On meromorphic α -starlike functions

by

AKIRA IKEDA [福岡大学 池田 彰

Abstract

Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be analytic in $E = \{z : |z| < 1\}$, let for a real number

α

$$\operatorname{Re}\left[(1-lpha)rac{zf'(z)}{f(z)}+lpha\left(1+rac{zf''(z)}{f'(z)}
ight)
ight]>0 \qquad ext{ in } \quad E.$$

Then it is well known that [1, 2]

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0$$
 in E .

Corresponding to this, we take the analytic function $f(z) = 1/z + \sum_{n=0}^{\infty} a_n z^n$ in the punctured disk $U = \{z : 0 < |z| < 1\}$ satisfying

$$\operatorname{Re}\left[(1-lpha)\frac{zf'(z)}{f(z)} + lpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] < 0$$
 in E .

Then we prove

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < 0$$
 in E .

1. Introduction.

Let Σ denote the class of function of the form

$$f(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n$$

which are analytic in the punctured disk $U = \{z : 0 < |z| < 1\}$.

A function f(z) belonging to the class is said to be meromorphic starlike of order α $(0 \le \alpha < 1)$ in $E = \{z : |z| < 1\}$ if and only if

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < -\alpha$$

for all $z \in E$. We denote by $\Sigma^*(\alpha)$ the class of all functions in Σ which are meromorphic starlike of order α in U. We note also that

$$\Sigma^*(\alpha) \subseteq \Sigma^*(0) \equiv \Sigma^* \qquad (0 \le \alpha < 1),$$

where Σ^* denote the subclass of A consisting of functions which are meromorphic starlike in U. The meromorphic starlike is meant that the complement of f(E) is starlike with respect to the origin.

Difinition 1. Let α be a real number and suppose that $f(z) \in \Sigma$ with $f(z)f'(z) \neq 0$ in U. If f(z) satisfies the condition

$$\operatorname{Re}\left[(1-lpha)rac{zf'(z)}{f(z)}+lpha\left(1+rac{zf''(z)}{f'(z)}
ight)
ight]<0 \qquad ext{in} \quad E,$$

then f(z) is said to be a meromorphic α -starlike function.

2. Preliminary Results.

Lemma 1. Let p(z) be analytic in E, p(0) = 1 and suppose that there exists a point $z_0 \in E$ such that

$$\operatorname{Re} \{p(z)\} > 0$$
 for $|z| < |z_0|$, $\operatorname{Re} \{p(z_0)\} = 0$ and $p(z_0) = ia$ $(a \neq 0)$.

Then we have

$$\frac{z_0p'(z_0)}{p(z_0)}=ik,$$

where

(1)
$$k \ge \frac{1}{2} \left(a + \frac{1}{a} \right) \ge 1 \quad \text{when} \quad a > 0$$

and

(2)
$$k \le \frac{1}{2} \left(a + \frac{1}{a} \right) \le -1 \quad \text{when} \quad a < 0.$$

We owe this lemma to [3, Theorem 1].

Lemma 2. Let α , β be positive real number $(\alpha > 1, 0 < \beta < 1)$ and p(z) be analytic in E, p(0) = 1, $p(z) \neq \beta$ in E, and suppose that

(i) for the case $0 < \beta \le 1/2$

$$\operatorname{Re}\left(lpharac{zp'(z)}{p(z)}-p(z)
ight)>-rac{lphaeta}{2(1-eta)}-eta$$
 in E

where $\alpha > 2(1-\beta)^2/\beta$;

(ii) for the case $1/2 < \beta < 1$

$$\operatorname{Re}\left(lpharac{zp'(z)}{p(z)}-p(z)
ight)>-rac{lpha(1-eta)}{2eta}-eta$$
 in E

where $\alpha > 2\beta$.

Then we have

$$\operatorname{Re} \{p(z)\} > \beta$$
 in E

Proof. If we put

$$q(z) = \frac{1-\beta}{p(z)-\beta},$$

then q(z) is analytic in E, q(0) = 1 and $q(z) \neq 0$ in E.

At first, we want to prove $\text{Re}\{p(z)\} > \beta$ in E, i.e. $\text{Re}\{q(z)\} > 0$ in E. If there exists a point $z_0 \in E$ such that

$$\operatorname{Re}\left\{q(z)\right\}>0 \qquad \text{ for } \quad |z|<|z_0|<1,$$

Re
$$\{q(z_0)\} = 0$$
 and $q(z_0) = ia \ (a \neq 0)$,

then from Lemma 1, we have

$$\operatorname{Re}\left(\alpha \frac{z_0 p'(z_0)}{p(z_0)} - p(z_0)\right) = \operatorname{Re}\left(-\alpha \frac{1-\beta}{1-\beta+\beta ia}ik - \frac{1-\beta+\beta ia}{ia}\right)$$

$$= -\frac{\alpha \beta ka(1-\beta)}{(1-\beta)^2 + \beta^2 a^2} - \beta$$

$$\leq -\frac{\alpha \beta (1-\beta)}{2} \frac{1+a^2}{(1-\beta)^2 + a^2 \beta^2} - \beta$$

by virtue of (1), (2). Let us put

$$\varphi(x) = \frac{1+x^2}{(1-\beta)^2 + x^2\beta^2}$$

and simple calculation leads to

$$\varphi'(x) = \frac{2x(1-2\beta)}{((1-\beta)^2 + x^2\beta^2)^2}.$$

For the case $0 < \beta \le 1/2$, $\varphi(x)$ takes its minimum value at x = 0

$$\varphi(0) = \frac{1}{(1-\beta)^2}.$$

Therefore we have

$$\operatorname{Re}\left(\alpha \frac{z_0 p'(z_0)}{p(z_0)} - p(z_0)\right) \leq -\frac{\alpha \beta}{2(1-\beta)} - \beta.$$

Next, if $1/2 < \beta < 1$, $\varphi(x)$ takes its minimum at $x = \infty$

$$\lim_{x \to \infty} \varphi(x) = \lim_{x \to \infty} \frac{1 + x^2}{(1 - \beta)^2 + x^2 \beta^2} = \frac{1}{\beta^2},$$

and we have

$$\operatorname{Re}\left(lpharac{z_0p'(z_0)}{p(z_0)}-p(z_0)
ight)\leq -rac{lpha(1-eta)}{2eta}-eta.$$

This contradicts the assumption of Lemma 2. Therefore we have $\operatorname{Re} \{q(z)\} > 0$ in E and then

$$\operatorname{Re}\left\{p(z)\right\} > \beta$$
 in E .

This completes our proof.

3. Main Results.

Theorem 1. Let f(z) be a meromorphic α -starlike function, and suppose that

(3)
$$\operatorname{Re}\left[(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] < 0 \quad \text{in} \quad E,$$

where α is a real number. Then we have

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < 0$$
 in E .

Proof. Let us put

$$p(z) = -\frac{zf'(z)}{f(z)}.$$

By simple calculation, we obtain

(5)
$$\frac{zp'(z)}{p(z)} - p(z) = 1 + \frac{zf''(z)}{f'(z)},$$

or

(6)
$$\operatorname{Re}\left[(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] = \operatorname{Re}\left[\alpha\frac{zp'(z)}{p(z)} - p(z)\right].$$

At first, we want to prove $\operatorname{Re} \{zf'(z)/f(z)\} < 0$ in E, which means $\operatorname{Re} \{p(z)\} > 0$ in E. If there exists a point $z_0 \in E$ such that

Re
$$\{p(z)\} > 0$$
 for $|z| < |z_0|$,

$$\text{Re}\{p(z_0)\} = 0$$
 and $p(z_0) = ia \ (a \neq 0)$,

then from Lemma 1 we have

$$\frac{z_0p'(z_0)}{p(z_0)}=ik,$$

where k is real and $|k| \ge 1$. Thus

$$\operatorname{Re}\left[\alpha \frac{z_0 p'(z_0)}{p(z_0)} - p(z_0)\right] = \operatorname{Re}\left[\alpha i k - i a\right] = 0.$$

This contradicts the assumption of the theorem. Therefore we have

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < 0$$
 in E .

This completes our proof.

Theorem 2. Let α , β be positive real number ($\alpha > 1, 0 < \beta < 1$), f(z) be a meromorphic α -starlike function and suppose that

(i) for the case $0 < \beta \le 1/2$

$$\operatorname{Re}\left[(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] > -\frac{\alpha\beta}{2(1-\beta)} - \beta \quad \text{in} \quad E,$$

where $\alpha > 2(\beta - 1)^2/\beta$;

(ii) for the case $1/2 < \beta < 1$

$$\operatorname{Re}\left[(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] > -\frac{\alpha(1-\beta)}{2\beta} - \beta \qquad \text{in} \quad E,$$

where $\alpha > 2\beta$.

Then we have

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < -\beta$$
 in E .

Proof. Applying (4), (5) and (6), we can easily prove the theorem. Therefore from the assumption of the theorem and Lemma 2, we have

$$\operatorname{Re}\left\{rac{zf'(z)}{f(z)}
ight\}=\operatorname{Re}\left\{-p(z)
ight\}<-eta \qquad ext{in} \quad E.$$

Acknowledgement.

The author would like to express his sincere thanks to Prof. M. Nunokawa (University of Gunma) and Prof. M. Saigo (Fukuoka University) for their valuable advices.

References

- [1] S. S. Miller, Distortion properties of alpha-starlike functions, *Proc. Amer. Math.*, 38(1973), 311-318.
- [2] S. S. Miller, P. T. Mocanu and M. O. Reade, All alpha-convex functions are univalent and starlike, *Proc. Amer. Math.*, 37(1973), 553-554.
- [3] M. Nunokawa, On properties of non-Carathéodory functions, Proc. Japan Acad., 68(1992), 152-153.

Akira Ikeda

Department of Applied Mathematics Fukuoka University Fukuoka 814-80, Japan