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Abstract

Classical dynamical entropy is an important tool to analyse the efficiency of infor-
mation transmission in communication processes.

Quantum dynamical entropy was first studied by Connes - Stormer and Emch.
Since then, there have been many attempts to formulate or compute the dynamical
entropy for some models. Here we review four formulations due to Connes - Narnhofer -
Thirring, Ohya, Accardi - Ohya - Watanabe, Alicki - Fannes and consider the relations
among these formulations. We show some concrete computations in a model.

Introduction

Classical dynamical (or Kolmogorov - Sinai) entropy S(T") for a measure preserving
transformation T was defined on a message space through finite partitions of the mea-
surable space. The classical coding theorems of Shannon are important tools to analyse
communication processes, which have been formulated by the mean dynamical entropy
and the mean dynamical mutual entropy. The mean dynamical entropy represents the
amount of information per one letter of a signal sequence sent from an input source and
the mean dynamical mutual entropy does the amount of information per one letter of
the signal received in an output system.

Quantum dynamical entropy (QDE for short) has been studied by Connes, Stormer
[11], Emch [12], Connes, Narnhofer, Thirring [10], Alicki, Fannes [6] and others [8,23].
Their dynamical entropies were defined in the observable spaces. ’

Recently, the quantum dynamical entropy and the quantum dynamical mutual en-
tropy were studied by one of the present authors [24,15]. They are formulated in the
state spaces through the complexity of Information Dynamis [22,24]. Furthermore, an-
other formulation of the dynamlcal entropy throuah the quantum Markov chain (QMC
for short) was done in {4].

In §1, we briefly review the formulatlon by Connes- Narnhofer—Thlrrmg (CNT for
short). In §2, we explain the formulation by the complexity [24,25]. In §3, we review the
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formulation by QMC. In §4, we briefly explain the formulation by Alicki-Fannes (AF
for short). In §5, we discuss the relations among four formulations. In §6, we compute
the mean entropies in quantum communication processes.

§1. CNT Formulation

Let (A, 6, ) be an initial C*-system. That is, A is a unital C*-algebra, 6 is an
automorphism of A, and ¢ is an invariant state over A with respect to 8; po 8 = .
Let B be a finite dimensional C* - subalgebra of \A.

The CNT entropy functional [10] for a subalgebra B is

H, (B) =sup {Z MS(we | B, o | B); o= Zz\kwk finite decomposition of go} .
k k

where @ | B is the restriction of a state ¢ to B and S(-, -) is the relative entropy for
C*-algebra [7,27,28].
The CNT dynamical entropy with respect to § and B is given by

H,(6, B) = limsup %H‘P(B VOBV ---voNT1B).
N—oo

The dynamical entropy for 6 is defined by

H,(6) = sup H, (8, B),
B

§2. Formulation by Complexity

In this section, we first review concepts of channel and complexity, which are the
key concepts of ID (Information Dynamics) introduced by Ohya [22,24].

Let (A, Z(A),a(G)), (4,Z(A4),a(G)) be an input (initial) and an output (final)
C*-systems, respectively, where A (resp. A) is a unital C*-algebra, (A) (resp. £(A))
is the set of all states on A (resp. A) and a(G) (resp. @ (-) is the group of automor-
phisms of A (resp. ‘A) indexed by a group G + (resp. Q).

A channel is a map A* from  (A) to T (A). If the dual map A from A to A of
A* satisfies the complete positivity, the channel A* is called a complete positive channel
(CP channel for short).

For a weak * compact convex subset S of ¥, there exists a maximum measure 7!
with the barycenter ¢ such that

= / w dp
s

The compound state introduced in [18,19] exhibiting the correlation between an initial
¢ and its final A*p is given by

8;¢=Lw®A*w dup

In the sequel, we use a CP channel A* and the compound state to formulate the dy-
namical entropy.
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There are two types of complexity in ID. One is a complexity C5 () of a system
itself and another is a transmitted complexity 7 (¢ ; A*) from an initial system to a
final system. These complexities should satisfy the following conditions:

(i) Forany p € S C %,

Co(p) 20, T(p;A") 20,
(ii) If there exists bijection j : exX — exX; the set of all extremal points in ¥, then

i) (j(p)) = C5(p)
T9S) (j(p) ;A*) =T (p ; AY)

(iii) Forastate U = o @1 € Si, put p €S, Y € S,
C%(®) = C°(p) + C°(¢)

(iv) 0<T° (¢ ;A*) < C%(p)
(V) T3 (p;id) = CS(p)

Here we explain the formulation of three types of entropic complexity introduced in [24].

Let (A, £(A), a(G)), (A, E(4), @(G)) and S as above. Let M,(S) be the set
of all maximal measures y on § with the fixed barycenter ¢ and F,,(S) be the set of all

measures of finite support with the fixed barycenter ¢. Then three pairs of complexities
are

TS (¢ ;A*) =sup {/5 S (Mw,Ap)dp; pe M, (5)}

CE(9) =TS (¢ id)

IS (p; A* = sup {S (/Sw ® A*wdu, ¢® A*{p) ;s WE M, (S)}
Cf (9) =I% (p; id)

72 (058 = { [ (0080 dui g € Fr(5)

G5 (9) = TS (¢ id). |

Based on the above complexities, we explain the formulation of quantum dynamical
complexity (QDC) [18]. :

Let 6 (resp. 8) be a stationary automorphism of A (resp A) pof =, and A bea
covariant CP map (i.e., Aof = foA) from A to A. By, (resp. By) is a finite subalgebra
of A (resp. A). Moreover, let o (resp. ai) be a CP unital map from By (resp. Bg) to
A (resp. A) and o™ and &} are given by v

oM = (a1, ag, e, o), |

al =(Aoay, Aoay, ---,Aoay)
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The two compound states for o™ and 65% with respect to p € M,(S) are defined such

as
<I>ﬁ (aM)=/S ® o wdy,

N
<I>‘z (aMuay) = /5 m®;1 o, w néi)l ax A*wdp.

By using the above compound states, three transmitted complexities [24] are defined by

TS( M a%)
_sup{/ S( B g ® G w, B5(aM) © B5(@N))du; 1 € M,(S))

Ij(aM, ay) = Sup{S(@‘ﬁ(aM uay), ;™) ® @3(aR)) ; ue My (S)}
I3 (M, G

M N '.
=sup{ | S( 8 ohw © @A, M) © B3@))dug; ny € Fo(S)}

When By =B, =B, A=A, 0 =10, o, = 0" oo = &, where « is a unital CP map
from Aq to A, the mean transmitted complexities are

1
TS 0, a, A*)_hmsupNTf( N a%)
S *) — S *
T, (8, A*) = sngy, 0, a, A‘ ).

Same for 1:5 , Jg These quantities have the similar properties of the CNT entropy
[15,24].

§3. Formulation by QMC
Another formulation of the dynamical entropy is due to quantum Markov chain [4].
Let A be a von Neumann algebra acting on a Hilbert space H, ¢ be a state on A
and Ay = M, (d x d matrix algebra). Take the transition expectation 5 A A — A
of Accardi [1,2] such that

£,(A) = Z ’Y«iAii%‘

where A = Zi, ;€5 ® Aij € Ao ® A and v = {v;} is a finite partrition' of unity I € A.
Quantum Markov chain is defined by ¢ = {¢, €6} € 2((}19 Aop) such that

1/)(]1(/11) o ]n(An)) = 99(87,0(141 & 87,0(A2 @ SRR An_lg%g(An R I) .. )))

where £,9 = 00 &, 0 € Aut(A) and ji is the embeding from A to %}Ao such as
(A =I®--- I A RI---.
k—th
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~ Suppose that ¢ has a unique density operator p such as ¢(A) = trpA, for any
A € A. Let define v, the state on %Ag expressed as

Yn(A1 @ - ® Ap) = (1 (A1) - -+ ju(An)).

The density operator &, of %, is given by
En= D o D a0 (i) Vi PV 0 (%)) €iniy @ - ® i
i1 in

Put
Pin"'il = t’r-A(en(’Y"'n) e ’Y"'lpﬂyil e en(fyzn)))' .
The mean dynamical entropy [4] through QMC is defined by

SXP(O; v) = limsup 1 (—tr&n logﬁn),

n—oo 11

=limsup}-(— Z P .. long-n‘..il).

n—oo 1 . .
11, in

When P, ..;, satisfies the Markov property, the above equality is written by

8o (8;7) = = D Plialir) P(ir) log P(izin)-

7"1 77:2

The dynamical entropy through QMC with respect to § and a von Neumann subalgebra
B of Ais 3 3
S, (0; B) = sup{S,(0;v);y C B}.

¢4. Formulation by AF _

Let (A, ¢,0) be a C*-dynamical system, where A is a C*-algebra, 6 is an automor-
phism on A and ¢ is a @-invariant state. Let B be a unital *-subalgebra of 4. A set
v = {v1,72, -+, Y&} of elements of B is called a finite operational partition of unity of
size k if y satisfies the following conditions:

k "
. . i=1
An operation o is defined by
7055 {’ngj 1= 17277k7 ]: 172/1l}

for any partitions I'y‘= {71,772, -, )} and € = {&1, &5, - ,Q}. For any partition 7 of
size k, a k x k density matrix p[y] = (p[v]; ;) is given by

plVli; = e(viv)-
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Then the dynamical entropy H »(8,B,~) with respect to the partition v and the shift ¢
is defined by

H,(6,B,7) = limsup — S(p[ﬂ" YY) o0 8(x) o). (4.2)

n—r 00

The dynamical entropy H »(0, B) is obtained by takmg supremum over operational par-
tition of unity in B as

H,(0,B) = sup{fI.,(.Ao., 6,0);y E'B}. (4.3)

§5. Relations Among Four Formulations
In tis section, we discuss the relations among the above three formulations.
The S - mixing entropy in GQS introduced in [21] is

5% (p) = inf{H () 5 p € My (S)},

where H (u) is given by

H(u)=sup{— > u(Ak)logu(Ar) : AEP(S)}

Agk EA

and P(S) is the set of all finite partitions of S.
- The following theorem [15,24] shows the relation between the CNT formulation and
the formulation by the complexity.

Theorem 4.1 Under the above settings, we have the followmg relations:
(1) 0< IS (p; A< T (p;A*) < J° (¢ ;M%)

(2) CF(p) = CF (p) = CF (p) = 5% (p) = Hy (A)

(3) A= A= B(H), for any density operator p

CO<S T (p;AY) =T% (A7) < J° (p 5 AY)

Since there exists a model showing S(%) (¢) > H,(Aa), S°(p) distinguishes states more
sharply than H,(A), where A, = {A € A; a(A) = A}
Furthermore we have the following results [25].

(1) When A, A are the abelian C*-algebras and ay, is an embedding map,

T ( 1 aM) _ Sclassmal( V Am)

m=1

Iz(u;a ) Iclassmal(\/ i \/ Bn)

=1 n=1

are satisfied for any finite partitions A,,, B, on the probability space (Q = spec(A4), F,
1)
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(2) When A is the restriction of A to a subalgebra M of A ; A = |M,
Hy (M) = J%(¢; M) = J g (id; | M).

Moreover when

N
N C .Ao,AZ ®.Ao,0 € AUt(.A)
o =(a,000,---;0V o)

a = a&; Ap — A embedding;
N
7 Ny = QPN,

we have

~ . 1 |

H,(6;N) = JZ(0; N) = limsup —=J=(o; |Nn).

¢ NoUP e

We have the same results for TS0), I, >(0).

‘We show the relation between the formulation by complexity and that by QMC.
Under the same settings in § 3, we define a map £/, from £(A) to E((glé Ao) ® A)
by ‘

g{n,y)(ﬁa)(Al R A4, ® I) = @(57,9(141 Y 5’)’,9(142 K- An—lg'y,G(An ® I) te )))

forany A1 ® - @A, ®I € (é;) Ao) ® A. Take a map Ef, from 2((% As) ® A) to
Z((%) Ap) such that

(Bfnyw)(@ =w(@81), YQEBA, YweI((®A)sA).

Then a channel I'?

(ny) from Z(A) to Z((%) Ap) is given by

L) = Epy © Efny)

so that T, 7)(<,0) = 9, and
- . 1., -
S,(0;v) = limsup —T;S(F(nﬁ)gp).

Therefore we have
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We briefly show the relation between the formulation by complexity and that by
Let (A, 8, ) be a C*-dynamical system and v = {v1,72,**-,7%} be a finite opera-
tional partition of unity of size k. :

We define a channel Z7,, » from E(A) to (A) by

Elmy (@) (A) = (1077 (1) 0+ 0 8(y) 01]4)

for any ¢ € %(A) and any A € A. The dynamical entropy by AF is given by

o 1 .
H,(6,B,v) =limsup ;z—S(z(m,,/)_go).

Therefore we have
r7 AN =k : 1 2k
H,(9,B,7) = CT (Ef,y¢)(= limsup —Cr (Emm P)-

In any case, the formulation by the entropic complexifies contains other formula-

tions, moreover it opens other possibility to classify the dynamical systems more fine
[25]. '
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