ON BLOCH FUNCTIONS AND THE CONTRACTION OF TEICHMÜLLER METRICS

HUANG XINZHONG AND SHIGEYOSHI OWA

ABSTRACT. In this note, we consider the properties of Bloch functions determined by Beltrami coefficient. A sufficient condition for extremal quasiconformal mapping with nonexistence of degenerating sequence is obtained. As a result, we consider the contraction or preserved of Teichmüller metrics for the related Beltrami lines under the projection mapping π .

1. Introduction

Let Q_I be the class of quasiconformal mappings f of the unit disk $D = \{z | |z| \le 1\}$ onto itself with f(0) = f(1) - 1 = 0, μ_f be the complex dilatation of f, $k_f = \|\mu_f\|_{\infty} = \text{esssup}_{z \in D} |\mu_f|$, $k_0(f) = \inf_g k_g$, where $g \in Q_I$ with $g|_{\partial D} = f|_{\partial D}$. We say that f(z) is extremal if $k_f = k_0(f)$, and the corresponding μ_f is called extremal.

We know that the universal Teichmüller space T(1) can be represented as a quotient space of QS by the Möbius group PSL(2,R), where QS is the group of all quasi-symmetric homeomorphisms of a circle, and the Teichmüller distance d([f],[g]), from a point [g] to another point [f] in T(1), is equal to

(1.1)
$$d([f],[g]) = \frac{1}{2} \log \frac{1 + k_0(g \circ f^{-1})}{1 - k_0(g \circ f^{-1})}.$$

QS contains another topological subgroup, which is much larger than PSL(2,R), the subgroup S of symmetric homeomorphisms. Gardiner-Sullivan [1] showed that QSmodS also has a natural complex Banach manifold structure and a natural quotient metric \bar{d} , called the Teichmüller metric in QSmodS. Let $\bar{k}_f=\inf_U \operatorname{esssup}_{z\in U}|\mu_f(z)|$, where U moves all neighborhoods of ∂D in D, \bar{k}_f is called the boundary dilatation of f. Set $\bar{k}_0(f)=\inf_g \bar{k}_g$, where g moves all quasiconformal mappings of D with the same boundary values as f. If $\bar{k}_0(f)=\bar{k}_f$, then f(z) is called extremal in QSmodS. The distance between two points $\pi[f]$ and $\pi[g]$ in QSmodS is equal to

(1.2)
$$\bar{d}(\pi[f], \pi[g]) = \frac{1}{2} \log \frac{1 + \bar{k}_0(g \circ f^{-1})}{1 - \bar{k}_0(g \circ f^{-1})}.$$

Suppose $\mu(z)$ is a given Beltrami coefficient, we consider the Beltrami line $C_{\mu} = \{[f^t] | -1 \le t \le 1\}$ or $\pi C_{\mu} = \{\pi[f^t] | -1 \le t \le 1\}$, where $\mu_{f^t} = t \frac{\mu}{\|\mu\|_{\infty}}$. If μ is

The first author was supported by the National Science Foundation of Fujian, China.

extremal in T(1) or in QSmodS, then the natural mapping $t \mapsto t \frac{\mu}{\|\mu\|_{\infty}}$ from the open interval (-1,1) with the Poincaré metric onto C_{μ} or πC_{μ} with the Teichmüller metric is an isometry. Whether μ is extremal or not, such mapping is weakly contracting. The following problem is very interesting and considered by many authors(cf. [2],[3]):

For which points $[f] \in T(1)$, does the Teichmüller distance from 0 to [f] in QS strictly greater than the distance from 0 to $\pi[f]$ in QSmodS?

In this note, we will investigate some properties for Bloch functions determined by μ and partially solve the above problem.

2. Main results and their proofs

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be analytic in D, f(z) is called a Bloch function if

(2.1)
$$||f||_B = \sup_{z \in D} (1 - |z|^2) |f'(z)| < \infty.$$

The Bloch functions will be denoted by B. B_0 will be the subset of B with

(2.2)
$$||f||_{B_0} = \lim_{|z| \to 1} \sup(1 - |z|^2)|f'(z)| = 0.$$

 $A(D)=\{f(z)| f(z) \text{ is analytic in D, } \|f(z)\|_1=\frac{1}{\pi}\iint_D|f(z)|\,dxdy<\infty\}$. The quasi-conformal mapping f from D onto itself is called a Teichmüller mapping of finite type, if $\mu_f=\|\mu(z)\|_{\infty}\frac{\bar{\varphi}_0}{|\varphi_0|}$, $\varphi_0\in A(D)$. From Reich's example(cf.[4]), we know that even the point [f] corresponds to a Teichmüller mapping of finite type, the distance from 0 to [f] under the projection π may not contract. However, if $[f]\in T(1)$, and $\bar{d}(0,\pi[f])<\bar{d}(0,f]$, then [f] contains a Teichmüller mapping of finite type. This makes the above problem more complicated.

Suppose $\kappa(z) \in L^{\infty}(D)$, the space of complex-valued bounded measurable functions in D with $\|\kappa\|_{\infty} = \text{esssup}_{z \in D} |\kappa(z)|$, we consider a linear functional L_{κ} on A(D)

(2.3)
$$L_{\kappa}(f) = \frac{1}{\pi} \iint_{D} \kappa(z) f(z) dx dy, \qquad f(z) \in A(D),$$

then

Hamilton, Reich and Streble [5, 6] showed that

Theorem A. A Beltrami coefficient μ is extremal if and only if one of the following statements holds:

- 1) There exist $\varphi \in A(D)$ and $k \in [0,1)$ such that $\mu = k\bar{\varphi}/|\varphi|$ for almost everywhere on D.
- 2) There is a degeneration sequence $\{\varphi_n\} \in A(D)$, $\|\varphi_n\|_1 = 1$, converging to 0 locally uniformly in D, such that

(2.5)
$$\lim_{n\to\infty} |\iint_D \varphi_n \mu \, dx dy| = ||\mu||_{\infty}.$$

For a given Beltrami coefficient $\mu(z)$, let

(2.6)
$$b_n = \frac{n+2}{\pi} \iint_D \mu(z) z^n \, dx dy, \qquad g(\zeta) = \sum_{n=0}^{\infty} b_n \zeta^n,$$

it is clearly that $|b_n| \leq 2||\mu(z)||_{\infty}$ and $g(\zeta)$ is analytic in D. We call that the analytic function $g(\zeta)$ is determined by $\mu(z)$.

Let $G(\zeta) = \zeta g(\zeta)$, Anderson proved in [7] the following

Theorem B. For a given $\mu(z) \in L^{\infty}(D)$, then

$$||L_{\mu}|| \le ||G(\zeta)||_{B} \le 4||L_{\mu}||,$$

where $G'(\zeta) = \frac{2}{\pi} \iint_D \frac{\mu(z)}{(1-\zeta z)^3} dx dy$.

Theorem C. If $\mu(z)$ possesses a degenerating sequence, then

(2.8)
$$||L_{\mu}|| \leq \lim_{|z| \to 1} \sup(1 - |z|^2) |G'(z)|,$$

where $G'(\zeta) = \frac{2}{\pi} \iint_D \frac{\mu(z)}{(1-\zeta z)^3} dx dy$. In particular, if

(2.9)
$$\iint_D \frac{\mu(z)}{(1-\zeta z)^3} dx dy = o(1-|\zeta|^2)^{-1} \qquad (|\zeta| \to 1^-),$$

then $\mu(z) = \|\mu\|_{\infty} \frac{\bar{\varphi}_0(z)}{|\varphi_0(z)|}$, $\varphi_0 \in A(D)$, for almost all $z \in D$.

Theorem C means that if $\mu(z)$ is extremal and $\lim_{|z|\to 1} \sup(1-|z|^2)|G'(z)|=0$, then

$$\mu(z) = \|\mu\|_{\infty} \bar{\varphi}_0/|\varphi_0|, \qquad \varphi_0(z) \in A(D),$$

for almost everywhere $z \in D$. For an extremal quasiconformal mapping $f^{\mu(z)} \in Q_I$, in what case, is it a finite type Teichmüller mapping or even has it no degenerating sequence? This problem is very interesting itself(cf. [8, 9] and the references cited there). First, we will prove the following

Theorem 1. Suppose $\mu(z)$ is extremal, let g(z) be defined in (2.6), if there exists a ρ_0 , $0 < \rho_0 < 1$, such that

(2.10)
$$\sup_{\rho_0 < |z| < 1} (1 - |z|^2) |g'(z)| < 1,$$

then there exists a $\varphi_0 \in A(D)$ with $\mu(z) = \|\mu(z)\|_{\infty} \frac{\bar{\varphi}_0}{|\varphi_0|}$ for almost all $z \in D$. In particular, $\mu(z)$ possesses no degenerating sequence.

The proof of Theorem 1. If $\mu(z)$ is an extremal Beltrami coefficient, let $g(\zeta)$ be defined in (2.6), if $f(z) = \sum_{n=0}^{\infty} a_n z^n \in A(D)$, $0 < \rho < 1$, we have

$$L_{\mu}(f(\rho z)) = \sum_{n=0}^{\infty} a_n \rho^n L_{\mu}(z^n) = \sum_{n=0}^{\infty} \frac{a_n b_n}{n+2} \rho^n.$$

Since $||f(\rho z) - f(z)||_1 \to 0$, when $\rho \to 1^-$, then we have

$$L_{\mu}(f) = \lim_{\rho \to 1^{-}} \sum_{n=0}^{\infty} \frac{a_n b_n}{n+2} \rho^n.$$

On the other hand, if $G(\zeta) = \zeta g(\zeta)$, then

$$\frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) G'(\zeta re^{-i\theta}) d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} (\sum_{n=0}^{\infty} a_n r^n e^{in\theta}) (\sum_{n=0}^{\infty} (n+1) b_n \zeta^n r^n e^{-in\theta}) d\theta$$

$$= \sum_{n=0}^{\infty} (n+1) a_n b_n \zeta^n r^{2n}.$$

Thus, we have

(2.11)
$$\lim_{\rho \to 1^{-}} \sum_{n=0}^{\infty} \frac{a_n b_n}{n+2} \rho^n = \frac{1}{\pi} \int_0^1 \int_0^{2\pi} f(re^{i\theta}) G'(\zeta r e^{-i\theta}) (1-r^2) r, dr d\theta,$$

for any $f(z) \in A(D)$. Since

$$g(\zeta) = \sum_{n=0}^{\infty} b_n \zeta^n = \sum_{n=0}^{\infty} \left(\frac{n+2}{\pi} \iint_D z^n \mu(z) \, dx dy\right) \zeta^n$$
$$= \frac{1}{\pi} \iint_D \left(\sum_{n=0}^{\infty} (n+2) z^n \zeta^n \mu(z)\right) \, dx dy$$
$$= \frac{1}{\pi} \iint_D \left[\frac{2-z\zeta}{(1-z\zeta)^2}\right] \mu(z) \, dx dy,$$

then,

$$(2.11) |g(\zeta)| \le \frac{3\|\mu\|_{\infty}}{\pi|\zeta|} \log \frac{1+|\zeta|}{1-|\zeta|} = o((1-|\zeta|^2)^{-1}), |\zeta| \to 1^-.$$

If $\{f_n(z)\}$ is a degenerating sequence for $\mu(z)$ with $||f_n||_1 = 1$, by Theorem B and (2.11), we can choose a ρ' with $\rho_0 < \rho' < 1$ such that

$$|L_{\mu}(f_n)| \leq \frac{4\|\mu\|_{\infty}}{\pi} \iint_{|z| \leq \rho'} |f_n(re^{i\theta})| r \, dr d\theta + \sup_{\rho' < |z| < 1} (1 - |z|^2) |g(z)| + \sup_{\rho' < |z| < 1} (1 - |z|^2) |g'(z)| < 1, \quad \text{for } n \to \infty,$$

which contradicts that $\{f_n(z)\}$ is a degenerating sequence. By Theorem A, Theorem 1 is proved.

The following example 1 shows that there is non-extremal Beltrami coefficient $\mu(z)$ with the bound $\sup_{\rho_0 < |z| < 1} (1 - |z|^2) |g'(z)| = \frac{2}{\pi}$.

Example 1. Set Beltrami coefficient

$$\mu(z) = \begin{cases} 1, & \text{for } \Im z \ge 0, |z| < 1 \\ 0, & \text{for } \Im z < 0, |z| < 1. \end{cases}$$

Then by [8, Theorem 1], we see that $\mu(z)$ is not extremal. In this case, by calculation, we have

$$g'(z) = 2 + \frac{2i}{\pi} [z + \frac{1}{3}z^3 + \dots + \frac{1}{2n-1}z^{2n-1} + \dots]$$

and $\lim_{|z|\to 1} (1-|z|^2)|g'(z)| = \frac{2}{\pi}$.

Next we will investigate the relationship between extremal Beltrami coefficient μ and the coefficients of g(z) defined in (2.6).

From [11] and Theorem 1, we know that if $\mu(z)$ is extremal and the determained analytic function $g(z) \in B_0$, then $\lim_{n\to\infty} |b_n| = 0$. However, we also know that even if $f(z) \in B$ and $\lim_{n\to\infty} |b_n| = 0$, one can not derive that $f(z) \in B_0$. From this we will prove the following

Corollary 1. Suppose $\mu(z)$ is extremal, and let $g(z) = \sum_{n=0}^{\infty} b_n z^n$ be defined in (2.6), if there exist a positive number N_0 and l, $0 < l < \frac{1}{2}$, such that

$$|b_n| < \frac{l}{n}, \quad \text{holds for } n > N_0,$$

then there exists a $\varphi_0(z) \in A(D)$ with

$$\mu(z) = \|\mu\|_{\infty} \bar{\varphi}_0/|\varphi_0|, \quad \text{for almost all } z \in D.$$

The proof of Collary 1. If $\mu(z)$ is extremal, and let $g(z) = \sum_{n=0}^{\infty} b_n z^n$ be defined in (2.6), we have

$$|g'(z)| \le |\sum_{n=0}^{N_0} nb_n z^n| + \sum_{n=N_0+1}^{\infty} l|z^n|$$

$$= |\sum_{n=0}^{N_0} nb_n z^n| + l\frac{|z|^{N_0+1}}{1-|z|},$$

thus there exists a $\rho_0 > 0$, such that $\sup_{\rho_0 < |z| < 1} (1 - |z|^2) |g'(z)| < 1$, by Theorem 1, we obtain the assertion.

Let Π denote the subset of T(1) consisting of elements of [f] which correspond to Teichmüller mappings of finite type whose complex dilatations $\mu = \mu_f$ satisfy the following condition: There exists a ρ_0 , $0 < \rho_0 < 1$, such that $\sup_{\rho_0 < |\zeta| < 1} (1 - |\zeta|^2)|g'(\zeta)| < 1$, where $g(\zeta)$ is defined in (2.6). We will prove the following

Theorem 2. For $[f] \in \Pi$, then $\bar{d}(0, \pi([f])) < d(0, [f])$.

In order to prove Theorem 2, we need the following Theorem D due to Gardiner [2].

Theorem D. For every $[f] \in T(1)$, then $\bar{k}_f = \bar{k}_0(f)$ if and only if

$$\sup_{\{\varphi_n\}} \limsup_{n \to \infty} |Re \iint_D \varphi_n \mu_f \, dx dy| = \bar{k}_f,$$

where the supremum is taken over all degenerating sequences $\{\varphi_n\}$ for μ_f with $\|\varphi_n\|_1 = 1$ in A(D).

The proof of Theorem 2. We use the same way as in [3] to prove Theorem 2. If $[f] \in \Pi$, then we conclude that $\bar{k}_0(f) = k_0(f)$. On the contrary, by Theorem D, we can find a degenerating sequence $\{\varphi_n\}$ with $\|\varphi_n\|_1 = 1$ such that

$$\lim_{n\to\infty} \operatorname{Re} \iint_D \varphi_n \mu_f \, dx dy = \|\mu_f\|_\infty = k_0(f) = \bar{k}_0(f),$$

which is impossible by Theorem 1.

Thus we have $\bar{k}_0(f) < k_0(f)$, which is equivalent to $\bar{d}(0, \pi([f])) < d(0, [f])$.

On the other hand, comparing with Theorem 2, we will prove the following

Theorem 3. Suppose $[f] \in T(1)$, and $b_n = \frac{n+2}{\pi} \iint_D \mu_f z^n \, dx \, dy$, if $\overline{\lim}_{n\to\infty} b_n = 2\|\mu_f\|_{\infty}$, then $\bar{d}(0,\pi([f])) = d(0,[f])$. The constant 2 is the best.

The proof of Theorem 3. First, from Fehlmann and Sakan's paper in [10], we know that the subset of T(1) satisfying the conditions in Theorem 3 is not empty, and by the example of Fehlmann and Sakan made in [10], there exists an extremal Beltrami coefficient μ such that the coefficients of g(z) satisfy $\overline{\lim}_{n\to\infty} b_n = 2\|\mu_f\|_{\infty}$, thus the constant 2 is the best. Now, if $\overline{\lim}_{n\to\infty} b_n = 2\|\mu_f\|_{\infty}$, then we have $\lim_{j\to\infty} b_{n_j} = 2\|\mu_f\|_{\infty}$, and the sequence $\{\varphi_{n_j}(z) = \frac{n_j+2}{2}z^{n_j}\}$ is a degenerating sequence for the Beltrami coefficient μ_f , with $\|\varphi_{n_j}\|_1 = 1$, by Theorem D, we conclude that $\bar{k}_0(f) = k_0(f)$, thus $d(0, \pi([f])) = d(0, [f])$.

To consider the contraction of Teichmüller metrics, we need the following Principle of Teichmüller contraction due to Gardiner [2].

Principle of Teichmüller contraction. Assume $\|\mu\| = 1$, $0 < k_1 < k_2 < 1$, and $d(0, [f^{k_1}]) \le \lambda_1 d_p(0, k_1)$ or $\bar{d}(0, \pi([f^{k_1}])) \le \lambda_1 d_p(0, k_1)$ with some $\lambda_1 < 1$, where and in the sequel, f^k is the quasiconformal mapping of D on to itself such that $\mu_f = k\mu$ for every positive k < 1. Then there exists a $\lambda_2 < 1$ depending only on k_1, k_2 , and k_1 such that

$$d(0, [f^k]) \le \lambda_2 d_p(0, k)$$
 or $\bar{d}(0, \pi([f^k])) \le \lambda_2 d_p(0, k)$

respectively, for all k with $0 \le k \le k_2$.

Using Theorem 2 and the Principle of Teichmüller contraction, we can obtain the following

Corollary 2. Under the same circumstance as in Theorem 2, let $k = \|\mu_f\|_{\infty}$ and $\lambda = \bar{d}(0, \pi([f]))/d(0, [f])$. Fix k' < 1 and let f' be the quasiconformal mapping of D onto itself such that $\mu_{f'} = (t/k)\mu_f$ for every $t \in [0, k')$. Then there exists $\lambda' < 1$ depending only on k, k', and λ such that

$$\bar{d}(0,\pi([f^t])) \leq \lambda' d_p(0,t),$$

for every t with $0 \le t \le k'$, where d_p denotes the Poincaré metric on D.

The proof of Corollary 2. By Theorem 2, we have $d(0, [f]) = d_p(0, k)$ and $\lambda = \bar{d}(0, \pi[f])/d(0, [f]) < 1$, using the principle of Teichmüller contraction, the Corollary 2 is obtained.

REFERENCES

- 1. F. P. Gardiner and D. Sullivan, Symmetric and quasisymmetric structures on a closed curve, Amer. J. Math. 114 (1992), 683-736.
- 2. F. P. Gardiner, On Teichmüller contraction, Proc. Amer. Math. Soc. 118 (1993), 865-875.
- 3. X. Z. Huang and M. Taniguchi, On the contraction of Teschmüller metrics, J. Math. Kyoto Univ. 35 (1995), 133-142.
- 4. E. Reich, An extremum problem for analytic functions with area norm, Ann. Acad. Sci. Fenn. 2 (1976), 429-445.
- 5. R. S. Hamilton, Extremal quasiconformal mappings with given boundary values, Trans. Amer. Math. Soc. 138 (1969), 399-406.
- 6. E. Reich and K. Strebel, Extremal quasiconformal mappings with given boundary values, Contributions to Analysis, Academic Press (1974), 375-391.
- 7. J. M. Anderson, The extremum problem for analytic functions with finite area integral, Comment. Math. Helv. 55 (1980), 87-96.
- 8. X. Z. Huang, The image domain of an extremal dilatation, Advances in Math. (China) 22 (1993), 435-446.
- 9. X. Z. Huang, On the extremality for Teichmüller mappings, J. Math. Kyoto Univ. 35 (1995), 115-132.
- 10. R. Fehlmann and K. Sakan, On the set of substantial boundary points for extremal quasiconformal mappings, Complex Variables 6 (1986), 323-335.
- 11. J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.

DEPARTMENT OF MATHEMATICS, HUAQIAO UNIVERSITY, QUANZHOU, FUJIAN 362011, CHINA DEPARTMENT OF MATHEMATICS, KINKI UNIVERSITY, HIGASHI-OSAKA, OSAKA 577, JAPAN