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Distortion and Characterization TheOrems
for Starlike and Convex Functions Related to

Generalized Fractional Calculusr

Virginia S. Kiryakova! (FAH Y TRET HF I —)
- Megumi Saigo? [FE%# &) (FBRKZEEREE)
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1. Ihtroductien

Let A(n) denote the class of functions of the form

f(z)=2z+ i aiz® (n EYN:{1,2,3,---}), (1)

k=n+1

which are analytic in the unit disk U = {z : |2| < 1}, and let S(n) denote the subclass
of A(n) of univalent functions in U. Further, a function f(z) belonging to S(n) is said to
be starlike of order 6 (0 £ § < 1) if and only if it satisfies the inequality |

2f'(z)
Re{ 5 }>6 (ze€U) (2)

and such a subclass is denoted by Ss(n). Also, f(z) € S(n) is said to be convez of order
6 (0 £6 < 1) if and only if

zf”(z)

f'(2)
and the subclass by K5(n). We note that f(2) € Ks(n) if and only if z2f'(z) € Ss(n), and
also for any 0 £ § < 1,

Re{1+ }>6 (z€U) ' (3)

S5(n) C So(n), - Ks(n) C Ko(n) and  Kjs(n) C Ss(n). (4)

The classes Ss(n) and Ks(n) have been recently studied by Srivastava, Owa and Chat-
terjea [22]. For n = 1, these denotations are usually used as S5(1) = 5*(6), Ks(1) = K(6),
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which are introduced earlier by Robertson [12]. Especially, taking 6 = 0, we obtain the
well-known classes S* and K of starlike and convex functions in U, respectively.

Further, we consider the so-called subclasses of functions with negative coefficients,
namely denoting by T(n) C S(n) the functions of the form

f(zy=2z— Z apz" with @20 (k=n+1,n+2,--), ' (5)
k=n+1

and taking respective intersections for0<6<1l,neN:
Ts(n) = Ss(n) NT(n), Ls(n) = Ks(n) NT(n). (6)

The latter classes were considered by Chatterjea [1] and in particular, case n = 1 gives
the Silverman classes 7*(6) and L(6), [19].

For functions of these classes we propose some distortion inequalities and other char-
acterization theorems, in terms of the generalized fractional calculus operators defined
in [5], [7], [8]- As applications of these general results we derive the same kind ones for
the Saigo’s operator ([14], [15], [16], [23]), Hohlov’s operator ([3], [4]) as well as for the
fractional integrals and derivatives involving the Appell’s F3-function, recently studied by
Saigo et al. [17], [18].

2. Generalized Fractional Calculus Operators

First we need the definition of the generalized hypergeometric function known as
Meijer’s G-function:

ai,:-,0p (aJ)Il)
GoMo) = =Gt |o
ERC P R
1 HI‘b,-—s)HI’(1~aj+s)
= — [ = = ' as ds (0#0), (7
II TQ—-b+s) H I'(a
i=m+1 j=n+1
where ay,---,ap,b1,---,b; € C with C being the field of complex numbers and € is a

certain contour on the complex plane (see for precise [2], [11], [7]).

Using a Meijer’s G-function of peculiar order (m,0, m,m), in [5], [7], a generalized
fractional calculus has been developed that includes as special cases almost all the known
operators of fractional integration and differentiation studied by many authors.

" LetneN,geRt=(0,0), % €R=(—00,00) (i =1,---,n) and §; € Rf =
[0,00) (i = 1,---,n). § = (61,--+,0,) is considered as a fractional multiorder of inte-
gration. The following basic notion of the generalized operator of fractional integration
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(generalized fractional integral) is introduced:

1 s
m (7‘ + 6")? o
(v2),(6:) / Grim [G N (Z"W) do, if E&- >0
I () =3 b ()] 5 ®
f(z)7 lf 2:61:0,
=1

The corresponding generalized fractional derivative is denoted by Df,’f;',{’(‘si) and defined
by means of an explicit differ-integral expression. *By a suitable choice of parameters,
one can derive as very special cases of (8), the classical fractional integral and derivative
R’ of Riemann-Liouville and the Erdélyi-Kober integral ]'y , widely used in the applied
mathematical analysis (see [20], [7]):

1

1—0 )
Rf(z) = 2° / 6 f(za) (6> 0);

0
1 (1- 5 1
°f(z) = / N 5 o f(zal/f’)da (6>0,7€R),

J |

namely:
R'f(2) = 201f (=) I3°(2) = 31 (2)
as well as the hypergeometric fractional integrals and many other generalized integrations
and differentiations.
A detailed theory, called generalized fractional calculus and an analogue of the classical
fractional calculus and its different applications are proposed in [7].

'The most useful property of the generalized fractional integrals is their alternative
representation as products of commuting E-K fractional integrals:

If((;’,y:,zv(éi)f(z) = Igl,tﬁ . Ig’"’ﬁ"‘f(z)

- [ o o

i=1

In [5], [8] we have considered the above operator and its properties in classes of analytic
functions in starlike domains and in particular, in the disk {|2| < R} (R > 0), but for the
purposes here we restrict ourselves only to the unit disk U = {|z| < 1} and to the classes
A(n) of functions of form (1).

Using only the 51mple properties of Meijer’s G- functlon ([2]), one easﬂy obtains
Lemma 0. Foré, 20 (i=1,---,m),

IO ) = ¢,2  for p> max [—B(v +1)], (11)

15iSm
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where

_ ﬁ I'(v: + 1 +P/ﬁ)
it T(vi+6+14+p/B)

‘Proof. Toevaluate the [, é?;z’(ai)-image of an arbitrary power function f(z) = 27, we
use an extension of formula [2, Vol.1, §5.5.2, (5)], namely: [7, Appendix, p.324, Lemma
B.2]: '

]d _HII“(ZZ—Fl fora; >b;>—-1(=1,---,m).

1 |
O/G'm":&[

“Then, according to the G-function’s propefty [2,'Vol;1, 85.3.1, (8)], we obtain

’l' 1

1 i ( \m
K@y =2 [t lo| T T }aﬂﬂ do
0 (v)T

(vi+ 6 +p/B)T da:z”m (v +1+p/B)
(i +p/B)" T(yi + 68 +1+p/B)

where the conditions v; + & + 8 > v +p/8 > —1 (i = 1,---,m) are ensured by § 2 0

1
=2 [Gpb. |o
0

= cpzp’

For the sake of brevity, this paper is considered only for the sinipler case (with respect
to denotations), when 3 = 1. Practically, the integral, differential or integro-differential
operators used by different authors in univalent function theory, follow as special cases
of operator (8) with 3 = 1, but recently some more general fractional calculus operators
have been also used that correspond to our operator (8) with arbitrary 8 > 0, or even to
(10) with different parameters 8; > 0 (¢ = 1,---,m) (in this case operator (8) has a more
general form with Fox’s H-function as a kernel).

While considering functions in the classes A(n), it is suitable to normalize operator
(8) by means of multiplication by the constant ¢;' (p = 1). Then, further we consider
the generalized fractional integrals (using the same name for the normalized version, but
stressing this fact by additional “tilde” in denotation: .7('7‘) (%) .= =c 'l () (8)y e,

0 () = [ P04 i) (12)

i—1 Ly + 2)

Then, from Lemma 0 and the more general results in [5], 8] (Theorem 1) and [7], we
easily obtain the following:

Theorem 1. Under the parameters’ conditions
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the generalized fractional integral I (7‘) (%)

of a power series (1) has the form

maps the class A(n) into itself, and the image

k=n+1 k=n+1

If(z) = 0% {z + 2 a2 }: z+ fj U(k)ap2* € A(n), (14)

where the multipliers are

71; + 2)k 1
k) = H L (% 6+ 2)k

>0 (k=n+1n+2,--) (15)

with (a); = [(a + k)/T'(a) denoting the known Pochhammer symbol.
Proof. In order to have (11) valid for 3 =1withp=1landp=n+1,n+2,- -, we
require % > -2 (z =1,- m) Then,

~('n) (5 ){z} -2 and

Fo0 £ kg — HF(%+1+k)F(%+6 +2)
T(v:+6+1+k)T(y +2)

'km (i + 2)r-1 k
= 2" = P(k)z
o (i 6+ 2)50 (%)

and the term-by-term integration of power series (1) gives series (14). By virtue of the
Cauchy-Hadamard formula, the radius of convergence of the latter series is calculated by

-1
R= {Eﬁ |ak|1/k|\11(k)|1/’“}

Since the series (1) is analytic function in the unit disc, we ﬁnd’kﬁ lag|/* = 1. On the
. — 00
other hand, ‘

m F(’)’z'l-l‘i‘k) 1k F(’)’i+6¢ +.2) 1k
lim |W(k)|V* = 1
1m| (k)| 1mH[ (v + 6 +1+k)] [(vi +2)

= lim H (kl/") =1

I.,—»oo

by using the known asymptotics

rb+k) .,

i LS k‘b a k

T(a+ k) (k = o0),

then, it follows R = 1 and the image I; ~(7') (6:) f (z) given by series (14) is analytic in the

unit disc.
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The Hadamard product (convolution) of two analytic functions in U
f(z) = Zakzka g(z) = Z bkzk
k=0 k=0

is defined by
Frg(z) =) abez*. V (16)
k=0

Theorem 2. In the class A(n) the generalized fractional integral ’(_12) can be represented

as the Hadamard product
| | I8 £2) = h(z) * f(2), - (14%)

where the function h(z) € A(n) is expressed by the generalized hypergeometric function:

h(z) =z+ i V(k)zF =2+ f: [lf[l (%(Zf ;: _23’"2_);*1} 2*

k=n+1 k=n+1
L i+ 2)n 11(’72+2+n)71n
i=1 (7% +0; + 2)11. (7’z + 6i + 2 + n)‘rln

Special cases of operator (12), or of its modified form
Rf(z) = cz5°f(1:',",3’(6")f(z) with ¢ = const and 8, 2 0, (12%)

‘have been used very often in the univalent function theory, like the known operators of:
Biernacki, Komatu, Libera, Rusheweyh, Owa and Srivastava, Carlson and Shaffer, Saigo,
Hohlov, etc. (see Examples 1 - 9 in [8]). Thus, the results below give as corollaries corre-
sponding properties-of ‘all these operators.

3. Distortion Inequalities in the Classes Ts(n) and Ls(n)

We need the following lemmas given by Chatterjea [1].

Lemma 1.  Let the function f(z) be defined by (1). Then f(2) is in the class Ts(n) if
and only if

ol
O

> T sl (18)

k=n+1
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Lemma 2. Let the function f(z) be defined by (1). Then f(z) is in the class Ls(n) if
and only if : : -

2 k(k—=6
E (1~6)ak§1. (19)
k=n+1

Applying Lemma 1 and Theorem 1, we obtain

Theorem 3. Let condition (13) be satisfied and the function f(z) defined by (1) belong
to the class T5(n). Then the following distortion inequalities hold for z € U :

(6 1-6
B2 1) 2 lel = — 5= Un+1) |2 (20)

and 1—§
B 1) 2 lel + = Ut 1) 2™ (21)

where the multiplier U(n + 1) is defined as in (15), namely:

Equalities in (20) and (21) are attained by the function

1-6

fe)=2=2777%

2" (23)

Theorem 4. Let condition (13) be satisfied and the function f(z) defined by (1) belong
to the class Ls(n). Then the following inequalities hold for z € U : '

1-6 Y(n+1)

f(’h’)a(&i) > . n+1 24

B @] 2l - s i1 (24)
and ' ‘ 1-6 U(n+1), |

~( N (6 ‘ - n—+ "

T f(2)| < 121+ | 2™, (25)

n+l1-6 n+1 |
where the multiplier ¥(n + 1) is defined in (22). Equalities in (24) and (25) are attained
by the function '

: 1-6

fz) =2~ (ﬁ+1)(n+1—5) G (26)




32

P roof of Theorems 3 and 4. It is easily seen that under the assumption (13), the
function ¥(k) is nonincreasing for all integers k 2 n + 1, since o

Y(k+1) _ ﬁ (i+2k (it+8i+2en
U(k+2) 7+ 2kn (i+6+20

::fi’W'+6i+'24-k

>1,
=1 72+2+k: =7
because of
(@)ry1r a+k 'y,+2+k =
Hence,

0<¥(k)£¥(n+1) (k=2n+1)
and for f(z) of form (5),

2 |z| = ¥(n+1)|2[™*" Y ap.
k=n+1

F@ )| 2 12~ | T UH) 0

k=n-+1

Using (18), we obtain inequality (20). The inequality (21) can be proved similarly, and
Theorem 4 follows in analogous way by applying Lemma 2.

Remark. If weset n =1 and § = 0, we obtain

FesnT) = |If)] 21l - 22 e, [Ff(e)] < lel+ T JaP

FeRNTW) = |If()] 21el - D2 1, [T 5 124 22 o

with ¥(2) = H'('yi + 2)/(vi + 6 + 2). The case m -1 (simply omitting the sign ] in
i=1 =1
(22)) gives estimates for the classical Erdélyi-Kober operator (9).

4. Characterization Theorems in the Classes S*(n) and K(n)

Now we consider some sufficient conditions for starlike and convex functions of form
(1). Namely, we denote by S*(n) the subclass of A(n) of functions satisfying (2) with
§ =0, ie. S*(n) := Sp(n). Analogously, K(n) := Ky(n) is the subclass of A(n) of
functions f(z) satisfying (3) with § = 0.

From Silverman’s results [19], one can formulate the following auxiliary lemmas.

Lemma 3. If the function f(z) defined by (1) satisfies the condition

Y klal <1, (27)

k=n+1
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then f(z) € S*(n). The equality in (27) is attained by the function
o
qz) =2+ (2€U) R (28)

for some k 2 n + 1.

Lemma 4. If the function f(z) defined by (1) satisfies the condition

> Klals1, | (29)

" k=n+1
then f(z) € K(n). The equality in (29) is attained by the function
gz(z)—z+ﬁ (z€U) (30)
for some k 2 n + 1.

For the generalized fractional integral (12) we obtain then the following sufficient con-
ditions. '

Theorem 5. Under the condition (13), if the function f(2) defined by (1) satisﬁés

kla ) (31
2 el s gy = G @Y
then ffﬁz’(&i) f(z) belongs to the class S*(n).

Proof. We use again the inequality 0 < ¥(k) £ ¥(n+1), valid for each ¥ 2 n+1 and

each n € N. Then, for the function If(z) = z + ioj br.z* with coefficients by = W(k)ay,
k=n+1

we obtain Z klbg| £ ¥U(n+ 1) Z k|ak| <1
k=n+1

Analogously, using Lemma 4, we obtain

Theorem 6. Under the condition (13) if the function f(z) defined by (1) satisfies

(i +6i+2)n
kal k‘2lak| < ( n 1) z_]:-[1 (%’ n Z)n , (32)

then f}:fn')’('si) f(2) belongs to the class K(n).

Remark. Examples of functions satisfying conditions (31) and (32) are the following

functions
1 zko 1 zko

W) Ry 4 9@ =2t gas

g3(z) =z +
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respectively, with some ko 2 n + 1.
We use also the following result due to Rusheweyh and Sheil-Small [13].

Lemma 5. Let h(z) and f(z) be analytic in U and satisfy the condition:

1+ poz
1—-0z

WO = FO) =0, h@)+{TEmf(@)}#0 (zeU\0). (33)

for any p,0 € C (|p| = |o| = 1) with * denoting the Hadamard product (16). Then for a
function F(z) analytic in U and satisfying

Re{F(z)} >0 (z€U),

‘the inequality

(h* Ff)(2) . N
Re{ T }>o (z €U) (34)

follows.

Now we state some characterization theorems in terms of the Hadamard product.

Theorem 7.  Let us assume condjﬁon (13), and let the function f(z) defined by (1)
belong to S*(n) and satisfy

he) s {2 1)} £0 (2 € U\(OD) (35)

1—-o0z

for any p,o € C (|p| = |o| = 1) and for the function h(z) defined by (17). Then,
fm)’(‘s") f(z) also belongs to S*(n), i.e. under such conditions the generalized fractional
integral preserves the class S*(n). A ‘

Proof. By Theorem 2,

FOMO fo) = 24 S W) = h(z) * f(2).

k=n+1

Since it is easy to check that

(hxf)(z)  (hxf)(2)
it follows, if we set F(z) = z2f'(z)/ f(2),

2(h* f)(z) _ (hx*(2f")) for each h, f € A(n)

z(ff(z))' _hxzf  hxFf

If(z) ~ h*f  hxf’
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Using that f E'S*(n) implies Re{F(z)} > 0, we obtain from Lemma 5

(ff<2>) (b P o

For a subclass of the convex functions, an analogous theorem can be read as follows.

Theorem 8.  Let us assume condition (13), and let the function f(z) defined by (1)
belong to K(n) and satisfy '

he)+ {20 ()b 40 (et\o)) (36)

for any p,0 € C (|p| = |o| = 1) and for the function h(z) defined by (17). Then,
ﬂ"’ (8) f(z) also belongs to K(n), i.e. under such conditions the generalized fracmonal
mtegra.ls preserve the class K(n). ’

Proof. Note that in (36) we have zf(z) instead of f(z) in (35). We use the fact that
f € K(n) <= zf' € §*(n) and Theorem 7.

Lemma 6. (Rusheweyh and Sheil-Small [13]) Let h(z) be convex and f(z) be starlike
in U. Then, for each function F(z) analytic in U and satisfying Re{F(2)} > 0 (z € U),

the inequality
(hx F1)(2) ,
Re { e N(2) }>0 (zeU) (37)

holds valid.

Whence, in a way similar like in Theorems 7, 8 we have the following characterization
theorems.

Theorem 9.  Let us assume condition (13), and let the function f(z) defined by (1)
belong to S*(n) and h(z) defined by (17) belong to K(n). Then, f{:ﬁz’(ﬁ") f(2) belongs to
S*(n), ie

f(z2) €8*(n), Mz)eK(n) = ID%f(z)eS*(n) (38)

Theorem 10. Let us assume condition (13), and let the functions f(z) defined by (1)
and h(z) defined by (17) belong to K(n). Then,_ff:’,i,l)’(éi)f(z) belongs to K(n), i.e.

f(z) €K(n), h(z)eK(n) = L% () eK(n). (39)
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Summarized, (38) and (39) mean that if the “kernel function” (17) of generalized
fractional integrals (12), (14*) belongs to K(n), then this operator jﬁ')( %)
classes S*(n), K(n). : ' _

preserves both

5. Saigo’s and Hohlov’s Operators (m=2)

In [14], [16], Saigo introduced operators of generalized fractional integration and dif-
ferentiation, involving the Gauss hypergeometric function. For real numbers a > 0, 3,7,
the fractional integral operator 1*57 is defined by

TP f(z) _z—a—ﬂ]w | F. (04‘*‘/3 —_n: .1__§)

= 2F1 ek f(€)dg, (40)
J I'(a) z

where f(z) is an analytic function in a simply-connected domain of the z-plane, containing

the origin z = 0 such that f(2) = O(|z|?) (z — 0) with £ > max{0,3 —n} — 1, and it is

assumed that the multiplicity of (z — €)™ is removed by requiring log(z — £) to be real

for z— &> 0.

The operator (40) has been first considered for real-valued functions and used in solvmg
boundary value problems [15], [23] for the Euler-Darboux equation, but recently Srivas-
tava, Saigo and Owa (see [24], [10]) have applied them to classes of univalent functions.

The operator (40) can be represented also as products of two classical Erdélyi-Kober
integrals ([14], [16]) and thus, as pointed by Kiryakova [7], it is an important example
of the generalized fractional integral (8) with multiplicity m = 2, when the kernel Gg:g-
function turns into a Gauss hypergeometric function. Namely, the following representation
of (40) in terms of (8) holds:

1 _ a—1 ‘
IoPNf(2) = 27P / (il—,% aFi(a+ B, —nm;0;1 — o) f(z0)do
/ .

. 1
= z'ﬂ/ngg [0 frot f(zo)do = z'ﬂfffﬁ_ﬂ’o)’(_"’a”)f(z), (41)
0 n—05,0
with
m—20->1Ln—=>n-—07r—0 6—-n6—a+n
in (8).

In view of Lemma 0 and Theorem 1, it is suitably to “normalize” operator (40), (41)
multiplying by c;'2?, as already done in [7], [5]. Thus, further we consider “normalized’
Saigo’s operator

- re-pre+a+mn)
I*PMf(2) =
©="Ta g

which preserves the classes A(n) (n eN):

_ﬂﬁm{z+ E:Cmg}::z+ S Wk, (43)

k=n+1 k=n+1

2P 1P f(2), (42)
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where - -

__ (=B+n+2)k1k!
\Il(k) B (—,8 + 2)k_1(a +n+ 2)k-—1

for which compare with [24, (3.10)]. Or, in terms of the Hadamard pfoduct in A(n),
1P f(2) = h(2) * f(2)
with

~ = (=B +1n+ 2)k_1K! k
h(Z) =z+ k;ﬂ (_IB + 2)1.:—1(0‘ +n+ 2)k—1 #

=z 4+

(—ﬂ‘*‘n‘l‘z)n(n—*—l)' n+1F 1,—ﬂ+77+2+”,2+n sy (44)
- 2 3 .
(=8 +2)n(a+n+2)n —B+2+n,a+n+2+n

Especially in the class A = A(1), the convolutional representation turns into I%#7f(z) =
h(z) * f(z) with (for n = 1):

2B +n+2) 2 1,-6+n+3,3 .,
(B+2(a+n+2) " **\ _g43.a+n+2’

1,-8+n+2,2 ’
=2 3F, ! 2. | (44°)
—B+2,a+n+2

Then, from Theorems 2 — 10, one can easily write down the corresponding results for
operator (42). As for the original operator I*#" in (40), they follow by reverse multi-
plication by ¢;27” and they have been given by [24, Theorems 1 — 2] and [10, Theorems
1 - 6]. See also interesting corollaries there concerning classical fractional derivatives D .

- h(z)=z+

Remark. Note only that there is a small difference in the conditions required on
parameters «, 3,7 and on n € N, comparing results in [24] (Theorems 1 — 2) and corre-
sponding Theorems 3 — 4 here! These two theorems hold for any integer n € N, while
in [24] condition (3.2) for n = [B(a + n)/a] — 2 is imposed. But in compensation, our
conditions (13) for the parameters of the operators (40), (42), in this case reducible to:
B —n <2 (the same) , a+n = 0 (stronger than a +n > —2),
(45)
n £ 0 (new condition, but from it and the first above = [ < 2 as in [24]),

are stronger than (3.1).

" In [3], [4] Hohlov introduced a generalized fractional integration operator defined by
means of Hadamard product (16) with an arbitrary Gauss hypergeometric function:

F(a7 b7 C)f(Z) =z 2F1(a7 b7 G Z) * f(Z) (46)
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This three-parameter family of operators contains as special cases most of the known
linear integral or differential operators, already used in univalent functions theory (see
Hohlov [3],[4] and for more details Kiryakova [7], [5], [8]). Namely (we give also in brackets
their representations in terms of our operators (8)): | '

F(1,1,2) =B  (Biernacki operator : B = I71"); )
F(l,a+1,1) = B!
(Rusheweyh derivative of order a: B;! = D* = ﬁDf Ley,

F(l,c+1,¢c+2) =B, (generalized Libera operator : B, = (c+ 1)If,]1’1); |
F(1,2,3) =L, F(1,3,2)=L"

(Libera and inverse Libera operators : L = 2I?,11’1 ;
F(1,a,c) = L(a,c)

(Carlson-Shaffer operator: L(a, c) = I{72°7%); etc.

/

As shown in [7],[8], this rather general operator follows again as a particular case of
generalized fractional integrals (8) and (12):

F(a,b,0)f(2) = % 1520 gy = o2 D00 r). (48)

Thus, Theorems 1 — 10 give corresponding results for this operator, and also for all
the special cases in the list (47). We only refer to the form of these results in the general
case (48), by taking '

m—>2,ﬂ—>1; 71—>a¥2,’yg—+b—2; 6p—1—a,bp > c—b. (49)
Then, conditions in (13) appearing in Theorems 1 — 10 have fhe form:
0<a<l, 0<b<e | (50)
the “multiplier coefficients” (15) and (22) are

U(k) = (@)-1(b)e-1 and ¥(n+1)= (@)n(b)n (51)

(De-1(c)k-1 nl(c)n
and the “multiplier function” (17) in A(n) is:
h(z)‘:z-f-((;)'—’(lg))2 2" 3 F(La+n,b+n;c+n,1+n;2). (52)

'Remark. Note that for n = 1, in the class A = A(1), from (52) we obtain

h(z) =z + %b 22 3Fy(1,a+1,b+ 1;¢+1,2; 2) = 2 o Fi(a, b c; 2), (52*)
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which conforms with original Hohlov’s representation (46).

Remark. Comparing the “multiplier functions” h(z) for Saigo’s and Hohlov’s operators
(42) and (48) in terms of 3F>-functions (44), (52) or (44*), (52%), one can see why these
two operators, both related to the Gauss function and to m = 2 in (12), are not included
into the other, as a special case. They have an intersection only for some special values
of the parameters o, 3,7 and a,b, ¢, when their functions h(z) coincide, for example For
B=1,and any a,nset a =n+1,b=2,c=a+n+2, then :

Fin+1,2;0+n+2) = JoW, (53)

Now we give briefly the analogues of Theorems 1 - 10 for Hohlov’s operator (46) or (48).

Theorem 1*.  Under the parameters’ condition (50) Hohlov’s operator (46) or (48)
maps the class A(n) into itself, and the image of a power series (1) has the form

F(a,b, c)f(z) =F(a,b,c {z+ > a2 } =z+ Z k) ax2* € A(n),

k=n+1 k=n+1

with multiplier coeflicient W(k) in (51).

Theorem 2*. In the class A(n) Hohlov’s operator (46) can be represented as Hadamard
product F(a,b,c) f(z) = h(z) * f(2) with the function h(z) € A(n) given by (52).

Theorem 3*.  Let condition (50) be satisfied and the function f(z) defined by (1)
belong to the class Ts(n). Then the following distortion inequalities hold for z € U :

F(a,b,0)f(2)] = |2| - “‘i1—6 Y(n D™ and
1- n+1
F(o,0,0(2)| < J2|+ g g W DI,

where ¥(n + 1) is defined as in (51). Equalities are attained by the function

— 1-4 n+1
fe) ===
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Theorem 4*.  Let condition (50) be satisfied and the function f (z). defined by (1)
belong to the class Ls(n). Then the following inequalities hold for z € U :

and

-6 (n+1)||nle
n+1 6 n+1

1-6 WM+1”PH
n+l-6 n+1

|F(@b,9f(2)] 2 |2 -

[F(a,b,0)f(2)| £ |2+

where U(n + 1) is defined as in (51). Equalities are attained by the function

1-46

m+Dn+1-90) &

f() =2~

Theorem 5*. Let us assume conditioh (50). If the function f(z) defined by (1) satisfies

z:kwd Tt 1) +U

k=n+1

with U(n + 1) given by (51), then F(a,b, c)f(2) belongs to the class S*(n).

Theorem 6*. Let us assume condition (50). If the function f(z) defined by (1) satisfies

Z Klag) € ——— ( Nl

k=n+1

then F(a, b, c)f(z) belongs to the class K(n).

Theorem 7*.  Let us assume condition (50) and let the function f (2) deﬁned by (1)
belong to S*(n) and satisfy

ne) (T2 1)} £0 (2 e U\op

l—-02z

for any p,oc € C (|p| = |o| = 1) and for the function h(z) defined by (52). Then,
F(a,b,c)f(z) also belongs to S*(n), i.e. under the above condition Hohlov’s operator
preserves the-elass S*(n).

Theorem 8*.  Let us assume condition (50) and let the function f(z) defined by (1)
belong to K(n) and satisfy

1—-o0z

he) s (T2 ()b £ 0 (2 € UV}
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for any p,c € C (|p| = |o| = 1) and for the function h(z) defined by (52). Then,
F(a,b,c)f(z) also belongs to K(n), i.e. under the above condition Hohlov’s operator
preserves the class K(n).

Theorem 9*.  Let us assume condition (50) and let the function f(z) defined by (1)
belong to S*(n) and h(z) defined by (52) belong to K(n). Then, F(a,b,c)f(z) belongs to
S*(n), ie.

f(z) € S*(n), h(z) € K(n) = F(a,bo)f(2)€ S*(n)

Theorem 10*. Let us assume condition (50) and let the functions f(z) defined by (1)
and h(z) defined by (52) belong to K(n). Then, F(a,b,c)f(z) belongs to K(n), i.e.

f(z) € K(n), h(z)e K(n) = F(a,b,c)f(z)€ K(n).

It is interesting also to specialize these results for the case n = 1, class A = A(1),
where Hohlov has originally defined and studied the operator (46).

For example, Theorems 5* and 6* then read as follows: Under condition (50) for a
function f(z) defined by (1):

S klal € — = F(abc)f(z) €S,
k=2 a'b .

S Klal <~ = Flabdf(z) € K.
k=2 ab

Similarly, Theorems 7* — 10* take place with the function h(z) = z 3 Fi(a, b;c; z) and
concern the classes S* and K, again.

6. Saigo’s Operators Involving F;-Appell’s Function (m=3)

In [17], [18] Saigo and his co-worker investigated in details the operator of generalized
fractional integration which involve so-called Appell’s F3-function and can be decomposed
as products of three Erdélyi-Kober operators (9). Similar operators have been introduced
and studied first by Marichev [9] (but in other aspects) and have been shown by Kiryakova
[7] to be an example of generalized fractional integrals (8), (12) with multiplicity m = 3.
Saigo considers such an operator in the following form and denotations:
=g,

I(CY, aIJIBnBI;’Y)f(Z) = z—a/ __f‘m_g—a' F3 (O!, a,)ﬁaﬂl;ly; 1-
0

z

f1-2) fene (o0
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for v > 0, but it could be put also in the form

I(e, o, 8,857 f(2)

_Z—a—a/+fy '/1G3’0 I:o_ a_a,+1377~2a,77_a/_/8l
- 3,3
0

f(z0)da,

a—d,f—ad,y—2a -3
that is, with |
m—3, B-1Ln—a—-d, p=0-0d, 3—2>7-2d -0,
61— B, b—y—do =B, &—d,

we get the representation |

oy, B, 8/ f(z) = 2207 {578 a=ba=B 1) (55)
Then, for the “normalized’ F3-operator

If(2) = (o, o/, B, 837) f(2) := 2°7" I(e, @/, 8, 8'57) f (2) (56)

we can apply all the results for classes of univalent functions, already obtained in Theorems
1-10. - o |

In this case the conditions in (13) turn into the following conditions which we require
for the parameters of operators (54) - (56):

o 207 a>al—27 /8.2_ 01 :8>a,_27 Y 2 al+ﬁ7 7>2a,+/6’—27 (57)
the “multiplier coefficients” (15) and (22) are

(= +2)p1(8— & 4+ 2)p-1(y — 20" — ' + 2)—1

‘I/(k') = (a — o + ﬁ + 2)14:—1('7 — 2 + 2)k—-l(7 —ao — IB,'+ 2)k—1

(88)

_ (a=ad' +2)a(B— ' +2)a(y—2d' = ' +2),
Yn+1)= (o= +B4+2)u(y =20+ 2)p(y—a' = '+ 2)n

and the “multiplier function” (17) is:

(=0 +2u(B=0 £y =2 = F +Dn 1

M= e e A 0. — 2+ 2. — o~ B+ 2,

1,aea’+2+n,ﬁ—a’+2+n,7——2a’—6’+2+n ,
- X 4F3 ' ;2| € A(n)(59)
a—d+pB+24+ny-2d+2+n,y—-o - +2+n |

The following results follow as corollaries of our general results.
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Theorem 1**.  Under the parameters’ condition (57) the Fs-operator (56) map the
class A(n) into itself, and the image of a power series (1) has the form

I(a, o, 8,857)f(2z) = I(e, &, 8,8 {z+ i akz"v}:z—l— i U(k) ar2* € A(n),

k=n+1 k=n+1

with multipliers (58).

Theorem 2**.  In the class A(n) the F3-operator (56) can be represented as Hadamard
product I(a, o, B8, 8';7)f(2) = h(z) * f(z) with the function h(z) € A(n) given by (59).

Theorem 3**.  Let condition (57) be satisfied and the function f(z) defined by (1)
belong to the class Ts(n). Then the following distortion inequalities hold for z € U :

-6
> n+1
(e, 8,837) z)1 ol = s U 1) |2 |
and 1—6
Ti ! 1. < — n+1
[T o/, 8,801 ()] £ lel + ——5 T+ D) =",
where ¥(n + 1) is defined by (58). Equalities are attained by the function
— 1-6 - an
f(Z) =z — m z .

Theorem 4**.  Let condition (57) be satisfied and the function f(z) defined by (1)
belong to the class Ls(n). Then the following inequalities hold for z € U :

6 U(n+1)

[T e, 8,855 2 1ol = =g ™
and ' 1 5' T(n+1)

7, ’ /. < — n n+1

[T o, 8,85M1 )| < lel+ —F—— =1 Il

where ¥(n + 1) is defined by (58). Equalities are attained by the function

1-46

_ zn+1
(n+D(n+1-20)

f(z) =

Theorem 5**. Under condition (57), if the function f(z) defined by (1) satisfies

k=n+1
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with U(n + 1) given by (58), then I(o, o, 3,3;7)f(z) belongs to the class S*(n).

Theorem 6**. Let us assume condition (57). If the function f(z) defined by (1)

satisfies . .
o K] £ ———,
2 S g

then I(a, o/, 3,3';7)f(z) belongs to the class K(n).

Theorem 7**.  Let condition (57) be satisﬁed, and let the function f(z) defined by
(1) belong to S*(n) and satisfy

he) e {722 1)} 0 (2 € U\OY)

for any p,c € C (lp| = |o| = 1) and for the function h(z) defined by (59). Then,

I{e,d, B,8';7) f(2) also belongs to S*(n), i.e. under the above condition the F3-operator

I{a,d, B,3;7y) preserves the class S*(n).

1+ poz
1—02

Theorem 8**.  Let condition (57) be satisfied, and let the function f(z) defined by
(1) belong to K(n) and be such that

b+ { TE221)} £0 (2 € U\OY)

1—-o0z

for any p,0 € C (|p| = |o| = 1) and for the function h(z) defined by (59). Then,

I(a, 0, 8, 8';7) f(2) also belongs to K(n), i.e. under the above condition the F3-operators

I{a, o, B,03;v) preserves the class K(n).

Theorem 9**.  Let condition (57) be satisfied, and let the function f(z) defined by

(1) belong to S*(n) and h(z) defined by (59) belong to K(n). Then, I(a,d,8,0;7)f(z)
belongs to S*(n), i.e.

f(z) € 5°(n), h(z) e K(n) = I(e,d,5,8;7)f(2) € 5 (n).

Theorem 10**. Let conditions (57) be satisfied, and let the functions f(z) defined by

(1) and h(z) defined by (59) belong to K(n). Then, I(a,d/,8,8';7) f(2) belongs to K(n),
ie. '

f)e K(n), hz)eK(n) = I(a,d,B,8;7)f(z) € K(n)
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It is interesting also to specialize these results for the case n = 1, in the class A= A(1).
For example, Theorems 5**, 6** then read as follows: Under conditions (57), for a function
f(2) defined by (1):

;klak' < ﬁ | == _‘f(a7al,ﬂ”@’;7)f(z):v€ S*, |

3 1 T ! ISR T
kgzkzlakl é Wz) = I(a,a,ﬁ,,@,'y)f(z)EK,

where ' o :

(a—a+2)(B—a +2)(y—2d -3 +2)
(a—a+B8+2)(y—20+2)(y—o/ — ' +2)
In the same case, Theorems 7** — 10** take place with the function

U(2) =

l,a-d +3,0—-ad +3,vy=2d -3 +3
h(Z) = z+\Il(2) 252 4F3 ( 7 3 2 € A.

a—o +B8+3,7—20+3,y—o —f +3 '
and concern the classes S* and K.
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