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Abstract

In this paper I proved that the quantum relative entropy D(o||p) can be asymp-

- totically attained by Kullback Leibler divergences of probabilities given by a certain

sequence of measurements. The sequence of measurements depends on p, but is
independent of the choice of o.

1 Introduction

In classical statistical theory the relative entropy D(p||q) is an information quantity which
means the statistical efficiency in order to distinguish a probability measure p of a measur-
able space from another probability measure ¢ of the same measurable space. The states
correspond to measures on measurable space. When p, ¢ are discrete probabilities, the
relative entropy (called also information divergence) introduced by Kullback and Leibler
is defined by [1]: :

D(pllg) :=>_pilog 1—;-

In general, when P, q are measures on measurable space (1, the relative entropy is defined
by: '

Do) = [ log 2 (w)p(dw),

where %(w) is Radon-Nikodym derivative of p with respect to g.

Let # := CF be a Hilbert space which corresponds to the physical system of interest.
In quantum theory the relative entropy was first studied by Umegaki [2]. In quantum
theory the states of a system corresponds to positive operators of trace one on H. (These
operators are called densities.) The quantum relative entropy of a states p with respect
to another states o is defined by:

D(Ullp) = tr 0(1og0' ~ log p).

States are distinglﬁshed through the result of a quantum measurement on the system,.
The most general description of a quantum measurement that can be performed on a
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system is given by the mathematical concept of a completely positive instrument [3] on
the system state space. It can be easily shown that for extracting information, it suffices to
concentrate on the measurement probability without the need of successive measurements
on the already measured system. The most general description of a quantum measurement
probability is given by the mathematical concept of a positive operator valued measure
(POM) [4,5] on the system state space. Generally speaking, if () is measurable space, a
measurement M satisfies the following:

M(B) = M(B)"‘ M(B) >0,M(9) =0,M(Q) =1d on H, for any B C Q.
M(U;B;) = ZM , for B; N B; = (i # j),{B:} is a countable subsets of .

A measurement M on H is called simple, if for any B C (2,

[ M(dw)

is projection. ‘
tr M(-)p denotes the probability by a measurement M on a quantum system H with
respect to a state p. An information quantity we can directly access by a measurement M
is not D(o||p) but Dy (c]|p), where Dy (c||p) denotes D(tr M(-)o || tr M(-)p). Because the
map p — tr M(-)p is the dual of a unipreserving completely positive map [3}, by Uhlmann
inequality [6] we have

Dy (ollp) < D(allp). , (1)

The equality is attained by a certain measurement M when and only when po = op. see
for instance [7, Theorem 1.5, Theorem 5.3].

Does the equality of the inequality (1) asymptotlcally establish? In order to answer
the question we define i.i.d. condition.

Let Hi,...,H, be n Hilbert spaces which correspond to the physical systems. Then
their composite system is represented by the tensor Hilbert space:

H = H, @ @H, = é.%,-.

Thus, a state on the composite system is denoted by a density operator p on H™. In
particular if n element systems {#;} of the composite system #(® are independent of
each other, there exists a density p; on H; such that

p(ﬂ) =p1®...®pn =i§1'p,'.
The condition:
H]_:"'=%n=%7p1=.'.‘=pn=p X (2)

corresponds to the independent and identically distributed condition (i.i.d. condition) in
the classical case. In this paper, we consider under this condition (2) called the quantum
ii.d. condition. The model {p® = p® --- ® p|p is a state on H} is called n-i.i.d. model.
- N ———

n
Hiai and Petz proved the following theorem [8].
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Theorem 1 Let p,o be states on H. There exists a simple measurement M, such that
D () ]| o) Dy (c™]lp™)  log(n +1

< D(ollp) <
The preceding M,, depends on p and o.

Can we choose a simple measurement M, satisfying. (3) which is independent of 0?7 The
_ answer is “Yes”. The main theorem of this paper is the following theorem .

Theorem 2 Let p be a state on H. There exists a simple measurement M, such that:

(™ ][ o) ()] ()
D (o) Du (o) ol g

< D(o|lp) < +(k—1)

2 Simple measurement and quantum relative entropy

In this section we consider the relation between simple measurement and quantum relative
entropy. We put some definitions for this purpose. A simple measurement E(:= {E;}) is
called commutative with a state p on H if [p, E;] = 0 for any i. For simple measurements
E,F, we denote E < F' if for any i there exists subsets A; such that F; = E]E 4; Fj. For
a state p, E, denotes the spectral decompos1t10n of p.

Definition 1 The conditional expectation Eg with respect to a simple measurement E is

defined as:
Eg:p— Y EipE;.

Theorem 3 Let E be a simple measurement. If states p, o are commutative with a simple
measurement E and a simple measurement F' satisfies that E, E < F, then we have ’

Di(o1) < Dlelle) < Dr(oll) +1ogui(E),
where
w(E) := maxdim E;.
Note that there exists a simple measurement F' such that E,E, < F.

Proof It is proved by Lemma 1 and Lemma 2. 2

Lemma 1 Let o,p be states. If a simple measurement F satisfies that E, < F, then
D(clp) = Dr(cllp) + D(c€x (). (5)

Proof Since E, < F, F is commutative with p. Thus we obtain (5), [9,10]. 2

Lemma 2 Let E, F be simple measurements such that E < F. If a state o is commutative
with E, then

) D(o||Er(0)) < logw(E). ’ (6)

Proof Let a; := trE;0F;, 0; := —E oF;. Then o = ¥ ;a;0; Therefore from joint
convexity of quantum relative entropy [11, 12], .

D(o||Er(0)) < max D(o||€r(03)) < m?xlogdjm E; = logw(E). ‘ (7

2
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3 Proof of Main Theorem

Ir™ denotes the simple measurement deﬁned by a irreducible representation of the tensor
representation of GL(’H) on H™. : ‘

Lemma 3 For any state o, It™ is commutative with cr(")

Proof If a state o is faithful, then it is trivial by Schur’s lemma. If a sta,te o isn’t
faithful, then there exists a sequence {o;} of faithful states such that o; — o. Because

o™ o a(”) and Ir™ is commutative with o, I7® is commutative with o(®. 2

Theorem 4 p are a state on H. If a simple measurement M,, satisfies that I r("),E,, <
M, then we obtain the following inequality:

Day, (¢ ]1p™)
n

D (n) | o) 1 1) ' :
< D(a||p) < (7 - 1) + (k- 1)% for Vo. (8)
Therefore we obtam | |

()| o) ' o
lim Da, (]1p™) = D(o||p) for Vo.

n—oo n

‘Proof Since 'w(I (™) is the dimension of the k-th symmetric tensor space of H,

w(Ir®) = H, = ("‘,'c'k'l'l) = (""':“1) = pr1Hi-1 < (n+1)*1) where ;H, denotes
the repeated combmatlon of n from k. Therefore, we have log w(/ r(")) < (k- 1) log(n+1)
From Theorem 3 and Lemma 3 we have (8). 2

Note that the simple measurement M,, is independent of o.

Remark 1 Even if p. = p as € = 0 and M, satisfies the assumption of Theorem 4, the
following equation is not always established:

D (ﬂ) (n) (ﬂ) (n)
e—+0n—o0 fn,e2 neres end 'n,e2

Exsample 1 Let the dimension k of H be 2. Let us define the Pauli matrzces 01,02 N
the usual way:
01=(0 1,) ‘02=(0 —z)
A 10)° i 0 )°

' 1
p = §(Id+aa'1), 0<axl

Assume that

e 1. )
Pe = E(Id +a(cos €0y + sin eay)).

then
Dy, (o™ p™)
lim S 0 (10)
. Da, (6™)p™) . D(pflp) 1 l1+a
W e T T e el >0 )

where M,, satisfies the assumption of Theorem /.
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Conclusions

It was proved that quantum relative entropy D(o||p) is attained by a certain sequence
of measurements which is independent of o. This formula is thought to be important
for the quantum asymptotic detection and the quantum asymptotic estimation. To know
the quantum asymptotic estimation, see [13]. The constructions of these applications are,
however, left for future study. -
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