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1. INTRODUCTION

~ The entropy invariant of Kolmogorov-Sinai is extended as Connes-St¢rmer en-
tropy H(-) to trace preserving automorphisms of finite von Neumann algebras ([10]).
Replacing a finite trace to an invariant state ¢, Connes-Narnhofer-Thirring entropy
hg(-) is defined for automorphisms of C*-algebras as a generalization of H(-) ([11]).

Many interesting automorphisms to compute the entropies are given on the al-
gebra constructed from Z-copies of an algebra and they are induced by the shift
a:n(€Z) —n+1. That is, they are ”shift” type automorphisms. The first typ-
ical example of shift type automorphisms is the Bernoulli shift 3, on the infinite
product space of n-point sets.

In the context of operator algebras (von Neumann algebras or C*-algebras), the
non-commutative Bernoulli shift «,, takes the place of 3,,. It is the shift automor-
phism on the infinite tensor product M = ®z_ — oo M;, where M; is the n X n-matrix
algebra for all ¢ € Z. The notion of non-commutative Bernoulli shift is extended to
a large class of automorphisms coming from Jones’ index theory for subfactors.

These non-commutative Bernoulli shifts satisfy some ”sub-commutative” prop-
erties. Completely non-commutative shifts are automorphisms on the reduced free
product of C*-algebras indexed by Z. The automorphism is called the free shift.
The Cuntz algebra O, appeared as one of such reduced free products.

The above entropies are available to unital *-endomorphisms, which are not
always automorphisms. Then Connes-St¢rmer entropies for shift type *- endo-
morphisms on the hyperfnite II; factor have connection with indices of subfactors
or the relative entropies of subfactors, which are given as the ranges of those *-
endomorphisms ([2, 3, 8, 14, 15]).

On the Cuntz algebra O, (n > 2), the most interesting *-endomorphism appears
as the extension of the *-endomorphism of non-commutative Bernoulli shift type
on the half sided infinite tensor product N = @:>, M; of the n X n-matrix algebra
M;s. The *-endomorphism is called Cuntz’s canonical *-endomorphism.

In this note, we summarize results in [6, 7, 9] about entropies of automorphisms
related to free shifts and Cuntz’s canonical *-endomorphisms.

2. ENTROPIES FOR AUTOMORPHISMS RELATED TO FREE SHIFTS

Let Ay be a unital C*-algebra and let ¢y be a state of Ag. Let A; = Ay and
¢; = ¢o for all i € Z. Every A; acts on the Hilbert space H; standardly. Let
£; be the canonical vector in H; for the state ¢;. Then the free product Hilbert
space (H,£) = (xH;,*&;)iez is defined.: Let A be the reduced free product C*-
algebra A = x;cz A; with respect to states {¢;};cz defined by Arvitzour ([1]) and
Voiculescu ([29, 31]) independently. Then A is acting on H.

The vector state ¢ of A defined by £ is called the free product of {¢z}zez We
denote the ¢ by *;ez¢;. The free shift a is the automorphlsm on A, which is induced
by the shift on Z. It is obvious that ¢ - o = ¢. : :
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Let (B, 3, u) (resp. (C,~,v)) be a triplet of a unital C*- algebra B (resp. C), a
*_automorphism 3 (resp. %) of B (resp. C) and a state y (resp. p) of B (resp. C).
with - 8 = u (resp. p-vy = p). Now we consider the reduced free product A x C
with respect to {¢, p}. We put

The A contains the tensor product C ® B as a C*-subalgebra. ‘Then we have a
conditional expectation F’' of A onto C ® B which is given by

F = (B xidc) ®idg,

where E4(a) = ¢(a)1, (a € A), idc is the identity on C, and E, * idc is the free
product of E, and ¢d.

2.1 Proposition ([6]). Let ¢ be a state on A and (a * ) ® (3 the tensor product
of the automorphism o xy on A C (which is the free product of a and vv) and (3.
Then ‘ SR

Y(axy)@B=1
if and only if there exists a state w on C ® B such that

w-y®B8=w and Y=w-F.

In Proposition 2.1, if we put C = C1, then we have [1 : 4.1 Proposition]. ‘
Sauvageot-Thouvenot defined the entropy Hy(-) as an alternate of Connes-Narnhofer-Jj
Thirring entropy h4(-) ([24]). Proposition 2.1 is used to show the following relations
about Sauvageot- Thouvenot entropies for two automorphisms, one of which is given
as reduced free product with the free shift a and the other is the tensor product
with a. ' : «

2.2 Theorem ([6]). For an arbitrary triplet (B, 3, 1), we have

Hyuu(a* B) = H,(B) = Hygu(a ® B)-

Two entropies Hy(-) and hg(-) are equal for automorphisms on nuclear C*-
algebras. Hence we have :

2.8 Corollary. If A and B are nuclear, then

hu(B) = hogu(a @ B).

The Cuntz algebra O, is given as the reduced free product A = *;cz A;. Here A;
is the C*-algebra of the semigroup of natural numbers N with respect to the vector
state ¢; determined by the characteristic function of the unit. Then the free shift
a on Oy is given as the automorphism « : S; — S;;1, for isometries {S;;7 € Z}
which generate O,. It is well known that O is nuclear.

In particular, if B in Theorem 3 is the trivial algebra C1, then we have :



2.4 Corollary. If a on O is the free shift a on O and ¢ is the state of O
defined by ¢p(w) =0 for each non-trivial word w on {S,,z € Z}, then

h¢(0£) = 0.

Compare this Corollary with St¢rmer’s result ([S?]) that the free shift « on the
algebra generated by the left regular representation of the free group on countably
infinite generators {g;}icz. Then the « is defined by o : g; — ¢;+1 and has also
same entropy O for the unique tracial state ¢.

As an application of Theorem 2.3 and Corollary 2.4, we have the following :

2.5 Remark. The free shift a satisfies the additivity for tensor product :
hoou(a ® B) = hg(a) + hu(B),

for an arbitrary automorphism (.

This remark has a relation to a question in [28] about the entropies for the
tensor product. They ask whether Connes-Narnhofer-Thirring entropy satisfies the
additivity for tensor product. The negative answer is given in [20] by showing a
counter example. Remark 2.5 means that it holds when one of automorphisms on
nuclear C*-algebras is the free shifts.

3. INNER AUTOMORPHISM ON THE CROSSED PRODUCT INDUCED BY FREE SHIFT

Let (B, 3, 1) be a triplet as in section 2. Then we have the implimenting unitary
u(B) in the crossed product B xg Z. The (-invariant state p of B is extended to
the state - Ep of B X Z, where Ep is the conditional expectation of B X g Z onto
the original algebra B with Eg(u(3)™) = 0 for all non-zero n € Z. Then the inner
automorphism Ad(u(B)) preserves the state p - Eg. A general property of entropy
says that we have the inequality

hy. 55 (Ad(u(B))) > hu(B).

In [25], St¢rmer asks whether we have equality here. Voiculescu shows in [29] this
equality of Connes-Narnhofer-Thirring entropy for the classical Bernoulli shifts.
Here We show the equality for automorphisms related to the free shift . We use
the same notations as in the section 2.
In this section 2, we denote simply by E the conditional expectation of the
crossed product onto the original algebra. We denote by C*(C ® B, u((a *v) ® B)
the C*-subalgebra of ((A*C) ® B) x (a*7)®ﬂ Z generated by C ® B and the unitary

u((a*7)® ).

Lemma 8.1 ([9]). There erists a conditional expectation € of ((A*C)®@B) X (axy)08
Z onto C*(C @ B,u((a *v) ® B) which satisfies the followzng propertzes

(1) (¢*p)®u)-E-e=((p*xp)®p)-E

(2) e(zu) = F(z)u, forz € (A*C) ® B.

(8) For each z € ((A*C) ® B) x(a*,y)@ﬂ Z and any € > 0, there are an P eN
andn; €EN(@=1,---,p) so that. ,

|‘|e(:c) Z((a X zdc) ® de)"(:n)H <e.
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This conditional expectation € plays a main role to compute the entropy. A
necessary and sufficient condition that a state ¢ on ((A * C) ® B) X (aky)®B Z is
invariant under the inner automorphism Ad(u(a * v) ® 3) is that ¢ rises from a
state of C*(C ® B, u((a *7) ® B) by composition with the €. This fact corresponds
to Lemma 2.1 and implies the following : : : :

Theorem 3.2 ([9])

Hgsp)-e(Ad(u(a * §))) = H,. E(Ad(U(ﬁ))) = Higou).e(Ad(u(a ® f§))).

In particular, -
Hy p(Ad(u(a))) = 0 = Hy(a)-

If we let A be Oy in Theorem 3.2, then we have :

Corollary 3.3. Let ¢ be the free state of the Cuntz algebra O descrived- above
a.nd let o be the free shift on On,. Then

ho 5(Ad(u(@)) = 0 = hy (o).

More generally, if B is nuclear, then

h(d,@“) e(Ad(u(a ® B))) = hy.p(Ad(u(B)))

for any p,-preservzng automorphzsm 8 of B.

3.4. We apply these to the Bernoulli shift ﬁ Let B = C(X ) for the space
product space X of Z copies of an n point set and let 1 be the state on B indeced
by the product measure of yo with po(-) = 1/n. The Bernoulli shift 3 is the shift
automorphism on B. Voiculescu ([30]) proved that h,.g(Ad(u(8))) = logn. We
combine this result with above Corollary 2.7, then the free shift o of O and the
Bernoulli shift [ satisfies the following relations :

hogu)E(Ad(u(a ® B))) = hy.a(Adw(B)))
=logn = hy () = hseu(a® f).

4. INNER AUTOMORPHISM ON THE .CROSSED PRODUCT
INDUCED BY NON-COMMUTATIVE BERNOULLI SHIFT

In this section, we replace the free shift to the non-commutative Bernouli shift
By on the UHF algebra M = ®;czM; of the n x n-matrix algebra M; and compute
the entropy for the inner automorphism Ad(u(8,)) of M % g, Z as in the section 3.

We state the two entropies of Ad(u(8,)). One is Connes-Narnhofer-Thirring
entropy hg(-). Another is the topological entropy ht(-) defined by Voiculescu ([30]).
He defined the entropy ht(-) for automorphisms of nuclear C*-algebras. This ht(-)
does not depend on any state but is based on approximations. Similarly to the
free shift, the shift 3, does not change these entropies in the process of the crossed
product. First, we compute the topological entropy for Ad(u(3,)).



4.1 Theorem ([7]). Let (3, be the non-commutative Bernoulli shift. Then
o ht(Ad(u(B,))) = logn.

The topological entropy satisfies ht(-) > hg(-) for ¢-preserving automorphisms
in general. Since Ad(u(8,)) is the extension of (3, and there exists a conditional
expectation F of the crossed product to the original algebra, we have

4.2 Corollary ([7]). Then

hr.5(Ad(u(B,))) = logn = hr (Ba).

5. ENTROPIES FOR CUNTZ’S CANONICAL *-ENDOMORPHISMS

Let n(n > 2) be an integer. The Cuntz algebra O, is the C*-algebra generated
by n isometries {S; : 4 = 1,2,--- ,n} with ) ; S; = 1. Cuntz’s canonical inner
enodomorphism ® is defined by

®(z) = ZS,-:ES;‘, z € O,
=1

The algebra O,, has the unique log n-KMS state ¢ ([21]). Let B be the half sided
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infinite tensor product ®{2, M, of the n X n - matrix algebra and let o be the

shift endomorphism of B induced by the shift on the set of the natural numbers,
o :i(€ N) — i+ 1. Then the O, is represented as the C*-crossed product B X, N
of B by the corner *-endomorphism induced by o ([5, 16, 22, 23]). The B x, N

is the C*-algebra C*(B,w) generated by the UHF algebra B and an isometry w -

such that wbw* = o(b)e (b € B), for some minimal projection e € M;. There exists
a conditional expectation E of C*(B,w) onto B with E(w*) = 0 for all £k € N.
Let 7 be the unique tracial state of B. Then the logn-KMS state ¢ on C*(B,w) is
nothing but the state 7- F and the *- endomorphism ® on C*(B, w) is the extension
of the shift o. It is obvious that ¢ is ®-invariant.

In this section, we state results on the two entropies of ®. ,

The entropies hy(-) and ht(-) are defined for automorphisms on C*-algebras.
However, these notions are available for unital *-endomorphisms on unital C*-
algebras. We replace the UHF algebra M to B and we take an analogy of the
method to compute entropies for Ad(u(/3,)) in the section 4. Then we obtain the
value of entropies of ®.

5.1 Theorem ([7]). Let ® be Cuntz’s canonical inner endomorphism of Op,. Then
ht(®) =logn = hy(P).

5.3. Application to Longo’s canonical *-endomorphism..

Let m4 be the GNS representaion of O,, by ¢. We denote by M the von Neumann
algera generated by 74(Oy). Then @ is extended to the *-endomorphism on M,
which we denote by I'. Then I is Longo’s canonical endomorphism ([4]) and we
have '

hs(T') = logn.
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