Geometric methods in Asymptotic Analysis R.I.M.S. KYOTO: 20<sup>th</sup> - 23<sup>th</sup> May 1997

# CONTACT GROUPOIDS AND PREQUANTIZATION

# Pierre DAZORD Université Claude Bernard - Lyon I

**Introduction.** The geometric prequantization of a general Poisson manifold  $(\Gamma_0, \Lambda_0)$ , as defined by Weinstein [16] and Xu, is an extension of Souriau's process [14] for symplectic manifolds. First, if possible, is associated to  $(\Gamma_0, \Lambda_0)$  a symplectic groupoid  $(\hat{\Gamma}, \sigma)$  [2], which is a kind of nice desingularisation, and secondly the symplectic manifold is eventually prequantized [14], that is to say, one looks to the existence of a  $S^1$ -principal bundle  $\pi: \Gamma \to \hat{\Gamma}$ , with a connection  $\lambda$ , the curvature of which is  $\pi^*\sigma$ . If  $\hat{\Gamma}$  is Hausdorff (which is a very special case), there exists a prequantization iff  $[\sigma] \in H^2(\hat{\Gamma}, \mathbb{Z})$ .

Actually, if  $(\Gamma_0, \Lambda_0)$  is prequantizable,  $(\Gamma, \lambda)$  has a nice structure: it is a contact groupoid, a notion which enlarges previous one due to Libermann [11] and Kerbrat and Souici [9].

This lecture is a survey of relations between contact groupoids and prequantization [4].

#### Acknowledgements

I thank Professor T. KAWAI and R.I.M.S.-KYOTO for their invitation to present this lecture at the workshop they organized at R.I.M.S.

## 1. CONTACT GROUPOIDS [4]

**Definition 1.1** - A contact groupoid  $(\Gamma, \mathcal{H})$  is a Lie groupoid endowed with a compatible contact structure.

- $\Gamma$  is a Lie groupoid:  $\Gamma$  is a  $C^{\infty}$  (generally not Hausdorff) manifold,  $\Gamma_0$  is a Hausdorff submanifold of  $\Gamma$  (the manifold of units),  $\alpha$  and  $\beta$  two  $C^{\infty}$  surjective submersions of  $\Gamma$  on  $\Gamma_0$  ( $\alpha$  is the source and  $\beta$  the target); moreover on  $\Gamma$  is defined a  $C^{\infty}$  "inverse" map  $i: x \to i(x) = x^{-1}$ , and on  $\Gamma_0 = \{(x,y) \mid \alpha(x) = \beta(y)\}$  a  $C^{\infty}$  product  $m: (x,y) \to m(x,y) = x$  such that
  - (i)  $\forall x \in \Gamma$   $x.\alpha(x) = \beta(x).x = x$
  - (ii) If  $(x,y) \in \Gamma_2$  and  $(y,z) \in \Gamma_2$ , (x,y,z) and (x,y,z) are in  $\Gamma_2$  and (x,y),z = x,(y,z)
  - (iii)  $\forall x \in \Gamma$ ,  $x^{-1} \cdot x = \alpha(x)$   $x \cdot x^{-1} = \beta(x)$ .

## First examples of Lie groupoids

- (i) If  $\Gamma_0$  is reduced to a point,  $\Gamma$  is a Lie group.
- (ii) If  $\Gamma_0$  is any Hausdorff  $C^{\infty}$  manifold,  $\Gamma_0 \times \Gamma_0$  is canonically endowed with a groupoid structure (the coarse groupoid of  $\Gamma_0$ ) with the laws:

$$((x,y)(y,z)) = (x,z)$$
  
 $(x,y)^{-1} = (y,x)$ 

and  $\Gamma_0$  is identified to the diagonal of  $\Gamma_0 \times \Gamma_0$ .

- (iii) Any vector bundle  $\pi: E \to \Gamma_0$  is a vector groupoid with addition in the fibers. In this case  $\alpha = \beta = \pi$ .
- (iv) If  $\Gamma \xrightarrow{\alpha} \Gamma_0$  is any Lie groupoid, the tangent groupoid of  $\Gamma$ ,  $T\Gamma$  is the Lie groupoid  $T\Gamma \xrightarrow{\Gamma\alpha} T\Gamma_0$  with the inverse law  $X \to \Theta X = Ti(X)$  and the product law:  $Tm: (T\Gamma_2) \to T\Gamma \quad (X,Y) \to X \oplus Y = Tm(X,Y)$ .

# • Compatibility condition of $\Gamma$ and $\boldsymbol{\mathcal{H}}$

 $(\Gamma, \mathcal{H})$  is a contact groupoid iff

(i) 
$$X \in \mathcal{H} \Rightarrow \Theta X \in \mathcal{H}$$

(ii) 
$$(X,Y) \in (\mathcal{H} \times \mathcal{H}) \cap T\Gamma_2 \Rightarrow X \oplus Y \in \mathcal{H}$$

The first result is the following.

**Theorem 1.1** [4] If the dimension of  $\Gamma$ , dim  $\Gamma$ , is strictly greater than the dimension of  $\Gamma_0$ ,n,

- (i) dim  $\Gamma = 2n+1$
- (ii)  $\Gamma_0$  is a Legendrian submanifold of  $(\Gamma, \mathcal{H})$
- (iii)  $\mathcal{H}_{\alpha} = \mathcal{H} \cap \text{Ker T} \alpha \text{ (resp. } \mathcal{H}_{\beta} = \mathcal{H} \cap \text{Ker T} \beta \text{) is right (resp. left) invariant.}$

The notion of left (or right) invariance is explicited in the next paragraph.

#### 2. LIE ALGEBROID OF A CONTACT GROUPOID.



If  $x \in \Gamma$  the left action by x,  $L_x$  is defined only from  $\beta^{-1}(\alpha(x))$  into  $\beta^{-1}(\beta(x))$ :  $L_x(y) = x.y$ 

This leads to the notion of left invariance for objects in Ker T $\beta$ , which makes clear theorem 1.1. In particular if  $X \in \mathfrak{X}(\Gamma)$  Lie algebras of vector fields of  $\Gamma$ , X is left invariant iff  $T\beta X \equiv 0$  and

$$L_{x} X_{y} = X_{xy},$$

which is equivalent to

$$X \in \mathfrak{X}^{\ell}(\Gamma) \text{ iff } 0 \oplus X = X$$

that is to say  $X_{xy} = 0_x \oplus X_y$ .

For left invariant vector fields we have the three nice properties

- (i)  $\mathfrak{X}^{\ell}(\Gamma)$  is a sub Lie algebra of  $\mathfrak{X}(\Gamma)$
- (ii) Even if  $\Gamma$  is not Hausdorff, it can be proved that for each x,  $\beta^{-1}(x)$  is a Hausdorff submanifold so if  $X \in \mathfrak{X}^{\ell}(\Gamma)$  it has a (local) flow.
- (iii) To  $X \in \mathfrak{X}^{\ell}(\Gamma)$  is associated a unique vector field on  $\Gamma_0$ ,  $X_0$  such that  $T\alpha \circ X = X_0 \circ \alpha$  and X is complete iff  $X_0$  is.

This leads to the notion of Lie algebroid due to Pradines [13] and which plays for Lie groupoid the same role than Lie algebras for Lie groups.

**Definition 2.1.** A Lie algebroid  $E \to \Gamma_0$  is a  $C^\infty$  vector bundle over a  $C^\infty$  Hausdorff manifold together with a Lie algebra structure on the space  $\Re(E)$  of sections of E and a vector bundle morphism, the anchor map  $\rho$ , from E to  $T\Gamma_0$  such that, for each  $s \in \Re(E)$  and  $u \in C^\infty(\Gamma_0, \mathbb{R})$ 

- (i)  $\rho_0\{s_1,s_2\} = [\rho_0 s_1,\rho_0 s_1]$ ( $\rho$  is a Lie algebra morphism from  $\Re(E)$  to  $\Re(\Gamma_0)$ )
- (ii)  $\{s_1, u.s_2\} = u.\{s_1, s_2\} + (\mathbf{L}_{\rho_0 s_1} u).s_2$  where  $\mathbf{L}$  is the Lie derivative.

Note that this implies that  $\Re(E)$  is a class of Kirillov's algebras [10]. Going back to  $\Gamma$ , the Lie algebroid  $\Gamma$  of  $\Gamma$  can be described:

- (i) As vector bundle  $\underline{\Gamma}$  is the normal bundle of  $\Gamma_0$  in  $\Gamma$ :  $\underline{\Gamma} = T\Gamma \big|_{\Gamma_0} / T\Gamma_0$ . So  $\underline{\Gamma}$  is canonically isomorphic to Ker  $T\beta \big|_{\Gamma_0} \to \Gamma_0$ .
- (ii) The anchor map is defined by the diagram:

$$\begin{array}{ccc} \underline{\Gamma} & \xrightarrow{\sim} & \operatorname{Ker} T\beta \big|_{\Gamma_0} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

(iii) The Lie algebra structure of  $\Re(\Gamma)$  comes form the canonical isomorphisms

$$\chi^{\prime}(\Gamma) \simeq \chi^{\prime}(\Gamma) \big|_{\Gamma_0} \simeq \Re(\Gamma)$$
.

In the sequel we shall restrict ourselves to the special case of "oriented" contact groupoids, which is enough to our purpose. In this case  $\mathcal H$  is the Kernel of a contact form  $\lambda$ , which, more over, can be choosen such that:

$$\lambda(X_x \oplus Y_y) = f(x)\lambda(Y_y) + g(y)\lambda(X_x)$$

where f and g are morphisms of  $\Gamma$  into  $R_*$ , multiplication group of non zero real numbers. Such a groupoid  $(\Gamma, \lambda)$  is called a *pfallian groupoid*, subordinate to  $(\Gamma, \mathcal{H})$ .

**Theorem 2.1.** [4] If  $(\Gamma, \mathcal{H})$  is an oriented contact groupoid and  $(\underline{\Gamma}, \lambda)$  a subordinate pfallian groupoid,

(i) There exists on  $\Gamma_0$  a canonically defined Jacobi structure  $(\Gamma_0, E_0, \Lambda_0)$  [8].

(ii)  $\Gamma$  is the Lie algebroid canonically defined by  $(\Gamma_0, E_0, \Lambda_0)$ : as vector bundle,  $\Gamma = \mathbf{J}^1(\Gamma_0, \mathbb{R}) \simeq \mathbb{R} \times T^*\Gamma_0$ ; the anchor map  $\rho$  is defined by  $\rho(u, \xi) = uE_0 + \Lambda_0^*\xi$  and the bracket is the Kerbrat-Souici's bracket [9]:

$$\begin{split} \{(\textbf{u},\xi),&(\textbf{v},\eta)\} = (\{\textbf{u},\textbf{v}\} - \iota_{\Lambda_0}(\xi-d\textbf{u}) \wedge (\eta-d\textbf{v}),\, \textbf{u} \boldsymbol{\mathcal{L}}_{E_0} \boldsymbol{\eta} - \textbf{v} \boldsymbol{\mathcal{L}}_{E_0} \boldsymbol{\eta} - \iota_{E_0}(\xi \wedge \boldsymbol{\eta}) + \left[\xi,\eta\right]_p) \\ where \, \{\textbf{u},\textbf{v}\} \, is \, the \, Jacobi \, bracket \, on \, \, \textbf{C}^{\infty}(\Gamma_0,\mathbb{R}), \end{split}$$

$$\{\mathbf u,\mathbf v\}=\mathbf u \mathbf {\mathcal I}_{\mathbf E_0}\mathbf v-\mathbf v \mathbf {\mathcal I}_{\mathbf E_0}\mathbf u+\iota_{\Lambda_0}(\mathbf d\mathbf u\wedge \mathbf d\mathbf v)$$

and where 
$$\left[\xi,\eta\right]_p=\iota_{\Lambda_o^\#\xi}d\eta-\iota_{\eta_o^\#\xi}d\xi+d\iota_{\Lambda_o}(\xi\wedge\eta).$$

We have noted  $\Lambda_0^\#$  the morphism  $T^*\Gamma_0 \to T\Gamma_0$  given by  $\iota(\Lambda_0^\# \xi)\eta \equiv \iota_{\Lambda_0}(\xi \wedge \eta)$ .

**Remark.** If  $(\Gamma_0, E_0, \Lambda_0)$  is a Jacobi manifold, generally speaking there exists only a "local" Lie algebroid in Van Est's sense [4]. We say that  $(\Gamma_0, E_0, \Lambda_0)$  is *contact-integrable* if it is the units of a contact groupoid.

# 3. Lie groups of infinite dimension.

Before describing the relations between contact groupoids and prequantization, it is necessary to recall a notion introduced by Ehresmann [6] and which enlarges the usual notion of graph of a diffeomorphism. If  $\Gamma \rightrightarrows \Gamma_o$  is a Lie groupoid, a bisection of  $\Gamma$  is a submanifold S such that  $\alpha \mid_S$  and  $\beta \mid_S$  are diffeomorphisms on  $\Gamma_o$ . So a bisection of  $\Gamma$  is, equivalently, a section  $S^\beta$  of  $\beta:\Gamma \to \Gamma_o$  such that  $\alpha_o S^\beta$  is a diffeomorphism  $\phi_S^r$  of  $\Gamma_o$ . If  $\Gamma_o \times \Gamma_o$  is the coarse groupoid, S is the graph of  $\phi^{-1}$ . The set  $\hat{G}_\Gamma$  of bisections is a group and  $S \to \phi_S^r$  is an (anti) representation of  $\hat{G}_\Gamma$  into Diffeo  $\Gamma_o$ , group of diffeomorphisms of  $\Gamma_o$ .  $\hat{G}_\Gamma$  has another (anti) representation in Diffeo  $\Gamma$ , given by  $S \to \phi_S^r$ 

$$\phi_S^r(x) = x.S = x.S^{\beta} (\alpha(x)).$$

We note by  $G_{\Gamma}$  the subgroup of  $\hat{G}_{\Gamma}$  of bisections S such that  $\phi_S^r$  has compact support, and we endowed  $G_{\Gamma}$  with a diffeological structure in Souriau's sense [15] that is we say that a map f from an open subset U of some  $\mathbb{R}^p$  in  $G_{\Gamma}$  is " $C^{\infty}$ " if

- (i)  $U \times \Gamma_o \to \Gamma$   $(u, x_o) \to \phi_{f(u)}^{\Gamma}(x_o) = f(u)(x_o)$  is  $C^{\infty}$ .
- (ii) For each  $u_0 \in U$  there exists a compact K in  $\Gamma_0$  and a neighbourhood V of  $u_0$  in U such that for each  $u \in V$ , the support of  $\phi_{f(u)}^r$  is contained in K.

With this "diffeology",  $G_{\Gamma}$  is called the group of compactly controlled bisections.

If  $E \to \Gamma_o$  is a Lie algebroid of anchor map  $\rho$ , we defined (mutatis mutandis) the Lie algebra  $\Re_c(E)$  of compactly controlled sections s such that  $\rho_o$ s is a compactly supported vector field on  $\Gamma_o$ .

If G is a subgroup of  $G_{\Gamma}$  we can define the tangent space to G in  $\Gamma_{o}$  as the set of time derivative for t=0 of " $C^{\infty}$ " maps  $f:I\to G$ , where I is a neighbourhood of 0 in  $\mathbb{R}$ , such that  $f(0)=\Gamma_{o}$ . It turns that  $\underline{G}_{\Gamma}=T_{\Gamma_{o}}G_{\Gamma}$  is  $\mathfrak{R}_{c}(\underline{\Gamma})$  and that for any subgroup  $G\subset G_{\Gamma}$ ,  $\underline{G}=T_{\Gamma_{o}}G$  is a vector subspace of  $\mathfrak{R}_{c}(\underline{\Gamma})$ . We say that a vector subspace V of  $\mathfrak{R}_{c}(\underline{\Gamma})$  is full if  $T_{o}V=V$  where  $T_{o}V$  is the tangent space in 0. Moreover, for each  $X\in\mathfrak{R}_{c}(\underline{\Gamma})$  we define  $\exp X=\phi_{1}^{X}(\Gamma_{o})$  where  $\phi_{t}^{X}$  is the flow of the left invariant vector field  $X^{L}$  associated to X.  $t\to\exp tX$  is a  $C^{\infty}$  map from  $\mathbb{R}$  into  $G_{\Gamma}$ .

**Definition 3.1.** A subgroup G of  $G_{\Gamma}$  is an (infinite dimension) Lie group iff

- (i)  $\underline{G} = T_{\Gamma_0}G$  is full. Then  $\underline{G}$  is a subLie algebra of  $\Re_{\underline{C}}(\underline{\Gamma})$ .
- (ii) For each  $X \in \underline{G}$   $t \to \exp tX$  is a  $C^{\infty}$  map from  $\mathbb{R}$  into G.

**Remark.** If  $\Gamma_0$  is reduced to a point  $G_{\Gamma}$  is a Lie group (of finite dimension) and Yamabe's theorem [17] implies that (i) and (ii) are always satisfied.

Let  $(\Gamma, \mathcal{H})$  be a contact groupoid and  $G^{\mathcal{H}}$  the set of *Legendrian* bisections.

Theorem 3.1. [4] G<sup>3f</sup> is a Lie group.

In order to describe  $\underline{G}^{\mathcal{H}}$ , we assume that  $(\Gamma,\mathcal{H})$  is oriented and we consider a subordinate pfaffian groupoid  $(\Gamma,\lambda)$  and the Jacobi structure  $(\Gamma_0,E_0,\Lambda_0)$  on  $\Gamma_0$ .

Then  $j^1: C^\infty(\Gamma_o,\mathbb{R}) \to \Re_c(\underline{\Gamma}) = \Re_c(J^1(\Gamma_o,\mathbb{R}))$  is an injective Lie algebra morphism and we note  $C^\infty_c(\Gamma_o,\mathbb{R})$  the subLie algebra of  $C^\infty(\Gamma_o,\mathbb{R})$  of u such that  $j^1u \in \Re_c(\underline{\Gamma})$  with the diffeology induced that is to say  $f: U \to C^\infty_c(\Gamma_o,\mathbb{R})$  is " $C^\infty$ " iff  $(u,x_o) \to f_u(x_o)$  is  $C^\infty$  and  $j^1f_u$  compactly controlled.

Corollary. If H is oriented,

$$\underline{G}^{\mathcal{H}} = C_c^{\infty}(\Gamma_0, \mathbb{R}).$$

**Remark.** For an extension of these results if **H** is not oriented, cf. [4]. This extension solves the problem of integration of all Kirillov Lie algebras of rank one (cf. [8]).

#### 4. PREQUANTIZATION

We restrict ourselves now to a special case of Jacobi manifolds, the Poisson ones in which  $E_0 \equiv 0$ . Then if  $(\Gamma_0, \Lambda_0)$  is contact integrable, the contact groupoid is always orientable and we can choose the contact form  $\lambda$  such that

$$\lambda(X_x \oplus Y_y) = \lambda(X_x) + \lambda(Y_y).$$

This peculiar situation has been studied by Libermann [11].

In this case the Reeb vector field E of  $(\Gamma,\lambda)$  is right and left invariant and so, E is complete. Then we can define a Lie groupoid morphism  $\psi$  in a trivial sense from the vector groupoid  $\mathbb{R} \times \Gamma_o \to \Gamma_o$  into  $\Gamma$  by mean of the E-flow,  $\phi_t^E$ :

$$\psi: \mathbb{R} \times \Gamma_o \to \Gamma$$
$$\psi(t, x_o) = \phi_t^E(x_o).$$

 $\psi$  is an immersion and  $\psi^*\lambda = dt$ .

So if  $\psi$  is an embedding,  $\lambda$  restricted to  $\mathbf{J}^E(\Gamma_o) = \psi(\mathbb{R} \times \Gamma_o)$  is a regular foliation, which in turns implies that all the maps  $t \to \phi_t^E(x)$  have same period T independant of x (by convention T=0 if  $t \to \phi_t^E(x)$  is injective).

Then  $\tilde{\Gamma} = \Gamma/J^{E}(\Gamma_{o})$  is a groupoid with a nice structure: it is a symplectic groupoid with the symplectic form  $\sigma$  induced by  $d\lambda$ . This means that, on  $\tilde{\Gamma}$ ,

$$\sigma(X_{x}^{1} \oplus Y_{y}^{1}, X_{x}^{2} \oplus Y_{y}^{2}) = \sigma(X_{x}^{1}, X_{x}^{2}) + \sigma(Y_{y}^{1}, Y_{y}^{2})$$

and  $\Gamma \to \tilde{\Gamma}\,$  is a prequantization in Weinstein's sense.

We shall say that a Poisson manifold  $(\Gamma_o, \Lambda_o)$  is symplectic-integrable if it is the units of a symplectic groupoid  $(\tilde{\Gamma}, \sigma)$ . The Lie algebroid of  $\tilde{\Gamma}$ ,  $\tilde{\underline{\Gamma}}$  is the so called Lie algebroid of the Poisson manifold  $(\Gamma_o, \Lambda_o)$  which, as fiber bundle, is  $T^*\Gamma_o \to \Gamma_o$ , and for which the anchor map is  $\Lambda_o^\#$  and the bracket  $\{\xi, \eta\} = [\xi, \eta]_p$  (cf. supra). Then  $\Re_c(\tilde{\underline{\Gamma}}) = \Omega_c^1(\Gamma_o)$  the Lie algebra of 1-form  $\xi$  such that  $\Lambda_o^\# \xi$  has a compact support. We note  $Z\Omega_c^1(\Gamma_o)$  and  $B\Omega_c^1(\Gamma_o)$  respectively the

subLie algebras of closed and exact one-forms, and  $H^1_c(\Gamma_o,\mathbb{R})$  the quotient  $Z\Omega^1_c(\Gamma_o,\mathbb{R})/B\Omega^1_c(\Gamma_o,\mathbb{R})$ . Then the exact sequence of diffeological Lie algebras

$$0 \to \mathrm{B}\Omega^1_\mathrm{c}(\Gamma_\mathrm{o}) \to \mathrm{Z}\Omega^1_\mathrm{c}(\Gamma_\mathrm{o}) \to \mathrm{H}^1_\mathrm{c}(\Gamma_\mathrm{o}, \mathbb{R}) \to 0$$

can be integrate in the exact sequence of Lie groups (in the sense of definition 3.1)

$$0 \to G^{\text{ex}} \to G_0^{\sigma} \xrightarrow{C} H_c^1(\Gamma_0, \mathbb{R})/D \to 0$$

where  $G_0^{\sigma}$  is the connected component of the Lie group of Lagrangian bisection and where  $G^{ex}$  is a sub Lie group the group of "hamiltonian isotopies" which is defined in the following way:

 $S\in G^{ex}$  iff it exists a  $C^{\infty}$  map  $\,t\to S_t$  from a neighbourhood I of 0 in  ${\mathbb R}\,$  to  $G^{\sigma}$  such that

- (i)  $S_0 = \Gamma_0$   $S_1 = S$
- (ii) If  $X_t \in X^{\ell}(\Gamma)$  is the time dependant vector field defined by

$$\frac{\mathrm{d}}{\mathrm{d}t}\,\phi_{S_t}^r = X_t\,\mathrm{o}\,\phi_{S_t}^r$$

then  $\iota_{X_t} \sigma = -\alpha^* dH_t$  where  $t \to H_t$  is a  $C^{\infty}$  map from I to  $C_c^{\infty}(\Gamma_o, \mathbb{R})$ .

C is defined by mean of an extended notion of Calabi's invariant and D is a discrete subgroup (in diffeological sense) of  $H^1_c(\Gamma_o,\mathbb{R})$ .

**Remark.** The above result is an extension of the one given in [3]. In fact there is no necessity of the assumptions of [3] to have it. The results extend Banyaga's one [1].

Assume now that  $(\Gamma_0, \Lambda_0)$  is prequantizable so it is contact and symplectic-integrable. Then we can integrate also the exact sequence

$$0 \longrightarrow \mathbb{R} \longrightarrow C_c^{\infty}(\Gamma_0, \mathbb{R}) \stackrel{\mathbf{d}}{\longrightarrow} B\Omega_c^1(\Gamma_0) \longrightarrow 0$$

in the exact sequence of Lie groups

$$0 \longrightarrow \mathbb{R}/\mathbb{Z} \longrightarrow G_0^{\mathcal{H}} \longrightarrow G^{\text{ex}} \longrightarrow 0$$

where T (eventually 0) is the common period of the Reeb vector field of  $(\Gamma, \lambda)$ .

In fact, as usual, if T=0 we can always by using a suitable  $\mathbb{Z}$ -quotient of  $(\Gamma, \Lambda)$  assume that T=1. So in any case, the prequantized case leads to the exact sequence

$$0 \longrightarrow \mathbb{S}^1 \longrightarrow G_0^{\mathcal{H}} \longrightarrow G^{ex} \longrightarrow 0$$
$$(\mathbb{S}^1 \simeq \mathbb{R}/T\mathbb{Z} \quad T > 0)$$

and prequantization appears as a \$\mathbb{S}^1\$ central extension of the hamiltonian isotopies.

#### 5. CONCLUDING REMARKS

5.1. There exists Poisson manifolds which are contact integrable but not symplectic-integrable. For example if we look at  $\mathbf{g}^*$  dual of a semi-simple compact Lie algebra, and at  $S = S(\mathbf{g}^*)$  the unit sphere (for the Killing form),  $S(\mathbf{g}^*)$  is a Poisson manifold which is symplectic integrable iff  $\mathbf{g} = so(3)$  but is - trivially - always contact integrable, with  $\Gamma = (T^*G \mid_{S}, \lambda)$  where G is a Lie group of Lie algebra  $\mathbf{g}$  and  $\lambda$  is the Liouville form.

Another example is given by  $\Gamma_o = \mathbb{S}^2 \times \mathbb{R}$  with  $(S^1 \times \{t\}, \sigma_o f(t))$  as symplectic leaves, where  $\sigma_o$  is the standard form on  $\mathbb{S}^2$  and f is a  $C^\infty$  function which is every where non zero. Then  $\Gamma = \mathbb{S}^3 \times \mathbb{S}^3/\mathbb{S}^1 \times T^*\mathbb{R}$  with  $\lambda = [p_1^* \lambda_o - p_2^* \lambda_o] + \text{tdu}$  when the bracket denotes the image in  $\mathbb{S}^3 \times \mathbb{S}^3/\mathbb{S}^1$  (i.e. quotiented by the diagonal action) of  $p_1^* \lambda_o - p_2^* \lambda_o$  where  $\lambda_o$  is the contact form on  $\mathbb{S}^3$  and where  $\Gamma$  has the product groupoid structure of the  $\mathbb{S}^1$ -quotient structure of the coarse groupoid  $\mathbb{S}^3 \times \mathbb{S}^3$ , by the vector groupoid  $\mathbb{T}^*\mathbb{R}$ .  $(\Gamma_o, \sigma_o f(t))$  is symplectic integrable iff f(t) is constant either a submersion, in which case  $\Gamma_o$  is isomorphic to an open subPoisson manifold of  $so(3)^*$ .

If we look at  $\Gamma_0 = \mathbb{S}^2 \times \mathbb{S}^1$  with  $\sigma_0 f(t)$  as above,  $(\Gamma_0, \sigma_0 f(t))$  is symplectic and contact integrable iff f is constant.

- **5.2.** If  $(\Gamma_0, \Lambda_0)$  is a symplectic manifold  $(\Gamma_0, \sigma_0)$ , it is prequantizable in Weinstein's sense iff it exists T > 0 and a covering  $\widetilde{\Gamma}_0$  of  $\Gamma_0$  such that  $(\widetilde{\Gamma}_0, T^{-1}\widetilde{\sigma}_0)$  is prequantizable in Souriau's sense.
- 5.3. On any regular Poisson manifold there exists a star-product [12] but even on a symplectic manifold, the problem of the L<sup>2</sup>-representation (in asymptotic sense) of the \*-product cannot be solve if a cohomological condition is not satisfied [5] [7].

From these three remarks, it seems that a nice category of Poisson manifold to study problems of quantization is the category of Poisson manifolds, a covering of which is contact integrable.

## **Bibliography**

- [1] A. BANYAGA, Sur la structure des groupes de difféomorphismes .... Comment. Math. Helvetici. 53, 1978, 174-227.
- [2] A. COSTE P. DAZORD A. WEINSTEIN, Groupoïdes symplectiques Publ. Dept. Math. Lyon 1987, 2/A, 1-62.
- [3] P. DAZORD, Lie groups and algebras in infinite dimension in Symplectic Geometry and Quantization, Contemporary Math. 179, 1994, A.M.S. ed., 17-44.
- [4] P. DAZORD, Sur l'intégration des Algèbres de Lie locales et la préquantification A paraître, Bull. Sc. Math. Paris, 1997.
- [5] P. DAZORD G. PATISSIER, La première classe de Chern comme obstruction ... in Symplectic Geometry, Groupoids and Integrable systems. M.S.R.I. Publications, 20, Springer, 1991.
- [6] C. EHRESMANN, Oeuvres complètes, Tome I, Amiens, 1984.
- [7] B. FEDOSOV, Deformation Quantization and Index theory Akademie Verlag ed, Berlin, 1996.
- [8] F. GUEDIRA A. LICHNEROWICZ, Géométrie des algèbres de Lie de Kirillov J. Math. pures et appl. 63, 1984, 407-484.
- [9] Y. KERBRAT Z. SOUICI C.R. Acad. Sc. Paris, 317, série I, 1993, 81-86.
- [10] A. KIRILLOV, Local Lie algebras Russian Maths Surveys, 31, 1976, 55-75.
- [11] P. LIBERMANN, On symplectic and contact groupoids in Differential Geometry and its applications. Silesian University, Opava, 1993, 29-45.
- [12] M. MASMOUDI, Tangential formal deformations of the Poisson bracket.... Journal of Geom. and Physics, 1992, 155-171.
- [13] J. PRADINES, Théorie de Lie pour les groupoïdes différentiables.... C.R. Acad. Sc. Paris, 264, Série A, 1967, 245-248.
- [14] J.M. SOURIAU, Structure des systèmes dynamiques Dunod ed., 1970.
- [15] J.M. SOURIAU, Groupes différentiels et Physique Mathématique in Feuilletages et Quantification Géométrique. Collection Travaux en Cours, 1984, Hermann ed., 365-398.

- [16] A. WEINSTEIN, in Symplectic Geometry and Mathematical Physics, Birkhaüser, 1991, 446-462.
- [17] H. YAMABE, On an arcwise connected subgroup of a Lie group Osaka Math. J.2, 1950, 13-14.

Pierre DAZORD
Université Claude Bernard - Lyon I
Institut Girard Desargues - UPRES A 5028
43, boulevard du 11 Novembre 1918
69622 VILLEURBANNE CEDEX