*(b)$.

Proof. The proof of Theorem 8 runs parallel to that of Theorem 7 with

$$1+\frac{1}{b}\left(\frac{zf'(z)}{f(z)}-1\right)=\frac{1+\omega(z)}{1-\omega(z)},$$

and we omit the details involved.

Corollary 9. Let the function f(z) defined by (1.1) be in the class A and satisfy

(2.29)
$$\operatorname{Re}\left(\frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z))''}{(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z))'} - \frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z))'}{\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z)}\right) > \frac{-|2b-1|-3}{2(|2b-1|+1)} \quad if \quad \left|b-\frac{1}{2}\right| \leq \frac{1}{2}$$

or

$$(2.30) \qquad \operatorname{Re}\left(\frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z))''}{(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z))'} - \frac{z(\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z))'}{\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z)}\right) < \frac{-|2b-1|-3}{2(|2b-1|+1)} \quad if \quad \left|b-\frac{1}{2}\right| > \frac{1}{2}.$$

Suppose also that $\alpha, \beta, \eta \in \mathbb{C}$ with $\operatorname{Re}(\alpha) > 0$ and $\min\{\operatorname{Re}(\alpha+\eta), \operatorname{Re}(-\beta+\eta), \operatorname{Re}(-\beta)\} > -2$. Then $\mathcal{J}_{0,z}^{\alpha,\beta,\eta}(z)$ belongs to the class $\mathcal{S}_0^*(b)$.

REFERENCES

- 1. I.S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2) 3 (1971), 469-474.
- 2. M.A. Nasr and M.K. Aouf, On convex functions of complex order, Mansoura Sci. Bull. Egypt 9 (1982), 565-582.
- 3. M.A. Nasr and M.K. Aouf, Starlike functions of complex order, J. Natur. Sci. Math. 25 (1985), 1-12.
- 4. S. Owa, On the distortion theorems, I. Kyungpook Math. J. 18 (1978), 53-59.
- 5. S. Owa, M. Saigo and H.M. Srivastava, Some characterization theorems for starlike and convex functions involving a certain fractional integral operator, J. Math. Anal. Appl. 140 (1989), 419-426.
- S. Owa, Notes on starlike, convex and close-to-convex functions of complex order, Univalent Functions, Fractional Calculus, and Their Applications (Edited by H.M. Srivastava and S. Owa), Ellis Horwood Ltd., Chichester, pp. 199-218, 1989.
- 7. S. Ruscheweyh and T. Sheil-Small, Hadamard products of schlicht functions and the Pólya Schoenberg conjecture, Comment Math. Helv. 48 (1973), 119-135.
- 8. M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Rep. College General Ed. Kyushu Univ. 11 (1978), 135-143.
- S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integral and Derivatives, Theory and Applications, Gordon and Breach, New York-Philadelphia-London-Paris-Montreux-Toronto-Melbourne, 1993.
- 10. H.M. Srivastava and R.G. Buschman, Theory and Applications of Convolution Integral Equations, Kluwer Academic Publishers, Dordrecht, Boston, and London, 1992.