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1 Introduction

For a dissipative non-linear quantum system, the effect of the non-linearity on its relaxation
was considered [1]-[5] in deriving a quantum master equation for the system within the damping
theory [6, 7].

' Let us consider the system of a non-linear damped oscillator where the Hamiltonian of the
relevant system is given by . ’

1
Hs = wala+ §gata7aa, (D)
where a and a' are boson operators satisfying the commutation relations
e, al]=1, [a, d]=0. | (2)

In the non-conventional treatment [1]-[5] of the damping theory, the effect of the non-linearity
within a relevant system on its relaxation is taken into account, which ensures that the density
operator of the relevant system, pg(t), leads to the true final equilibrium state, i.e. pg(t) —
e PHs a5 { — oo. In the conventional treatment of the damping theory which ignores the
effect of the non-linearity within a relevant system on its relaxation, pg(t) converges to the
equilibrium state for a damped harmonic oscillator, i.e. pg(t) — e~Pwale a5 ¢ 5 oo. This
shows that the effect of the non-linearity within a relevant system on its relaxation plays the
important role for its long time behavior. Haake et al. [5] derived the master equation for the
non-linear damped oscillator in the non-conventional treatment within the damping theory.

Within the framework of Non-Equilibrium Thermo Field Dynamics (NETFD) [8]-[12], a uni-
fied canonical operator formalism of quantum stochastic differential equations was constructed
including the quantum Langevin equation and the quantum stochastic Liouville equation [10]-
[24]. Within this formalism, quantum stochastic differential equations for a non-linear damped
oscillator are constructed [20].

Accardi et al. [25]-[29] gave a microscopic foundation to quantum stochastic processes. They
considered a quantum system interacting with thermal reservoir which consists of boson fields.
Then, they showed that, in the weak coupling limit (the van Hove limit) [30], suitably chosen
boson fields of reservoir, called collective boson fields, converge to the quantum Wiener processes
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and the time-evolution equation of a wave function in the interaction representation to a quantum
stochastic differential equation where the infinitesimal time-evolution generator contains the
increments of the quantum Wiener processes.

In this paper, we will apply the procedure of Accardi et al. to a non-linear damped oscillator
within the formalism of NETFD, and give a microscopic foundation of quantum stochastic
differential equations for a non-linear damped oscillator where the effect of the non-linearity
within a relevant system on its relaxation is taken into account.

2 Microscopic Model

We consider a non-linear oscillator interacting with a reservoir which is described by the following
Hamiltonian '

H = Ho+ Hy, | | 3
where .
| Ho = Hs + Hp, (4)
and 7 y
Hy =i Z(afbk —bla). (5)
: . k v
Here, Hg is given by (1) and : o . _
Hgr = kab]tbk- ‘ (6)
Sk

The operators a, al and by, b,t are boson operators satisfying the commutation relations (2) and

[bk; b] = 6u, [bk; b] = 0. | (7).

We introduce operators with tilde, &, &t, b, I;,t The tilde conjugation ~ is defined by
(A14z)~ = A1Ay, (c1A1+cpd2)™ = ci A1 + Az, (8)
(AT =4, (Ahv=Af, (9)

where A;, A2 and A are arbitraiy operators and ¢; and ¢y are c-numbers. The representdtion
space of (a,af,&,&!) will be denoted by Hg, while that of (b, b}, b, bl) by I'z.
Thermal vacuums |0g) and (1g| in I'r are characterized by (1 R|b£bl|0R> = by with the

Planck distribution iy = 'ee’cll—T_r The annihilation operators (cg, ) and creation operators

(c,%, 6,'1‘) on I'g satisfying the relations
| cul0g) = &4108) = 0, {1alef = (1le} =0, o)
and the canonical commutation relations | |
ek, cf1=[&, &1 =6u, : (11)

are introduped by the Bogoliubov transformation

c fip+1 —fig- b .
(&)-("" ) (%) &
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The space I'p is spanned by the basic vectors introduced by cyclic operations of »(c,%, 5%) on |Og)
and (cg, é) on (1g|. ' ’
We introduce the time-evolution generator U, (t) in the interaction picture defined by

U(t) = efote=iflt, ‘ (13)
where
H=H-H, Hy=Hy- Hy. , (14)

The generator U A(t) is the operator acting on the thermal space Hg ® I'r. The time-evolution
equation of U, (¢) is given by

FUAOERHOUAGE (15)
with »
AL (t) = ot (Hy — Hy)e ot |
k
where t.c. indicates tilde conjugates of the previous term.
We introduce vacuum states |0, 0) and (0,0| by
al0,0) = @l0,0) =0, (0,0]a = (0,0/a" = 0, (17)

and define ket- and bra-vectors

o\ _ (a)™ @) o x " a™ (a)"
,ft) = 0,0), (m,n|= —_—— 18
I}mm|)<l(l\/—\/— (18)
which satisfy the orthonormalization condition
(m, film’, i) = Smum6pnts (19)
and the completeness relation | |
mn '
The representation space Hg can be spanned by the basic vectors |m, ) and (m,i|.
Using the vectors |m,#) and (m, |, Hi(t) can be expressed as
B{(t) = nY Y {VmFTim + 1) (m, fifbge™ 5 ém)"
mn k
—bleex=9m)t /T 1|m, i) (m + 1, ﬁl} —te, (21)

where we defined ¢, by ¢, = w + gn. Note that |m, 7)™~ = |n, M) and (m, 7|~ = (n, /.
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3 Evaluation of U,(t)

We introduce exponential vectors in I'g defined by

le(z,w))r = exp {Z ch: + wZ&,%] |0r), r{e(z,w)| = (1lr|exp [Z zZpck + wké'k} , (22)
k k

where zx, wy are c-numbers. The exponential vectors have the properties that the actions of cg,
c,% and their tilde conjugates on them are as follows:

cxle(z,w))r = zele(z, )R, Ele(z,w))r = wile(z, W)k, (23)

rle(zw)lf = rle(z )|,  rle(z )& = rle(z w)lw, (24)

which indicates that the exponential vectors are the coherent states. Let us introduce the
exponential vectors (22) with z;, and wy replaced with

Tn /X2 .
a=AY [ du s (25)
n n
and
T /22 o
We = A Z / pe du WnyeEre, (26)
n Yon :

respectively, and denote them by |e)(z,w)) g and g{ex(z, w)|. Here, znr and wyy are c-numbers.
The exponential vectors |e)(z, w))r and g(ex(z, w)| are called the collective exponential vectors.
Let K (t) be defined by

Rx(t) = riea(zs, w)l0A(E/3)lea(z2 w2)r. @)

Using (15), we see that the equation of motion of K\(t) is given by

d - 1 d

2850 = 5 Tz K0 = nleaten, )| DO ler(an . (28)

Substituting (21) with (b, b,t, b, 5;2) expressed by (ck, c,%, Crs 5,9:) into (28), we have

d - PR .
EK'\(t)’: I+ 115, (29)

where

. 1 ‘ -
Iy = srlex(z, o)l 13 {VimF Thm + 1, i) {m, il efe i =omM/¥
mn k :

— (7o + l)c,%ei(ek_¢m)t/AZVm + 1|m, fiy(m + 1, 7| + t.c.} Ur(t/22?)|ex(z2, w2)) R, (30)
and

A 1 .
II) = XR(GA(ZLWIN ZZ{ Jm+ 1jm + 1, i) (m, 71| cpe~ex—dmt/ N
mn g

— Geilen—dmt/3® Sy 1|m,ﬁ)(m+1,ﬁ|+t.c.}lA],\(t//\2)|e,\(z2,w2))R. . (31)
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Making use of (23) and (24) together with the relations

OA(t/N2) = On(t/3D)ck + o, OAEAD)], (32)
&OA(E/32) = Oa(t/ X2, + (&, Oa(t/XD)), (33)

we evaluate the limits of [ and IT as A — 0, which gives
d . d s A
=iy {i\/ M Lim + 1, ) (m, [26($m) A dm) Wim(Dm)Xisy,, 13,1 ()
mn

—i26(Bm) [ Bm) + 1)21m(Sm)X(S1m Tim) 1)V + Tim, ) (m + 1,73
+ivn+ Lim,n+ 1)(m, |26(6n)(én) 21n($n)X(S1n,T1a) (V)
—i2(6n)i(bm) + Twin(@a)xis, 11 (VA T Lim, fi)m, n + 1|} K (2)
> {ivm T im + 1, i) (m, 5|2(6m) 22m(Om) X183 2] (£
—ivm + 1|m, i) (m + 1, fi|26(6m)Wim(dm)X (8}, T4, (E)

+iv/n+ 1|m, n + 1)(m, fil26(én)w3n($n)X (s}, 13, (1)

i/t T, iy, 1 F U2k(8n)22n(Sn)X 530l ()} K (D

—i (A + ifI) K@, | (34)
where K(t) = limy_o Kx(t).* Here, xjszy(t) = 0(t — S)0(T — {), with the step function 6(t)
defined by
1, for t > 0,
6(t) = { 0, fort<o, (35)

and we introduced the operators A and IT as

A= ’P/dez{ (& +15% ”() L (m+ Dlm + 1,/ (m + 1,

—(m + 1)|m, fi)(m, n|n(e) '0( ) t.c.}”, | (36)
and v
7 = = 3 {s(Sm)l(fm) + (m+ Dlm + 1,7 (m + 1,7

+(m + 1)|m, ) (m, t|s(dm)A(dm) + t.c.}
+23" {(m + Dim+ 1,m F 1) (m, 1] ($m)(6m)

+1(@m)[A($m) + 1(m + Dim, ) (m + 1, m F 1]} (37)

*In this paper, we assume the convergence of Kx(t)as A — 0.
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In deriving (34), we changed the summation with respect to & to the integral with respect.to ¢
with a density of states p(e) defined by

> é(e~ ex) = ple), (38)
k

and used the relation

/ * dy etile=da _ 216(€ — bn). (39)
-0

4 Quantum Wiener Processes

In this section, we construct the quantum Wiener processes affected by the non-hneanty within
a relevant system. ' :

We introduce boson operators c; x(¢n), ct’k(qbn) and their tilde conjugates satisfying the
commutation relations

[etk(8n), Cf 4o (In)] = 276(ex — $n)8(t — /)OS, (40)
[at,k((p")’ 5%,k’(¢n’)] = 27r6(5k - ¢n)6(t - t’)ék,k’énn’a : (41)

and define the vacuums |) and (| by
ctk(@n)) = Ex(0n)) =0, (lefx(dn) = (& (#n) = 0. (42)

Let the Fock space built on the basic ket- and bra-vectors made by cyclic operations of (¢} ¢ 1 (Pn), & k(¢n))

on |) and of (¢t x(¢n), & x(dn)) on (| be denoted by I'?.
We introduce the exponential vectors defined by

‘ : - ‘ -
|e(z,w)) = exp [g; {~/Sn du ;nkci’k(¢n) + /SL du w,*lkéik(:pn)H 1), - (43)
and

P _
(e(z,w)] = (| exp [;zk: {/Sn du zppCuk(dn) + /SL du wnkcu,k(qbn)}] . - (44)

Introducing the operatorst

i) = Leealon). - cbon) = 3 clalon) (45)
and their tilde conjugates, we have
(Bn) ez, 0)) = X{5,,7,] ()25(6n) () (2, w)), (46)
(dn)le(z,)) = Xis1, 131 (H25(Ba) 03 (80 le(z, ), (47)
(e(2,)|¢f (6n) = (€(2, 1) X185, (£)2(90) 220, (48)
" (e(2,)[5(9n) = (e(z, ) |x13, 721 ()25(Jn)wn(dn). (49)

tThe operators c; (¢n), c; (¢n) and their tilde conjugates correspond to the annihilation and creation operators
c(t), S"(t) in the reference [31], which are regarded as quantum white noises.
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From the commutation relations (40) and (41), we see that
[ee(@n), 6 (6n1)] = 26(6n)8(t ~ '), (50)
[Ct((f)n) C (d)nl)] = 2n(¢n)6(t - t’)6nn: (51)

Here, we changed the summation with respect to k to the mtegral with respect to e with the
density of states (38).
We introduce the quantum Wiener processes defined by

Com) = [[dsclon), CHow=[dscllon, (@)

and their tilde conJugates We now investigate the product rule of the increments dC;(¢,),

dCH(dn); dCy(dn), dCH(bn) defined by

' t+dt e
dCy(6n) = Chrar(n) — Ce(dn) = [ ds co(dn), (53)
(ACHo) = Chialon) = Gl = [ dscled, (8

and their tilde conjugates. It can be done by evaluating the matrix elements of the products
such as dC}}(¢r,)dCy(¢,) with respect to the exponential vectors. By makmg use of (46) (49),
we then have :

| dct(¢n)dc,*(¢n,)‘= 26($n)nnrdt, dé’t(¢n)dc~'ff(¢n:) = 2n(¢n)6,mfdt, (55)

and other products vanish?.
‘We introduce the quantum Wiener processes B:(¢r), B}L (#n), Be(on), Btf (¢n) defined by

Bt(¢n) - Ct(¢n) + ﬁ(‘ﬁn)éf-(qsn), Bt (¢n) Ct(¢n) + [n(¢n) + I]CQ-(‘pn) (56)

and their tilde conjugates. The definitions (56) of B;(¢r) and Bf (qbn) together with the product
rules (55) give us the following product rules of the increments dB;(¢,), dB;r (¢r) and their tilde
conjugates:

dBy(6)dB ($n) = 26(0n)[(0n) + Ubnmdt,  dBe(dn)dBr(dw) = 26(dn)dn)bumidlt,  (57)

dB] (9n)dBe(dw) = 26(60)($n)brmsclt;  dBJ(6n)dBf (b)) = 26(n) [(bn) + Ubumdt,  (58)
dét(‘ﬁn)dBt(d’n’) = 2’9(¢n)'n(¢n)6nn'dt, dBt(¢n)dBt ((bn’) = 2"3(¢n)[n(¢n) + 1]6nn’dt . (59) ‘
dBf(6n)dB} (bu) = 2(n)[A(dn) + 16pmet, dB] (¢n)dBe(gw) = 2n(¢n>n(¢n)6nn/dt (60)

and other products vanish.

¥The operators Ci(¢n) and C’f’ (¢n) correspond to the annihilation and creation processes in the reference [32].
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5 Stochastic Time-Evolution Generator

We define the operator U(t) such that
K (t) = (e(z1,w1)|U(8)le(22, w2)). (61)

Using the properties (46)- (49) we see from (34) that U(t) satisfies the quantum stochastic
differential equation :

dU(t) = —i {(A + in) U(t)dt
+iy [\/m Film + 1,7)(m, #|U(t) 0 dCi(6m) — Vm + Lm, A)(m + L, A|U(£) 0 dCy(dm)

mn

VaFilm, nT1)<m, #|U(t) 0 dCy(¢n) — VR + 1im, i) (m,n + 1|T(t) o dCt(¢n)]
i [dCH@m)VmF Tim + 1,78 (m, il8(8m) — dCH($m)v/m + Tim, &){m + 1, i

mn

x['ﬁ(¢m) + 1]
+dCHn)Vn + 1m,n + 1)(m, Al7i(dn) — dCHdn) VR T Tim, i) (m, n T 1|[A(gn) + 1]]
o(‘J(t)}, ’ | | (62)

where the symbol o indicates the Stratonovich product. Here, we interpreted (62) as the stochas-

tic differential equation of the Stratonovich type, because it was derived from the ordinary

operator-valued differential equation (15) where the ordinary calculus rule can be applied.
Using the relations between the Stratonovich and the Ito products

Xz 0 dCy(92) = XedCy(dn) + %dXtdCt(qbn), etc., (63)

we find that (62) becomes
dU(t) = —i (Z\dt + dMf ) o U (), (64)

with dM/ defined by
aMf =i [\/m ¥ 1|m + 1,7)(m, 1|dBt(¢m) — dBf (¢m)vVm F 1|m, fi)(m + 1, ﬁl] — t.c.. (65)
mn

6 Quantum Stochastic Differential Equations
6.1 Quantum Stochastic Liouville Equation
Let us introduce the stochastic time-evolution generator Vf(t) defined by
Vi(t) = eHst{ (1), | | (66)
with Hg = Hg — Hg. The time-evolution equation of Vf(t) is given by
dV;(t) = —iHdt o Vi(t), (67)

where
Hypdt = (Hs + A)dt + dM;, (68)
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with
th _ e—szthI iHgt
= zz [\/ |m +1 n)(m n]e‘“”"‘dBt(qu) dBZ‘(cbm)e“”mv Im fiy(m + 1 n|]
-~t.c.. , , (69)

Using the relation (63), we can transform the equatlon (67) of the Stratonovich type into
that of the Ito type

dVi(t) = —m,,tdﬂ‘/f(t), (70)
where . ' : :
Hyedt = Hypdt — i§1=‘1 redtHy dt. (71)

Evaluating H £2dtH1dt in terms of the product rules (57)—(60), we have
By pdtB; dt = dMdM, = —gﬁdi. - (72)
Therefore, we find that H 7tdt is given by
Hypdt = (Hs + A+ ill)dt + dMs. (73)
We define the thermal vacuum

10£(2)) = Vi(t)|04(0)). ' (74)

In terms of the vtime—evolution equation (70), we obtain the quantum stochastic Liouville equation
of the Ito type : . o
d|0s(2)) = —iHedt|0f(t)), (75)
where H Ftdt is given by (73).

Applying a thermal bra-vacuum (| in I'? to the stochastic Liouville equation (75) of the Ito
type, we see that

d(07(8)) = —i([H 120, (8)) = —iFdt(04(8)), (76)
where we defined H by ‘
’ ' H=Hs+ A 44T (77)

Here, under the assumptlon that |Of(0)) |0s)|) with the thermal vacuum |Og) of relevant
‘system at ¢ = 0, we evaluated as (IthIOf(t)) = (|dM;V;(t)|05(0)) = O with the help of the
properties of the Ito type

|dB(m) V(D) =0, ([dBf(8n)V(®]) =0, o m
([dBi(9)V(®)) =0, (|dBf(2)V1(8)]) = 0. o (19)

Therefore, putting |0(%)) =.,(|0:f(t)), we obtain the quantum master equation
5 o . - :
S0y = —iflloey, )

with A given by (77).
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6.2 Quantum Langevin Equation
For any relevant system operator A, we define the Heisenberg operator by
A®) = Vi DAV, . (81)

With the help of the calculus rule of the Ito type together with (70) and the equation of Vf_l(t)
of the Ito type

AVl = iV (ORGP, | (82
with ‘ o
RV dt = Fyedt + idMedd, (83)

we have the quantum Langevin equation of the Ito type

dA(t) = dVi (6 AVi(t) + V(0 AdV(t) + dV(8) AdVy(t)
= [ﬂf(t)dt, A(t)] - dM(t).[dM(t), A(t)], . (8)

where Fy(t)dt = V' (t)F1,dtVy(t) and dM (t) = V7 (£)dM,Vy(t).
Applying (1| = (|(1s| to the equation (84), we have

d(1A®L) = —i{(1|A(t) [ﬁs(t)dt +ifI(t)dt +dM(t)] , ~(85)

where we used the property ((1|'I:{f(t) = 0 and {(1|dM(t) = 0. Applying |0) = |0g)|) to the
equation (85), we obtain the equation of motion of expectation value

% (LA®I0) = 1| [Hs(2), AD]I0) + (LADT(2)l0Y, (86)

where we used the thermal state condition (1)At(t) = (1|A(t) for any operator A of relevant
system, and the properties (78) and (79). The equation (86) can be also derived from the
quantum master equation (80).

7 Summary and Discussion

In this paper, applying the procedure of Accardi et al. to a non-linear oscillator interacting with
thermal reservoir, we obtained the quantum stochastic differential equations for the non-linear
damped oscillator.

We showed that, in the weak coupling limit, the equation of motion of the matrix element
of the time-evolution generator with respect to collective exponential vectors in reservoir space
converges to the equation of motion of the matrix element of the stochastic time-evolution
generator with respect to exponential vectors in the space of quantum Wiener processes. In
the sense of the matrix elements, we found that the stochastic time-evolution generator satisfies
a quantum stochastic differential equation. This indicates that the convergence of the time
evolution equation is the weak convergence in the sense of the matrix elements, in other words,
the change of the equation for the time-evolution generator to the one for the stochastic time-
evolution generator can be interpreted as the change of a representation space.

Taking account of the effect of the non-linearity within a relevant system, we constructed
quantum Wiener processes together with their representation space. The effect of the quantum
Wiener processes on the time-evolution equation is appeared in the expression of quantum
master equation and the equation of motion of expectation value of an observable. A further
consideration of the effect will be given in the future.
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