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New Pr'oblems of Coeflicient Inequalities

Tadayuki SEKINE* [BEREMT] (B AKRFERFE)
Shigeyoshi OWA! [EFIEZ|(I#KFE L)

Abstract

H.Silverman determines some coefficient inequalities and distortion theorems for
univalent functions with negative coefficients that are starlike of order o or convex of
order a. The same coefficient inequalities and distortion theorems are obtained for
univalent functions with coefficients other than negative coefficients. We give some
examples of univalent functions with nagative coefficients or with coefficients other
than negative coefficients by using elementary functions. Further we investigate some

properties of the convolutions of such univalent functions.

1 Introduction

Let A denote the class of functions f(2) of the form

(1.1) f(z)=2z+ ianz" (a, € C, n € N)

n=2

that are analytic in the unit disk U = {2 : [2| < 1}.
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Let S be the subclass of A consisting of functions which are univalent in the unit disk U.
And we denote by S* the subclass of S consisting of starlike functions. Further we denote
by K the subclass of S consisting of convex functions. The following theorems for S* and

K are well known.
Theorem A (Kobori [1]). A function f(z) in A is in S* if and only if

(1.2) Re{zfl(z)} > 0.

f(2)
Theorem B(Kobori [1]). A function f(z) in A is in K if and only if
13 Re!1 z—f"(—zl} 0.
(9 B ok

M.S.Robertson(2] defined the subclasses S*(a) and K (a) of A as follows.
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A function f(2) in A is said to be starlike of order a if it satisfies
ZfTZ)}
14 Re{ -} >«
(4 §

for some a(0 < o < 1), and for all z € U. The subclass of A consisting of all starlike
functions of order « is denoted by S*(a). »
A function f(z) in A is said to be convex of order «a if it satisfies

(1.5) Re{l+ﬂz} >«

f'(2)

for some a(0 < a < 1), and for all z € U. The subclass of A consisting of all such functions
is denoted by K(a).

Let A(1) denote the subclass of A consisting of functions whose nonzero coefficients,
from the second on, are negative, that is,

(1.6) f(z)=2-§:anz“' (ap > 0,n € N).

n=2

A function f(2) in A(1) is called analytic function with negative coefficients. We denote
by T*(a) and C(c) the subclass of A(1) that are, starlike of order o and convex of order
a, respectively.

In (3], H.Silverman determines the coefficient inequalities for the functions belonging to
T*(a) and C(«), respectively as follows. '

Theorem C(Silverman [3]). A function f(z) in A(1) is in T*(a) if and only if

(o]

(1.7) Y n-a)a <1—a

n=2

| Theorem D(Silverman [3]). A function f(2) in A(1) is in C(a) if and only if

(1.8) in(n —a)a, <1-oa.

n=2

We note that f(z) € C(a) if and only if 2f'(2) € T*(a) for 0 < a < 1.

Let A(n,6) denote the subclass of A consisting of functions of the form
(1.9) f(z)=2z-— Z ei(k’l)oakzk (ax >0, n € N).
k=n+1

Then we have that A(1,0) = A(1). That is, A(1,0) is a class of analytic functions with
negative coefficients.
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We dend’pe by B(n,0,a) and C(n,0,a) the subclasses of A(n,f) that are, respectively
starlike of order a and convex of order a. That is,

B(n,0,a) = A(n,0)NnS*(a),
C(n,0,0) = An,0)NnK(a).

Then B(1,0,a) and C(1,0,a) are equivalent to T*(a) and C(a), respectively.
We note that f(2) € C(n,6,a) if and only if z2f'(2) € B(n,8,a) for 0 < a < 1.

2 Coefficients inequalities

Theorem 2.1 A function f(z) in A(n,8) is in B(n,0,a) if and only if

(2.1) i (k—o)ax <1-c.

k=n+}+1

Proof. If f(2) is in A(n,6) and coefficient inequality 332, ,(k — a)ar < 1 — a hold true,
then .

E (k —1)eitk-D0 g, k-1

'zf’(z) _ ll _ |k=nt1
f(2) 1— i ei(k-—l)aakzk—l
k=n+1
> (k- Daxlz/*
S k=n+1 —
1- > ag|z|*!
=n+1
Z (k - l)ak
< k=n+1 -
1-—- Z ar
~ k=n+t1
< l—-a
. 2f'(z) .. . . ' -
Therefore since the values for @) lie in a circle centered at w = 1 whose radiusis 1 —a,
we have ()
z2f'(z
Re{ ——=3}>a
{75

The sufficiency of the condition is proved.
We shall prove the necessity of the condition.
If f(2) is in B(n,0,a), then we have

”— Z k=10)q, o
Re{ f()}zRe henil >a
f(2) 2 k=10 ok
k=n+1
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for all 2 € U. Choose the values of z.on half line z = re ®(0 < r < 1) , then

[o ] o o]
z— ) k=10 kg, 2 1= Y kapr*!
k: =
(2.2) Re: ntl = k=ndl > a.
z— Y et Digk 1— Y gt
k=n+1 k=n+1

Since 1 — 3732, 4 karr®1 > 0,1 - 32,1 axr®~! > 0, we have by the inequality (2.2) that

(2.3) 1— Y kar*'>a (1 - > akrk"l) :

k=nt1 k=n+1

By letting r — 1 through half line z = re=#(0 < r < 1) in (2.3), we have

(2.4) 1-— i kakZOz(l— io: ak).

k=n+1 k=n+1
That is,
N k-a)a<l-a
k=n+1
and the proof of the theorem is completed.

Theorem 2.2 A function f(2) in A(n,0) is in C(n,0,a) if and only if

(2.5) > kk-a)a <1-oa.
. k=n+1

Proof. As we noted in Introduction,
f(z) € C(n,0,q) if and only if zf'(2). € B(n,0,q)

for0<ax<l.
Since -
z2fl(z)=2— Y * Vg "
k=n+1

if we put kay insted of ax in Theorem 2.1, we obtain Theorem 2.2.
Special cases of Theorem 2.1 and Theorem 2.2 are Theorem: C and Theorem D by
H.Silverman [3], n = 1,6 = 0, respectively.

Now, we shall show some examples of function f(z) € B(2,6,0) and C(2,8,0), respec-
tively. For the proof we refer to T. Sekine and T. Yamanaka [5].
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Theorem 2.3 The function

_ 1 i0_)\2 i0 3 3,
| (2.6) f(z) = 23*0(1 e’2)*log(l —e”z) + 52~ %
belongs to B(2,0,0).
Proof. We note that
) L ) i 1
(2.7 1+e?2+ (€92)? + (92)° + (e%2)* +--- = 1—.0; (2] < 1).
Hence we have the following equation by (2.13) above.
2 3 4 z
i0 i20z_ 1303_ — / 1 d
z+62+e 3+e 1 o 1 'e""{&
1 i
=~ log(1 — €?2).
Further we get the following equation.
' 22 i3 i20 4 1 = .
2. = voo = —— [ log(1—¢€¥
(28) s tgst3a” eWA og(l — e"0)de

Let furtheremore integrate both sides of the equation (2.8) from 0 to 2, similarly.
Then we get ' ‘

3

z ezt e 1 8 \2 0 3
(29) 23+ 234+ 345= —W(l_ez Z) log(l—e‘ Z)—-WZ—I- @Z .
By multiplying €'? to both sides of (2.9), we have

20,3 30,4 idd5 36

(2.10) 2.

1 ; ; 1
- —Zg—ib-(l —ef2)log(1 —e?2) — —z +

53 73.3.473 4.5 52+ 74

We therefore define a function f(z) as follows.

1 i0_\2 i0 3 3¢” ,
(2.11) flz) = 2ei9(1 —e¥2)*log(l —e¥2) + 27~ 1%
_ i20 S €130 e i0 S
1-2-3 2:-3-4 3:-4-5
That is, , ’
. o0
(2.12) f(z2)=2— Ze’(k’lwakzlc (2] < 1)
k=3
1
where a, =

k—2)(k— Dk’
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In this case, we have

ikak S S ST R
& 1.2.3 2.3.4 3.4.5
1 1 1
= 1eta3tyat
- 1_14_1_1_;_1_‘1.4_..
1 2 2 3 '3 4

Hence we have that f(z) belongs to B(2,6,0) by Theorem 2.1.
By virtue of (2.12) of Theorem 2.1, and Theorem 2.2 we have the following corollary.

Corollary 2.1 The function

-~ i(k—1)8 1 k
(2.13) f(z):ze’;e(k- ) (k—-—Z)(k-——l)kzz

belongs to C(2,6,0).
Further putting 8 = 0 or § = 7 in the theorem 2. 3, we have the following examples.

Example 2.1 (T.Sekine and T.Yamanaka [5]) The function

(2.14) f(z) = 1(1-—-z)2log(1—z)+-3-z—§z2
2 2 4

23 24 2°
- fT9237 234 3.4.5

belongs to B(2,0,0) = T*(0).

Example 2.2 The function

(2.15) flz) = 4-;—(1 + z)%log(1 + 2) + gz + 222

23 24 5

5
= 533%23473.4.5

+..-

belongs to B(2,m,0).

3 Distortion theorems for B(n,@, a) and C(n,6,a)

Theorem 3.1 If f(z) is in B(n,0,0), then

l1-a 41 , l-a +1
. —_—— 2 < < - n+l
(3.1) = g P SIS Bl e

Right-hand equality holds for the function

. 5y 1l—a ;
— 5 pin(0+7) ' n+1 — pp—id
(3.2) flz)=2z—e¢ ool (z=re™")
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and Left-hand equality holds for the function

g l—a

n+1 -0
_— z=re ).
n+l—a ( )

| (3.3) f(z) = z—¢€™
Proof. From the assumption of the theorem, note that
m+l-a) > &< > (k—-a)ax<l-a
k=n+1 k=n+1

Hence we have
l—a

G4 S asoTt

Using the coefficient inequality (3.4), we have

F@ < led+ 3 alaft

k=n+1
< lelH ™ Y e
k=n+1
—-a
< i ﬂ-+1.
S lel+ n+l—<)z|zI
Similarly, we have
If2)] = |zl = Y al]
k=n+1
2 — 2" Z ag
k=n+1
> |2l - 1—_—Iz|"+‘
- n+1- '
Theorem 3.2 If f(z) is in C(n,0,a), then
l1-a l-a

(3.5) |z -

)lzl"*1 <|f(2)] < 2] + |27+,

n+1)(n+l-a
Right-hand equality holds for the function

n+1)(n+1-0a)

(3.6) f(2) = 2z —em0+3) (n+ 1)1(1—1—-?1 —a) 2 (z= re_w)

and Left-hand equality holds for the function

in l—a n+1 i
(3.7 f(z)=z—e 0(n+1)(n+1,—-—a)z (z=re™®).

Proof. Using Theorem 2.2, we shall prove Theorem 3.2 51m11arly as in the proof of the
theorem 3.1.
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Theorem 3.3 If f(z) is in B(n,0, ), then

39 1= DU gy < g 4 DA 0) )
Right-hand equality holds for the function

(3.9) ' f(z) =2z— e"”(o’“%)%z"“ (z = re%)

and left-hand equality holds for the function

(3.10) f(2) =z— e""gni;—faz"“ (z = re™¥).

Proof. By the assumption of the theorem and the coefficient inequality (3.4) in the theorem
3.1, we have

> kay "< a > a+(1-a)
k=n+1 ' k=n+l

1—a
e - 1—
@ n+1—a+( @)

(n+1)(1-a)
n+l—a

Hence

If' ()] < 1+ Z kag|z|*?

k=n+1
< l—Flzrz'EE: kay,
k=n+1
1)(1 -
n+1-—

Similarly, we have

F@) > 1= 3 kagla*

k=n+1
> 12" ) ka
k=n+1
> 71— n+1)1-a 12|
n+l—a

Theorem 3.4 If f(2) is in C(n,0,a), then

1-— l—a
: —_—— 2" <|f'2)| <1+ ———— 2|
(3.11) 1 n+1 II If' ()] <1+ H_aIZI
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Right-hand equality holds for the function

l—a
n+1)(n+1-0)

(3.12) fRR)=2- en0+3) 2" (2 =re¥)

and left-hand equality holds for the function

l1—a

n+ D+l a)zn+1

(3.13) f(z)=2z—¢e" -,

(z=re

4 Convolutions of functions from subclasses of A(n, 0)

Let f(2) and g(z) be in A(n,6;) and A(n, ), respectively. That is,

(4.1) f@)=z2- > elb=101g, k.
k=n+1
o0 .
(4.2) g(z2)=z— .3 et-Doap*
k=n+1

Then we define by f(2) * g(z) the convolution of f(z) and g(z2), that is,
(4.3) , f2)xg(z) =2 Y ¢ N0tlagp ok
- k=n+1

By using the convolution technique, which Schild and Silverman[4] introduced, we shall
prove the following theorems in the same way.

Theorem 4.1 If f(z) is in B(n 01,a) and g(z) is in B(n 0, 8), then f(2) *g(z) is an
element of B(n,0; + 05,7), where vy = ——

3—a-— ﬁ
The result is sharp for the functions
f(z):z—e . z € B(1,0,a) and g(2) = z — €2 5= gZEB(l 02, B).
Proof. By virtue of Theorem 2.1 we wish to find the largest v = 7y(a, ) such that
Y (k—7arbe <1-1.
k=n+1

Hence it is equivalent to show that

(4.4) i (k—a)Jar<1—a
k=n+1

and -

(4.5) | > (k=B <1-p

k=n+1
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imply that

(48 \ > (k—Matk <1-7
) k=n+1
for all v = y(a, 8) < 2—aaﬁ—.
Using Cauchy—Schwa,rz inequality for (4.4) and (4 5) we have the following inequality.
vk —ak
(47) Z o akbk S 1.
k=n+1V 1-ayl

Therefore it suffices to show that

m@m)cﬁ)

v

=5 () ()

for each k by (4), it will be suffice to show that

Since we have

W EER)E)E)E)
for all k.

Inequality (4.8) is equivalent to

l—a\ [(1-7
l—k(k—a>(k—ﬂ>
] l—a\/1—-a\ -
(k~a>(k—a)
Because the right hand side of (4.9) is an increasing functions of k(k = 2,3,--), we have
l—a\ [(1-7
<1_2Q—a)@—ﬁ)_ 2 —af
1= 1 1-a\(1-8\ 3-a-4
(Z—a) 2-p

Corollary 4.1 If f(z) and g(2) are in B(1,0,a), then f(z2) * g(z) is an element of
2 B

(4.9) vsﬂmmé

B(1,0,7), where v = 5_—20;. The result is sharp for the functions

f@) =gle) =2~ 1=

2 —a? . [(2—a?
B (1’0’3—’2a> =T (3—2a)'

22 € B(1,0,0).
a

Remark 4.1
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Corollary 4.2 If f(2) is in B(1,0,0) and g(2) is in B(1,m,a), then f(z) * g(2) belongs
2

to B(1,m,~), where v = —;———;1—&. The result is sharp for the functions
l—a, —p 22
flz)=2— —2° € B(1,0,a) and g(2) = = € B(1, 7Ta)
2—a — ,B
Corollary 4.3 If f(2) and g(2) are in B(1,m,a), then f(z) * g(z) belongs to B(1,0,7),
where v = ; 2a The result is sharp for the functions

f(z)=g(z)=z+;:

322 € B(1,m, a).

Theorem 4.2 If f(z) and g(z) are in C(n,0,a) and C(n,0,0), respectively. Then

_ 2B8=a-p)
f(2) * g(2) is an element of C(n, 0, + 02,7), where v = 7T—3a—38+af

The result is sharp for the functions

—-B
2(2 A)

Proof. From Theorem 2.1 we want to get the largest v = v(a, §) such that

f(2) = 2z — ™ 2 € C(1,01,a) and g(z) = z — €* 22 € C(1,6,, ).

l—-a
22-a)

> k(k—7)arbs <1 —1.

k=n+1
It is equivalent to show that
(4.10) Y k(k—a)a <1-a
k=n+1
and -
(4.11) . Z k(k—-pB)b<1-p
k=n+1
imply that
(4.12) > k(k—7)arb <1—7
k=n+}1
23—a-p)

for all v = v(e,B) < T v— ;Y
Proceeding similarly as in the proof of the preceding theorem, we have

,_(-a)(-p)
(k= o) (k= )
(4.13) 100 € —G=ga=p)

k(k — a)(k — f)
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Since the right hand side of (4.13) is an increasing functions of k(k = 2,3,--:) as in
Theorem 4.1, setting n = 2 in (4.13) we have

(-1 -5
2-a)2-8) _ 2B8-a-p)
(4.14) vsl_ (1-a)0=-08) 7-3a-38+af
22-a)2-pP)

Corollary 4.4 If f(z) and g(z) are in C(1,0,a), then f(z) *x g(2) is an element of

2(3—-2
O(1,0,7), where y = o2

7 bat The result is sharp for the functions

1-a zEC’(lOa)

Corollary 4.5 If f(z) is in C’(l 0,a) and g(2) is in C(1,7,q), then f(2) * g(z) belongs

2
B The result is sharp for the functions

to C(1,m,7), “where v = —7——6_04—4?—2

1—a l—«a

flz)=2— mz € C(1,0,a) and g(z) = +2(2~—a)

2eC(l,ma).

Corollary 4.6 If f(z) and g(2) are in C(1,m, ), then f(z) * g(z) belongs to C(1,0,7),
2(3 — 2a)

where T = 6at a?

The result is sharp for the functions

f(2) =g(2) = 2+

2(12 )z € C(l,m,a).

Theorem 4.3 If f(2) and g(z) are in B(n,61,a) and B(n,0,,0), respectively. Then
2a+ 203 — 3ap

2—af

f(2) *x g(2) is an element of C(n,0; + 0;,7), where vy =
The result is sharp for the functions
f(z):z—-e"1 2 € B(1,601,a) and g(z) = z — ' '3263(102;6)
2 -« ’ 2-p !
Proof. We shall prove that

e o]

(4.15) Y k—a)ax<1-—a
) k=n+1
and -~ :
(4.16) > (k=Ab<1-8
k=n-+1
imply that
(4.17) : ‘ Z k(k—v)arb <1—1v

k=n+1
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for all ';Y(O’ ﬂ)<2a+2ﬂ Baﬂ

2—af
Proceeding similarly as in the proof of the theorem 4.1 or the theorem 4.2, we have
| _RO-0)-p)
(k—a)(k—f)
4.18 =v(a,B) < .
( ) v =v(a,B) 1_k(1—a)(1~—ﬁ)
(k—a)(k - p)
~ Because the right hand side of (4.18) is an increasing functions of k(k = 2,3,---), we
have
1_4(1—0:)(1—- B)
(2-a)2-8) _2a+28-3ap
. < = .
(4.19) 7—1_2(1—a)(1—ﬁ) 2—af
(2—a)2-0)
Corollary 4.7 If f(2) and g(z) are in B(1,0,a), then f(2) * g(z) is an element of
C(1,0,v), where v = ég——:;%— The result is sharp for the functions

f(2) =g(z) = 2— ;:Zzz € B(1,0,q).

Corollary 4. 8 If f(2) isin B(l 0,a) and g(2) is in B(1,7,a), then f(2) * g(z) belongs

4a — 30

to C(1,m,~), wherey = -

The result is sharp for the functions

_ l—a , - _ l—a 4
f(z)==z2 5ot € B(1,0,a) and»g(z)_z+2_az € B(1,n,q).

Corollary 4.9 If f(2) and g(z) are in B(1,m,a), then f(z) * g(z) belongs to C(1,0,7),

_an?
where v = 4:;—[—23——. The result is sharp for the functions
l—a,
f(z2)=g(2) =2+ 2* € B(1,m, a).
2—-—a ’
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