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ON BLOCH FUNCTIONS AND THE
CONTRACTION OF TEICHMULLER METRICS

HuaNG XINZHONG AND SHIGEYOSHI OwaA

ABSTRACT. In this note, we consider the properties of Bloch functions determined
by Beltrami coefficient. A sufficient condition for extremal quasiconformal mapping
with nonexistence of degenerating sequence is obtained. As a result, we consider the
contraction or preserved of Teichmiiller metrics for the related Beltrami lines under
the projection mapping =.

1. INTRODUCTION

Let Q1 be the class of quasiconformal mappings f of the unit disk D = {z]|z| < 1}
onto itself with f(0) = f(1) —1 = 0, ps be the complex dilatation of f, k; =
l&6¢lloo = esssup.ep|ugl, ko(f) = infy k4, where g € Qr with glap = flap. We say
that f(z) is extremal if ky = ko(f), and the corresponding s is called extremal.

We know that the universal Teichmiiller space T(1) can be represented as a
quotient space of QS by the Mébius group PSL(2, R), where QS is the group
of all quasi-symmetric homeomorphisms of a circle, and the Teichmuller distance
d([f],[g]), from a point [g] to another point [f] in T(1), is equal to

1+ko(gof™")
1—ko(go f~1)

QS contains another topological subgroup, which is much larger than PSL(2, R),
the subgroup S of symmetric homeomorphisms. Gardiner-Sullivan [1] showed
that QSmodS also has a natural complex Banach manifold structure and a nat-
ural quotient metric d, called the Teichmiiller metric in QSmodS. Let IEf =
infy esssup,ev|ug(z)|, where U moves all neighborhoods of 8D in D, Z?j is called
the boundary dilatation of f. Set ko(f) = inf, k,, where g moves all quasiconfor-
mal mappings of D with the same boundary values as f. If ko(f) = k¢, then f(2)
is called extremal in QSmodS. The distance between two points x[f] and n{g] in
QSmodS is equal to '

(11) a1, ko)) = 5 log

1+ Fko(gof~1)
1—ko(gof-1)

Suppose u(2) is a given Beltrami coefficient, we consider the Beltrami line C, =
{Ifll-1<t<1}ornC, = {a[f!]| =1 <t <"1}, where py« = tppf=. Hpis

(12) d(xL1), 7lal) = 5 o
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extremal in T(1) or in QSmodS, then the natural mapping t tﬁ— from the
open interval (—1, 1) with the Poincaré metric onto C, or 7C, with the Teichmiiller
metric is an isometry. Whether u is extremal or not, such mapping is weakly

contracting. The following problem is very interesting a.nd considered by many
authors(cf. [2],[3]):

For which points [f] € T'(1), does the Telchmuller distance from 0 to [f] in QS
strictly greater than the distance from 0 to #[f] in QSmodS?

In this note, we will investigate some properties for Bloch functlons determmed
by u and pa.rtla,lly solve the above problem.

2. MAIN RESULTS AND THEIR PROOFS
Let f(2) = Y n—o an 2" be analytic in D, f(2) is called a Bloch function if

(2.1) 17z = Sgg(l — [2P)F'(2)] < 0.
The Bloch functions will be denoted by B. B, will be the subset of B with

(2:2) 1Flla, = lim sup(t = [sP)l'(2)] = 0.

A(D) = {f(2)|f(z) is analytic in D, || f(2)| = = /o 1f(2)| dzdy < oo}. The quasi-
conformal mapping f from D onto itself is called a Teichmiller mapping of finite
type, if puy = ”,u(z)”ool%-[, wo € A(D). From Reich’s example(cf.[4]), we know that
even the point [f] corresponds to a Teichmiiller mapping of finite type, the distance
from 0 to [f] under the projection 7 may not contract. However, if [f] € T'(1), and
d(0, [f]) < d(0, [f]), then [f] contains a Teichmiiller mapping of finite type. This
makes the above problem more complicated.
Suppose k(z) € L*(D), the space of complex-valued bounded measurable func-
“tions in D with ||x|lcc = esssup,ep|x(2)|, we consider a linear functional L, on

A(D)
(23) L) =7 [[ s2)i@) dody, ()€ AD)

then

(24) AP

Hamilton, Reich and Streble [5, 6] showed that

Theorem A. A Beltrami coefficient y is extremal if and only if one of the foHowing
statements holds:

1) There exist ¢ € A(D) and k € [0,1) such that u = k@/|p| for almost every-
where on D.

2) There is a degeneration sequence {lpn} € A(D), |l¢nll1 =1, converging to 0
locally uniformly in D, such that
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(2.5) 0 lim | / / ¢ dzdy| = ||14"oo

n—oo

For a given Beltra.xm coefficient p(2), let

(26) -2 / ()emdsdy,  g(€)= Y bal™

n=0

it is clearly that |b,| 5 2|l#(2)|lo and g(€) is analytic in D. We call that the
analytic function g(() is determined by u(z).
Let G(¢) = (g(¢), Anderson proved in [7] the following

Theorem B. For a given u(z) € L*(D), then
(2.7) ILull SNG(Olls < 4L,

where G'(() = 2 [, 25 dedy.

Theorem C. If u(z) possesses a degenerating sequence, then
(28) IZ < Jim sup(a ~ PG ),

where GO=2[f, Zl—':%%ydxdy. In particular, if

(29) [ ety =o-101" (€11,
then u(z) = ||,u||°°]f—g—8-|, wo € A(D), for almost all z€ D.

Theorem C means that if 44(2) is extremal and limj,|—,; sup(1 - |2]$)|G'(2)] = 0,
then
u(z) = Il @o/lool,  9olz) € AD),
for almost everywhere z € D. For an extremal quasiconformal mapping f #(2) € Qy,
in what case, is it a finite type Teichmiiller mapping or even has it no degenerating

sequence? Thls problem is very interesting itself(cf. [8 9] and the references cited
there). First, we will prove the following

Theorem 1. Suppose u(z) is extremal, let g(z) be defined in (2.6), if there exists
a po, 0 < pg < 1, such that

(2.10) sup (1-— |2|2)|g ()<,
o<zl

then there exists a po € A(D) with p(z) = "I-‘(Z)"oo]%g'[ for almost all z € D. In
particular, pu(2) possesses no degenerating sequence.

The proof of Theorem 1. If u.(z) is an extremal Beltrami coefficient, let g({) be
~ defined in (2.6), if f(2) = Jonep @n2™ € A(D), 0 < p< 1, we have

L) = S and () = 3 228

n=0 n=0
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Since ||f(pz) — f(2)]l1 — O, when p — 17, then we have

anbs,

On the other hand, if G(() €g((), then

i t0 ' —1i8
27‘_ ; f(re )G'((re™"")do
21r s
Eanrn mO)(E(n_l_l)b (n n —lnG)de
n=0 '
= Z(n + Dapbp (" r?".
n=0
Thus, we have
(2.11) lim i gﬁ?ﬁ'p" = l/] " freéG (Cre™) (1 - r?)r, drdf
p—1- n=0 n+ 2 T Jo 0 ' ’ '

for any f(z) € A(D). Since

o) = Zbc" Z(““ //2#(2)dzdy)C"

/X 2)57¢"u(2) dody
n=0
/ / [(1 zozlu(Z)dwdy,
then,
@11)  Je(O) < Welleo o THUL_ oa pepyry, -1

e 1— (]

If{fn(2)}isa degeneratmg sequence for p(z) with ||fall1 = 1, by Theorem B and -
(2.11), we can choose a p’ with pg < p' < 1 such that

IL#(fn)l.S éﬂf‘"ﬁ//( lfn(re"”)'|rdrd9+ sup (1 —12*)lg(2)]
lsl<p!

p'<|s|<1
4+ sup (1-]zP)l¢’ (z)l <1, forn— o,
<]zl '

which contradicts that { f,,(z)} isa degeneratmg sequence. By Theorem A, Theorem
1 is proved.

The following example 1 shows that there is non-extremal Beltrami coefficient
p(z) with the bound sup,, ¢|,j<1(1 = |21*)lg'(2)| = 2.
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Example 1. Set Beltrami coefficient

1, for$22>0,|2|<1
u(z) = N
0, forSz<0,]z| <1

Then by [8, Theorem 1], we see that u(z) is not extremal In this case, by calcula-
tion, we have

2, 1 1
' — — —-3 ... _2""1 L
gl)=2+ —z+ 327+ 4 52" 4+ ]

and Ly, (1 — |2?)lg'(2)] = 2.

Next we will investigate the relationship between extremal Beltrami coeflicient
¢ and the coeflicients of g(2) defined in (2.6).

From [11] and Theorem 1, we know that if u(z) is extremal and the determained
analytic function g(z) € By, then lim,_, |b,| = 0. However, we also know that
even if f(2) € B and lim,_, [b,] = 0, one can not derive that f(z) € By. From
this we will prove the followmg

Corollary 1. Suppose u(z) is evctremal and let g(z) = E:’f_olb 2" be defined in
(2.6), if there exist a positive number Ny and [, 0 < | < 3, such that

[ba| < %, holds for n > Ny,
then there exists a po(2) € A(D) with

1(2) = ||tlloo Bo/lol, for almost all z € D.

The proof of Collary 1. If p(2) is extremal, and let g(z) = Yomeobn 2™ be defined
in (2.6), we have

N,
! : b n —~ l n
lg' (<1 a2+ Y, 12"
n=0 n=Ng+1
2o+

.—Ian z"|+l Py

thus there exists a po > 0, such that sup, (|,;<1(1 — |2]*)lg'(?)| < 1, by Theorem
1, we obtain the assertion.

Let II denote the subset of T'(1) consisting of elements of [f] which correspond
to Teichmiiller mappings of finite type whose complex dilatations p = py satisfy
the following condition: There exists a pp, 0 < po < 1, such that sup, | «all—

I<I*)lg'(¢)l < 1, where g(() is defined in (2.6). We will prove the ,fqllowing
Theorem 2. For [f] € I, then d(0, x([f])) < d(0, [f]).

In order to prove Theorem 2, we need the following Theorem D due to Gardiner

[2].



203

Theorem D. For every [f] € T(1), then k; = ko(f) if and only if

sup limsup |Re // pnpp dzdy| = kg,
D

{Vn} n—=oo

where the supremum is taken over all degeneratmg sequences {@n} for py with
lgnlls = 1 in A(D).

The proof of Theorem 2. We use the same way as in [3] to prove Theorem 2. If
[f] €I, then we conclude that ko(f) = ko(f). On the contrary, by Theorem D, we
can find a degenerating sequence {cp,.}} with ||¢n|ls = 1 such that

Jim Re [[ o dody = laglle = ho() = o),
which is impossible by Theorem 1.
Thus we have kqo(f) < ko(f), which is equivalent to d(O 7([f])) < d(0, [f])

On the other hand, comparing with Theorem 2, we will prove the following

Theorem 3. Suppose [f] € T(1), and b, -—'f—ffD pgz" dzdy, if im, o b, =
2llestlloo, then d(0, m([f])) = d(0,[f]). The constant 2 is the best.

The proof of Theorem 3. First, from Fehlmann and Sakan’s paper in [10], we know
that the subset of T°(1) sa.tlsfylng the conditions in Theorem 3 is not empty, and
by the example of Fehlmann and Sakan made in [10], there exists an extremal
Beltrami coefficient 4 such that the coefficients of g(2) satisfy limp—c0 8n = 2||tt]|co,
thus the constant 2 is the best. Now, if limpweo bn = 2||t¢]lco, then we have
im0 bn; = 2||pit|loo, and the sequence {pn (2) = -'52"'—22"1'} is a degenerating
sequence for the Beltrami coefficient uf, with ||¢, |li = 1, by Theorem D, we
conclude that ko(f) = ko(f), thus d(0, 7([£])) = d(0, [f]).

To consider the contraction of Teichmiiller metrics, we need the following Prin-
ciple of Teichmiiller contraction due to Gardiner [2].

Principle of Teichmiiller contraction. Assume lull =1,0< k1 < k2 <1, and
d(o, [f’“]) < A1d,(0, kl) or (0, 7([f*1)) < A1dp(0, k1) with some A < 1, Wbere
and in the sequel, f* is the quasiconformal mapping of D on to itself such that
ps = ku for every positive k < 1. Then there exists a A; < 1 depending only on
ki, ko, and A, such that :

d(0,[F*]) € X2d,(0,k)  or d(0,x([f*])) < A2d, (0, k)

respectively, for all k with 0 < k < k.

Using Theorem 2 and the Principle of Teichmiiller contraction, we can obtain
the following
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Corollary 2. Under the same circumstance as in Theorem 2, let k = "ﬂf"oo and
A = d(0, ([f1))/4(0,[f]). Fix k' <1 and let fibe the quasiconformal mapping of
D onto itself such that pg« = (t/k)uy for every t € [0, k'). Then there exists ' < 1
depending only on k, k', and X such that

d(o, =([f])) < X'dp(0, 1),

for every t with 0 < t < k', where d, denotes the Poincaré metric on D.

The proof of Corollary 2. By Theorem 2, we have d0,[f]) = dp(0,k) and A =
d(0, n[£])/4(0,[f]) < 1, using the principle of Teichmiiller contraction, the Corollary
2 is obtained.
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