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Hierarchical Variational Principles of Irreversible Processes

in Dynamical and Thermal Disturbance

d B B4 Huzio Nakano
3-110, Issikisinmati 2-401, Nakagawaku, Nagoya 454, Japan

Quantum variational principles of irreversible proceSéeS in the
theory of linear fesponse which have been developed for the
electric conduction by the present author and his coworker are
generalized to the transport phenomena in thermal disturbance. The
princple is also presented on the quantum fluctuation in the aged
system, manifesting the fluctuation-dissipation 1law, The primary
version is concerned with the dynamical stage and independent of
irreversibility. By means of contractions of informations, the
principle is converted into the more coarse grained one, which is
thus concerned with irreversibility. In the first step the conver-
sion takes place from the dynamical to kinetic stages and in the

second from the kinetic to thermohydrodynamical stages.

§1.Introduction _

We have developed the variational prinéiple of irreversible
processes in the linear response theory, taking the electrical
conduction in solids as a typical example.!'2)3)4) In the present
paper we generalize the principle to the transport in the system
driven by the thermal disturbance based on the theory due to
Nakajimas’ . He generalized the local equilibrium distribution
function to the local equilibrium density matrix as the standard
from which the state of the molecular state deviate. We also apply
the principle to the theory of quantum-mechanical fluctuation in
the aged system®’ which generalized Onsager’s stochastic thermody-
namical theory giving the well-known rTeciprocity relation. The
principles thus obtained in ~ the deepest microscopic level of
information 1is reduced to the more coarse grained level by
contracting the informations in the density matrix of the system in
the same way as in the our previous papers mentioned above. The
contraction is made in two steps successively and as a result the
variational principles at the levels of kinetic and thermohydro—
dynamical stages is derived.

In 82 we revise the previous variational principle on the
electric couduction due to the applied electric field based on the

von-Neumann eqution, by replacing the density matrix of the grand
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canonical form for equilibrium . with = that for the .local
equilibrium.6’ Thus the variational principle is generalized to the
thermally as well as dynmaiclly driven systems.

In §3 we discuss the thermal fluctuation in the aged system on
the basis of the theory due to Nakajima et al.”’?) and propose the
variational principle of the same form as in the transport
phenomena, manifesting the fluctuation-dissipation law. In §4,
applying the information contractions, we obtain a hierachy of
variational principlés depicting the various dynamical stages of

the system.

§2.Formulation for the system in thermal distsurbance
The density matrix p(t) for the system exposed to an electric

field E(t) obeys a von-Neumann equation
itiap/at=[H-P-E(t),p] | (1)

where P represents the polarization operator of the system}. We
assume that the system is maintained at local equilibrium in
thermal contact with the surrounding heat bath with - temperatures .
varying in space, with transport phenomena being accompanied.

We can write he density matrix for this system as
p(t)=pL+p1 (t) (2)

in terms of the local equilibrium part

pL=Kexp[-I{sL(r)u<r>+gL<r)n(r);dar (3)

and the deviation p; (t). In (3) K is a nomalization constant, and
. (r) and &, (r) are local values of the inverse temperature and of
the chemical potential divided by temperature, respectively. They
are thermodynamically conjugate to the energy density u(r) and the
number density n(r), respectively. Integrations of these densities

give
H:Iu(r)}dgr, szn(r)}dsr, (4)

where H and N are the Hamiltonian and the total number of
electrons, respectively. The local parameters g.(r) and ¢, (r) are
determined from the -local averages u,.{(r) and n  (r) of energy band
number densities with respect to the local as well as total

equilibrium density matrices as
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UL(r)=ITr[p(t)u(r)]d3r=JTf[pLU(r)]d3r, (5)
nL(r)=ITr[p(t)n(r)]d3r=ITr[an(r)]d3r- (6)
respectively.

Dividing the local parameters as
Bulr)=g+g’(r), gulr)=g+g’ (r) (7)
into the uniform values g and ¢ and small deviations g’ and ¢’
which are sowly-varying with space and time, we expand (3) as

pL<t)=pc[1—s—ljderj;elu(e'u+a’n>e-xndx1 | (8)

into a power series of g’ and &' up to the first order, where
pc =Kexp(-gH-£N) (9)

is the density matrix for the system at fhermal equilibrium. The
integration with sapce in (8) extends all over the system.

Substituting (8) into the von-Neumann equation (1), we obatin

301 /3t+i[H,p:1 1/H i
:J:dkfd3r81H[3~E(t)—B'1(é’u+é’n+8’ﬁ+§’ﬁj e- 1 H (10)

in the linear approximation with respect to the external distur-
bance. Here, in contrast to the fact that g’ and ¢’ simply denote
the derivatives of g’ and ¢’ with time, respectively, U and n stand
for the changes with time according to the Heisenberg equation of

motion and obey the equation of continuity, so that
n=i[H,nl/h=-9v-35/e, U=i[H,ul/Kh=-9-w, (11)

where § and w denote the -electric current and energy current
densities, respectively. In conformity of the left-hand side with

the right-hand side in (10), we put
pr=[dafas rernge-an. | (12)

in (10) and perform partial integrations with space coordinates to
get '

98/3t+i[H,8]/m=N+8- ' (B’u+é’n) , (13)
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for the deviation operator &. Here we have defined
0= j-X1+q-X2 =j-X: +w-Xe (14)
in terms of j and w or the heat flow ¢ given by

9= w-pj/e, _ , (15)
and their thermodynamically conjugate forces defined, respectively,

as

X1=é-e"1Vu, Xz =-T-1vT, X:’'=g-e-1Tv(u/T). (16)

When X1 and X: as well as g’ and §"depend on time és
X1 (t)=Xiest, Xz (t)=Xeest, Xi;’'(t)=X:’est, (t<0) (17a)

on the one hand and

Xi(t)=Xie-st, Xz(t)=Xee-st, Xi’(t)=X:’e-st, (t20) (17b)
on the other hand, we assume

o(t)=9+) e-st | . (18a)
and | | |

d(t)=@-rYest, | (18b)

respectiﬁely, where s will tends to plus zero in the following.
Substituting (17a) and (17a) and next (18b) and (19b) into (14),

we get
Ls®‘+) =1, - (19a)
L.s®¢-) =1, . . (19b)

respectively, where no contribution comes from the terms other than
I in the integrand on the right-hand side of (14) as s-24+0. A

superoperator L; acting on an operator & is defined by

Ls§=3§+i[H)@]/ﬁ; . . (20)
and satifies

(¢,Ls®)=-(¥,L.:3) | : (21)

with respect to the inner product which is been defined between a

pair of operators & and ¥ as

(@,m)=(m,§)=I:Tr(pce*"@e-1Hm)dx. ' (22)
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The variational principle is thus presented as follows. Let us

make the functional
W(@t+ ,@ - )=(8 =8 - , 3 -Xi+q-X2 )+(& - ,L.% ) (23)

stationary with respect to &+’ and %'-’ in the limit s-0. Thus the

solutions satisfy (19a) and (19b), respectively, and are written
BUE) =@ (1) Xy +dz (t) -Xe (24)
in terms of the vector operators éltt’ and ¢, 't satisfying
Lot ¢+ = 35, (i=1,2) ' (25a)
Loso;t-0= §;. (j=1,2) | (25b)
respectively, where we have redefined tﬁe flows as
3173, Jz=q, (26)

in conformity with the forces X; and X:. We can adopt w as j, in
place of g, by replacing X; with X;’ in (24).

A pair of flows are coupled to each other in the functional

Wi 0,0, -0 )=(di “+ , 35 )—(®; -2, 5, )+(®; (-2 ,Led; ¢+ ), . (27)
which 1is made stationary by the solutions of {25a) and
(25b). The stationary value gives the transport coefficent
Lii=(®i (7,5, )=(#; ¢+ ,Losdi -0 )==(@; - ,5; )=—(&; -2 ,Lsd; <+>) (28)

in terms of the solutions of (25a) and (25b).

In discussing the time reversal symmetry, @&  denotes the time
reversal of an operator Q. In the Schrdédinger representation, the
time reversal is performed by taking the complex conjugate: e.g.,

x=x and p=-p. The Hamiltonian H(H) of the system which is exposed

to a magnetic field H is transformed as
H(H)=H(-H). : . (29)

In the absence of magnetic field, to which we confine ourselves,
HéH(O)vis real and invaraiant with time inversion: H=H. Since H is
real, if |[n> is an eigenket, then its complex conjugate |n> which
denotes the time reversed state of |n> is also an eigenket with the

same eigenvalue E, as |n>: that is,

Hin>=E, |n>, Hin>=zE, |n>. . (30)



We also have

<m|n>=<n|m>, <m|QIn>=<n|{QJIm>,

where Q@ is hermitian. Otherwise,b @ should be read the

conjugate Q@' of Q.
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(31)

Hermite

Concerning the matrix element on the left-hand side of (20a)

the Hermitian operator &'+’ , we have the relation

<m|Ls§‘+’|n>=—§HIL-s$TTTIE>, (32)
where OmnEiEm°En)/ﬁ- Taking 1 as Q@ in (31), we get
<mifin>=-<niOoim>, (33)
since [I=-II. Taking into consideration (20a), (32) and (33),
find that 7+’ satisfies (20b). Thus we can assume
) = @, (34)
and simply write &'+’ as & and &‘'-’ as &(&; ). Defining
Do, n=(pn=pn)/(Ea-Epn), (35)
we can demonstrate
(@; - ,Ls®; (*) )=2EDn . n<m|®; ‘> IN><n|Ls & **’ |m>
ZEDn . <m| &, <;’ In><n|Ls #; ¢+ xm>=(§i =) ,Ls#; ), (36)
based on the relations (32) and (21) and the identities
P =Pn Di,a=Dn.n (37)
due to the degeneracy (32) in the energy eigenvalues. Taking

account (36) in (28) leads to Onsager's reciprocity relation?’,

(Li; Juv =(Lii )vu o

Substituting the solution of (25a)/(25b) into (28), we obtain

(Li; )uvzjlat(jiu(t)7jjv)

in the limit s-»+0, where j;, and j;, denote the y-component of

and the vy-component of §;, respectively. When the

isotropic or has a cubic symmetry, (38) is rewritten as

(Lii)uv=Liidvu, Li; =L;; (u,v=x,y or z)

(38)

(39)

system

(40)

for

we

into

Ji
is
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in terms of.the Kronecker delta symbol &,, and
Lis=faefan Triecdi (e-ifa)did, | (41)

where j;, and j;, have been abbreviated as j; and j;, respectively.
When the system is exposed to an external magnetic field H, the

Schrédinger equations (30) are replaced with
H(W) In>=E, In>,  H(-H)IB>=E, |1>, (42)
based on (29). Thﬁs the field dependence of (37) is written as
or (W)= (-H) . Ds. s (H)=Da. o (-H), | (43)

‘wherefrom we obtain

(Li,j(“))uvz(L'ji(_H))vu (n,v=X,y,Z) (44)
for the magnetic field-dependent coefficient L;; (H).

§3.Fluctuating system

'~ Assuming that the 1local temperature and chemical potential
fluctuate slowly in the aged system where much faster fluctuations
in molecular level occur, we write the density matrix of this aged

system asT??
o(t)=Kexp[-[ (s () ulr)+e. (r)n(r)+a(t)rdo ], (45)

where #®(t) denotes the rapid molecular fluctuation. We divide g, (r)
and &, (r) as in (7), where g and & denote the equilibrium value and

g’ and ¢’ are not deviations driven externally but internal
thermal fluctuations. Substituting (7) into (45), we regard h’ and
¢’ as well as & to be small and expand into a ©power series of

these, we get
p(t)=pc[1—silfd3rJZe1H(e¢+s’u+§’n)e-1HdA], (46)

where pc¢ denotes the equilibrium density matrix (9).

Substituting (46) into the von-Neumann equation
ihdn/at = [H,p], | (47)

for the isolated system with the Hamiltonian H, we get (13) again,
where we have to notice the physical meaning. What we are concerned

with here is the fluctuations in the aged sytém, in contrast with
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the dissipations in the system driven externally in the last
section. By taking into consideration that the regression of the
thermal fluctuations are much slower than that of the fluctuations
in molecular level, g-t (g’u+é’n) can be neglected in comparison
with I on the right-hand side of (13). Thus we obtain

gi + ; [H,o]=3-X1+q-X2=§ X1 "+w X2 . (48)

If we assume the regression of Q(t) as well as Xi(t) and X2(t)
in the form (19a) and (18a), we obtain (20a). Assuming {(19b) aﬁd
(18b) instead, we get (20b). Thus the variational principle
concerning (23) applied to the dissipatioh phenomena in the driven
system is here applicable to the thermal fluctuation  in the aged
system, so that it is needless to repeat the argument therein. This
formal equivalence manifests the fluctuation-dissipation law in the
form of the variational principle. A

The variational principle concerning (24) can be rewfitten in

the time space in the form

I;dtjd3r[(@(t-T),H(t))-(Q(t),H(t-T))-(Q(t—T),aQ(t)/at+L¢(t))] (49)

Qhere
m(t)= 3-Xi (t)+qg-Xa(t)=3-X: " (t)+w-X2 (L), (50)

Let us make (49) stationary w. r. t. &(t), we get the von-Neumann
equation (48) in the time range -T<t<T. In the 1limit T-9w, (49)

is rewritten as (24) in terms of the Lapalace transform
s =["esta(t)dt, et =] esta(t)at. (51)

§4.Informational contractions and hierarchy

The principle developed in the foregoing sections is concerned
with the dynmaicl or initial-mixing stage, where the von Neumann
equation governs the principle. The time reversal symmetry
satisfied by that principle is broken by eliminating the even
component with respect to +time reversal which is found +to be
irrerevant. Thus the princple is transformed into the kinetic stage
inplicating irreversibility. The density operators introduced by
(19a) and (19b) are divided as

3+ =p'+8", &'-)=-8'+3", (52)
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where 8’ and %" are odd and even components with respect to time

reversal, respectively. That is,
3’ =-9’, 3" =0". (53)

The even component %" is irrelevant in the variation of (24),

because it is decoupled with the term of external disturbance. By

making (24) stationary as to &", this is eliminated irrespective of
the external term and expressed in terms of @’ as a result.
Subétituting this expression into (24), we get
w(e’)=2(e’,n)-(¢’,La’), © (54)
which is maximized w. r. t. &’. The superoperator L[ is defined by
Le’=([H,[H,®]]1+K2s28)/(hi2s) (55)

and satisfies the relations
(2,Lz)=(v,L8), | (56)
(2,L8)20. (57)
The maximization of (61) deménds
Lo’ =1 - (58)

of ', where the maximum is the observed value (&’,0) of 10 ‘and a
traxpot coefficient in a special case. This variational principle
is formally the same as the the Umeda-Kohler-Sondheimer (UKS)
principle which was originally presented on the Boltzmann equation
for the conduction electrons in solids®? and for molecules in
gases?’ . It is noticed that eq. (568) as well as the Boltzmann
equation are self-adjoint in contrast with the von-Neumann equation
(20a) whose adjoint is given by (20b).

For brevity we here confine ourselves to the isotropic or.  cubic
system and delete the suffix for the orthogonal component. The

solution of (58) can be written as
8’ Xi &1 +Xo 82 | - (59)
which maximizes*k54)_if dn Satisfies a Boltzamann type equation
Le.=jn  (n=1,2). N (60)
The maximum is written as

W(d')=L;1X12+4+2L; 2 X1 Xp 1 +L22X5 2, (61)
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in terms of the matric transport coefficient
Lmnz(Qm)jn)z(Qm;LQn)=I:(jmteitt_5tjn)dt (8»e). '(62)

The solution of (60) maximizes
W(®n)=2(®n yJn)~(®n yL&n ) (n=1,2), ' " (63)

where the‘maximum'is equal to Ljn. Substituting (66) 1into the

averages of the flow J,=(®&’,jn ), we obtain

Jm=z: Lnn Xn (m=1,2), . (64)

where L,, defined as (62) satisfies Onsager’s reciprocity?:
Lon=Lna (m,n=1,2). : ) . (65)

Substituting (59) and (15) into (54) and taking into account
(62) and (64), we obtain

»W(J)=P§[2Jnxn"(1"l)anmJn] (66)

in terms of the inverse L-!' to L. Asuming that {Lg.} is known in
(66) for the system concerned, we obtain a variational principle of

Onsager’s type?, where (66) is maximized w. r. t. {J,}.

§4.Conclusion

The quantum variational principle of irreversible processes
based on the von Neumann equation is generalized to the transport
due to the thermal disturbance, where a pair of solution are
coupled with each other similarly to the incoming and outgoing
waves in the scattering theeory.?’ It describes the dynamical
stage, having no concern with irreversibility, where the pair of
solutions of the von-Neumann equation are adjoint to each other, in
contrast with the self-adjoint Boltzmann equation.

By contracting the even component 3" of the density matrix, we
enter in the kinetic regime which concerns the irreversibility,
and get the UKS principle on the odd component as a maximum
problem. By means of a further contraction, we enter in the
thermohydrodynamical regime, where we gain the Onsager type varia-

tional principle on the flow quantities describing the transport.
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