作用素環における力学系エントロピー

大阪教育大学 長田 まりゑ (Marie Choda)

1. Introduction

The entropy invariant of Kolmogorov-Sinai is extended as Connes-St ϕ rmer entropy $H(\cdot)$ to trace preserving automorphisms of finite von Neumann algebras ([10]). Replacing a finite trace to an invariant state ϕ , Connes-Narnhofer-Thirring entropy $h_{\phi}(\cdot)$ is defined for automorphisms of C^* -algebras as a generalization of $H(\cdot)$ ([11]).

Many interesting automorphisms to compute the entropies are given on the algebra constructed from \mathbb{Z} -copies of an algebra and they are induced by the shift $\alpha: n(\in \mathbb{Z}) \to n+1$. That is, they are "shift" type automorphisms. The first typical example of shift type automorphisms is the Bernoulli shift β_n on the infinite product space of n-point sets.

In the context of operator algebras (von Neumann algebras or C^* -algebras), the non-commutative Bernoulli shift α_n takes the place of β_n . It is the shift automorphism on the infinite tensor product $M = \bigotimes_{i=-\infty}^{\infty} M_i$, where M_i is the $n \times n$ -matrix algebra for all $i \in \mathbb{Z}$. The notion of non-commutative Bernoulli shift is extended to a large class of automorphisms coming from Jones' index theory for subfactors.

These non-commutative Bernoulli shifts satisfy some "sub-commutative" properties. Completely non-commutative shifts are automorphisms on the reduced free product of C^* -algebras indexed by \mathbb{Z} . The automorphism is called the free shift. The Cuntz algebra \mathcal{O}_{∞} appeared as one of such reduced free products.

The above entropies are available to unital *-endomorphisms, which are not always automorphisms. Then Connes-St ϕ rmer entropies for shift type *- endomorphisms on the hyperfinite II₁ factor have connection with indices of subfactors or the relative entropies of subfactors, which are given as the ranges of those *-endomorphisms ([2, 3, 8, 14, 15]).

On the Cuntz algebra \mathcal{O}_n , $(n \geq 2)$, the most interesting *-endomorphism appears as the extension of the *-endomorphism of non-commutative Bernoulli shift type on the half sided infinite tensor product $N = \bigotimes_{i=0}^{\infty} M_i$ of the $n \times n$ -matrix algebra M_i s. The *-endomorphism is called Cuntz's canonical *-endomorphism.

In this note, we summarize results in [6, 7, 9] about entropies of automorphisms related to free shifts and Cuntz's canonical *-endomorphisms.

2. Entropies for automorphisms related to free shifts

Let A_0 be a unital C^* -algebra and let ϕ_0 be a state of A_0 . Let $A_i = A_0$ and $\phi_i = \phi_0$ for all $i \in \mathbb{Z}$. Every A_i acts on the Hilbert space H_i standardly. Let ξ_i be the canonical vector in H_i for the state ϕ_i . Then the free product Hilbert space $(H, \xi) = (*H_i, *\xi_i)_{i \in \mathbb{Z}}$ is defined. Let A be the reduced free product C^* -algebra $A = *_{i \in \mathbb{Z}} A_i$ with respect to states $\{\phi_i\}_{i \in \mathbb{Z}}$ defined by Arvitzour ([1]) and Voiculescu ([29, 31]) independently. Then A is acting on H.

The vector state ϕ of A defined by ξ is called the free product of $\{\phi_i\}_{i\in\mathbb{Z}}$. We denote the ϕ by $*_{i\in\mathbb{Z}}\phi_i$. The free shift α is the automorphism on A, which is induced by the shift on \mathbb{Z} . It is obvious that $\phi \cdot \alpha = \phi$.

Let (B, β, μ) (resp. (C, γ, ν)) be a triplet of a unital C^* - algebra B (resp. C), a *-automorphism β (resp. γ) of B (resp. C) and a state μ (resp. ρ) of B (resp. C) with $\mu \cdot \beta = \mu$ (resp. $\rho \cdot \gamma = \rho$). Now we consider the reduced free product A * C with respect to $\{\phi, \rho\}$. We put

$$\mathcal{A} = (A * C) \otimes B$$
.

The \mathcal{A} contains the tensor product $C \otimes B$ as a C^* -subalgebra. Then we have a conditional expectation F of \mathcal{A} onto $C \otimes B$ which is given by

$$F = (E_{\phi} * id_C) \otimes id_B,$$

where $E_{\phi}(a) = \phi(a)1$, $(a \in A)$, id_C is the identity on C, and $E_{\phi} * id_C$ is the free product of E_{ϕ} and id_C .

2.1 Proposition ([6]). Let ψ be a state on A and $(\alpha * \gamma) \otimes \beta$ the tensor product of the automorphism $\alpha * \gamma$ on A * C (which is the free product of α and γ) and β . Then

$$\psi \cdot (\alpha * \gamma) \otimes \beta = \psi$$

if and only if there exists a state ω on $C \otimes B$ such that

$$\omega \cdot \gamma \otimes \beta = \omega$$
 and $\psi = \omega \cdot F$.

In Proposition 2.1, if we put $C = \mathbb{C}1$, then we have [1: 4.1 Proposition].

Sauvageot-Thouvenot defined the entropy $H_{\phi}(\cdot)$ as an alternate of Connes-Narnhofer-Thirring entropy $h_{\phi}(\cdot)$ ([24]). Proposition 2.1 is used to show the following relations about Sauvageot-Thouvenot entropies for two automorphisms, one of which is given as reduced free product with the free shift α and the other is the tensor product with α .

2.2 Theorem ([6]). For an arbitrary triplet (B, β, μ) , we have

$$H_{\phi*\mu}(\alpha*\beta) = H_{\mu}(\beta) = H_{\phi\otimes\mu}(\alpha\otimes\beta).$$

Two entropies $H_{\phi}(\cdot)$ and $h_{\phi}(\cdot)$ are equal for automorphisms on nuclear C^* -algebras. Hence we have :

2.3 Corollary. If A and B are nuclear, then

$$h_{\mu}(\beta) = h_{\phi \otimes \mu}(\alpha \otimes \beta).$$

The Cuntz algebra \mathcal{O}_{∞} is given as the reduced free product $A = *_{i \in \mathbb{Z}} A_i$. Here A_i is the C^* -algebra of the semigroup of natural numbers \mathbb{N} with respect to the vector state ϕ_i determined by the characteristic function of the unit. Then the free shift α on \mathcal{O}_{∞} is given as the automorphism $\alpha: S_i \to S_{i+1}$, for isometries $\{S_i; i \in \mathbb{Z}\}$ which generate \mathcal{O}_{∞} . It is well known that \mathcal{O}_{∞} is nuclear.

In particular, if B in Theorem 3 is the trivial algebra $\mathbb{C}1$, then we have :

2.4 Corollary. If α on \mathcal{O}_{∞} is the free shift α on \mathcal{O}_{∞} and ϕ is the state of \mathcal{O}_{∞} defined by $\phi(w) = 0$ for each non-trivial word w on $\{S_i; i \in \mathbb{Z}\}$, then

$$h_{\phi}(\alpha)=0.$$

Compare this Corollary with $\operatorname{St}\phi$ rmer's result ([S?]) that the free shift α on the algebra generated by the left regular representation of the free group on countably infinite generators $\{g_i\}_{i\in\mathbb{Z}}$. Then the α is defined by $\alpha:g_i\to g_{i+1}$ and has also same entropy 0 for the unique tracial state ϕ .

As an application of Theorem 2.3 and Corollary 2.4, we have the following:

2.5 Remark. The free shift α satisfies the additivity for tensor product :

$$h_{\phi \otimes \mu}(\alpha \otimes \beta) = h_{\phi}(\alpha) + h_{\mu}(\beta),$$

for an arbitrary automorphism β .

This remark has a relation to a question in [28] about the entropies for the tensor product. They ask whether Connes-Narnhofer-Thirring entropy satisfies the additivity for tensor product. The negative answer is given in [20] by showing a counter example. Remark 2.5 means that it holds when one of automorphisms on nuclear C^* -algebras is the free shifts.

3. Inner automorphism on the crossed product induced by free shift

Let (B, β, μ) be a triplet as in section 2. Then we have the implimenting unitary $u(\beta)$ in the crossed product $B \rtimes_{\beta} \mathbb{Z}$. The β -invariant state μ of B is extended to the state $\mu \cdot E_B$ of $B \rtimes_{\beta} \mathbb{Z}$, where E_B is the conditional expectation of $B \rtimes_{\beta} \mathbb{Z}$ onto the original algebra B with $E_B(u(\beta)^n) = 0$ for all non-zero $n \in \mathbb{Z}$. Then the inner automorphism $Ad(u(\beta))$ preserves the state $\mu \cdot E_B$. A general property of entropy says that we have the inequality

$$h_{\mu \cdot E_B}(Ad(u(\beta))) \ge h_{\mu}(\beta).$$

In [25], $St\phi$ rmer asks whether we have equality here. Voiculescu shows in [29] this equality of Connes-Narnhofer-Thirring entropy for the classical Bernoulli shifts.

Here We show the equality for automorphisms related to the free shift α . We use the same notations as in the section 2.

In this section 2, we denote simply by E the conditional expectation of the crossed product onto the original algebra. We denote by $C^*(C \otimes B, u((\alpha * \gamma) \otimes \beta))$ the C^* -subalgebra of $((A * C) \otimes B) \rtimes_{(\alpha * \gamma) \otimes \beta} \mathbb{Z}$ generated by $C \otimes B$ and the unitary $u((\alpha * \gamma) \otimes \beta)$.

Lemma 3.1 ([9]). There exists a conditional expectation ϵ of $((A*C)\otimes B)\rtimes_{(\alpha*\gamma)\otimes\beta}\mathbb{Z}$ onto $C^*(C\otimes B, u((\alpha*\gamma)\otimes\beta)$ which satisfies the following properties:

- (1) $((\phi * \rho) \otimes \mu) \cdot E \cdot \epsilon = ((\phi * \rho) \otimes \mu) \cdot E$
- (2) $\epsilon(xu) = F(x)u$, for $x \in (A * C) \otimes B$.
- (3) For each $x \in ((A * C) \otimes B) \rtimes_{(\alpha * \gamma) \otimes \beta} \mathbb{Z}$ and any $\varepsilon > 0$, there are an $p \in \mathbb{N}$ and $n_i \in \mathbb{N} (i = 1, \dots, p)$ so that

$$\|\epsilon(x) = rac{1}{p} \sum_{i=1}^p ((lpha * id_C) \otimes id_B)_i^n(x) \| < arepsilon.$$

This conditional expectation ϵ plays a main role to compute the entropy. A necessary and sufficient condition that a state φ on $((A*C)\otimes B)\rtimes_{(\alpha*\gamma)\otimes\beta}\mathbb{Z}$ is invariant under the inner automorphism $Ad(u(\alpha*\gamma)\otimes\beta)$ is that φ rises from a state of $C^*(C\otimes B,u((\alpha*\gamma)\otimes\beta))$ by composition with the ϵ . This fact corresponds to Lemma 2.1 and implies the following:

Theorem 3.2 ([9]).

$$H_{(\phi*\mu)\cdot E}(Ad(u(\alpha*\beta))) = H_{\mu\cdot E}(Ad(u(\beta))) = H_{(\phi\otimes\mu)\cdot E}(Ad(u(\alpha\otimes\beta))).$$

In particular,

$$H_{\phi \cdot E}(Ad(u(\alpha))) = 0 = H_{\phi}(\alpha).$$

If we let A be \mathcal{O}_{∞} in Theorem 3.2, then we have :

Corollary 3.3. Let ϕ be the free state of the Cuntz algebra O_{∞} descrived above and let α be the free shift on O_{∞} . Then

$$h_{\phi \cdot E}(Ad(u(\alpha))) = 0 = h_{\phi}(\alpha).$$

More generally, if B is nuclear, then

$$h_{(\phi \otimes \mu) \cdot E}(Ad(u(\alpha \otimes \beta))) = h_{\mu \cdot E}(Ad(u(\beta)))$$

for any μ -preserving automorphism β of B.

3.4. We apply these to the Bernoulli shift β . Let B=C(X) for the space product space X of $\mathbb Z$ copies of an n point set and let μ be the state on B indeced by the product measure of μ_0 with $\mu_0(\cdot)=1/n$. The Bernoulli shift β is the shift automorphism on B. Voiculescu ([30]) proved that $h_{\mu \cdot E}(Ad(u(\beta))) = \log n$. We combine this result with above Corollary 2.7, then the free shift α of \mathcal{O}_{∞} and the Bernoulli shift β satisfies the following relations:

$$h_{(\phi \otimes \mu) \cdot E}(Ad(u(\alpha \otimes \beta))) = h_{\mu \cdot E}(Ad(u(\beta)))$$
$$= \log n = h_{\mu}(\beta) = h_{\phi \otimes \mu}(\alpha \otimes \beta).$$

4. Inner automorphism on the crossed product induced by non-commutative Bernoulli shift

In this section, we replace the free shift to the non-commutative Bernouli shift β_n on the UHF algebra $M = \bigotimes_{i \in \mathbb{Z}} M_i$ of the $n \times n$ -matrix algebra M_i and compute the entropy for the inner automorphism $Ad(u(\beta_n))$ of $M \rtimes_{\beta_n} \mathbb{Z}$ as in the section 3.

We state the two entropies of $Ad(u(\beta_n))$. One is Connes-Narnhofer-Thirring entropy $h_{\phi}(\cdot)$. Another is the topological entropy $ht(\cdot)$ defined by Voiculescu ([30]). He defined the entropy $ht(\cdot)$ for automorphisms of nuclear C^* -algebras. This $ht(\cdot)$ does not depend on any state but is based on approximations. Similarly to the free shift, the shift β_n does not change these entropies in the process of the crossed product. First, we compute the topological entropy for $Ad(u(\beta_n))$.

4.1 Theorem ([7]). Let β_n be the non-commutative Bernoulli shift. Then

$$ht(Ad(u(\beta_n))) = \log n.$$

The topological entropy satisfies $ht(\cdot) \geq h_{\phi}(\cdot)$ for ϕ -preserving automorphisms in general. Since $Ad(u(\beta_n))$ is the extension of β_n and there exists a conditional expectation E of the crossed product to the original algebra, we have

4.2 Corollary ([7]). Then

$$h_{\tau \cdot E}(Ad(u(\beta_n))) = \log n = h_{\tau}(\beta_n).$$

5. Entropies for Cuntz's canonical *-endomorphisms

Let $n(n \ge 2)$ be an integer. The Cuntz algebra \mathcal{O}_n is the C^* -algebra generated by n isometries $\{S_i : i = 1, 2, \dots, n\}$ with $\sum_{i=1}^n S_i = 1$. Cuntz's canonical inner enodomorphism Φ is defined by

$$\Phi(x) = \sum_{i=1}^{n} S_i x S_i^*, \quad x \in \mathcal{O}_n.$$

The algebra \mathcal{O}_n has the unique $\log n$ -KMS state ϕ ([21]). Let B be the half sided infinite tensor product $\otimes_{i=1}^{\infty} M_i$ of the $n \times n$ - matrix algebra and let σ be the shift endomorphism of B induced by the shift on the set of the natural numbers, $\alpha:i(\in\mathbb{N})\to i+1$. Then the \mathcal{O}_n is represented as the C^* -crossed product $B\rtimes_{\sigma}\mathbb{N}$ of B by the corner *-endomorphism induced by σ ([5, 16, 22, 23]). The $B\rtimes_{\sigma}\mathbb{N}$ is the C^* -algebra $C^*(B,w)$ generated by the UHF algebra B and an isometry w such that $wbw^*=\sigma(b)e$ ($b\in B$), for some minimal projection $e\in M_1$. There exists a conditional expectation E of $C^*(B,w)$ onto B with $E(w^k)=0$ for all $k\in\mathbb{N}$. Let τ be the unique tracial state of B. Then the $\log n$ -KMS state ϕ on $C^*(B,w)$ is nothing but the state $\tau\cdot E$ and the *- endomorphism Φ on $C^*(B,w)$ is the extension of the shift σ . It is obvious that ϕ is Φ -invariant.

In this section, we state results on the two entropies of Φ .

The entropies $h_{\phi}(\cdot)$ and $ht(\cdot)$ are defined for automorphisms on C^* -algebras. However, these notions are available for unital *-endomorphisms on unital C^* -algebras. We replace the UHF algebra M to B and we take an analogy of the method to compute entropies for $Ad(u(\beta_n))$ in the section 4. Then we obtain the value of entropies of Φ .

5.1 Theorem ([7]). Let Φ be Cuntz's canonical inner endomorphism of \mathcal{O}_n . Then

$$ht(\Phi) = \log n = h_{\phi}(\Phi).$$

5.3. Application to Longo's canonical *-endomorphism...

Let π_{ϕ} be the GNS representation of \mathcal{O}_n by ϕ . We denote by M the von Neumann algera generated by $\pi_{\phi}(\mathcal{O}_n)$. Then Φ is extended to the *-endomorphism on M, which we denote by Γ . Then Γ is Longo's canonical endomorphism ([4]) and we have

$$h_{\phi}(\Gamma) = \log n.$$

REFERENCES

- [1] D. Avitzour: Free products of C^* -algebras, Trans. Amer. Math. Soc., **271** (1982), 423-435.
- [2] M. Choda: Entropy for *-endomorphisms and relative entropy for subalgebras, J. Operator Theory, 25 (1991), 125-140.
- [3] M. Choda: Entropy for canonical shifts, Trans. of Amer. Math. Soc, **334** (1992), 827-849.
- [4] M. Choda: Extension algebras of II_1 factors via *-endomorphisms, Internat. J. Math., 5 (1994), 635-655.
- [5] M. Choda: Canonical *-endomorphisms and simple C*- algebras, J. Operator Theory, **33** (1995), 235-248.
- [6] M. Choda: Reduced free products of completely positive maps and entropy for free products of automorphisms, Publ. RIMS, Kyoto Univ., 32 (1996), 179-190.
- [7] M. Choda: Entropy of Cuntz's canonical endmorphisms, Preprint, (1996).
- [8] M. Choda and F. Hiai: Entropy for canonical shifts II, Publ. RIMS, Kyoto Univ., 27 (1991), 461-489.
- [9] M. Choda and T. Natume: Reduced C*-crossed products by free shifts, Preprint, (1996).
- [10] A. Connes and E. St ϕ rmer: Entropy of II_1 von Neumann algebras, Acta Math., 134 (1975), 289-306.
- [11] A. Connes, H. Narnhofer and W. Thirring: Dynamical entropy of C* algebras and von Neumann algebras, Comm. Math. Phys., 112 (1987), 691-719.
- [12] J. Cuntz: Simple C*-algebras generated by isometries, Comm. Math. Phys., 57 (1977), 173-185.
- [13] J. Cuntz: Regular actions of Hopf algebras on the C*-algebra generated by a Hilbert space, in "Operator algebras, mathematical physics, and low dimensional topology (Istanbul, 1991)" Res, Notes Math. Vol. 5, Wellesley, MA, (1993), 87-100.
- [14] F. Hiai: Entropy and growth for derived towers of subfactors, in Subfactors, World Scientific, Singapore, (1994), 206-232.
- [15] F. Hiai: Entropy for canonical shifts and strong amenability, Internat. J. Math., 6, (1995), 381-396.
- [16] M. Izumi: Subalgebras of infinite C*-algebras with finite indices. II. Cuntz-Krieger algebras, Preprint.
- [17] R. Longo: Index of subfactors and statistics of quantum fields. I, Commun. Math. Phys., 126 (1989), 145-155.
- [18] R. Longo: Duality for Hopf algebras and for subfactors, Comm. Math. Phys., 159 (1994), 133-150.
- [19] R. Longo and J.E. Roberts: A theory of dimension, Preprint.
- [20] H.Narnhofer, E. Stφrmer and W. Thirring: C*-dynamical systems for which the tensor product formula for entropy fails, Ergod. Th. & Dynam. Sys., 15, (1995), 961-968.
- [21] D. Olesen and G. K. Pedersen: Some C*-dynamical systems with a single KMS state, Math. Scand., 42 (1978), 111-118.
- [22] W. Paschke: The crossed product of a C*-algebra by an endomorphism, Proc. Amer. Math. Soc., 80 (1980), 113-118.

- [23] M. R ϕ rdam : Classification of certain infinite simple C*-algebras, J. Funct. Anal., 131 (1995), 415-458.
- [24] J-L. Sauvageot and J-P Thouvenot: Une nouvelle définition de l'entropie dynamique des systèmes non commutatifs, Commun. Math. Phys., 145 (1992), 411-423.
- [25] E. St ϕ rmer: Entropy in operator algebras, Preprint, (1992).
- [26] E. St ϕ rmer: Entropy of some automorphisms of the II_1 factor of the free group in infinite number of generators, Invent. Math., 110 (1992), 63-73.
- [27] E. St ϕ rmer: States and shifts on infinite free products of C^* -algebras, Pre-print, University of Oslo, (1995).
- [28] E. St ϕ rmer, D. Voiculescu: Entropy of Bogoliubov automorphisms of the canonical anticommutation relations, Commun. Math. Phys., 133, (1990), 521-542.
- [29] D. Voiculescu: Symmetries of some reduced free product C*- algebras, Operator Algebras and Their Connection with Topology and Ergodic Theory (Lecture Notes in Mathematics, Vol. 1132). Springer Verlag, (1985), 556-588.
- [30] D. Voiculescu: Dynamical approximation entropies and topological entropy in operator algebras, Commun. Math. Phys., 170 (1995), 249-281.
- [31] D. Voiculescu, K. Dykema and A. Nica: Free random variables, (CRM Monograph Vol. 1). AMS, (1992).