A dependence domain

for a class of micro-differential equations with involutive double characteristics

> Y. Okada (Chiba University)(岡田靖則) N. Tose (Keio University)(戸瀬信之)

1 Statement of the Main Theorem

Let M be a real analytic manifold with a complex neighborhood X. Let P be a microdifferential operator defined in a neighborhood U in T^*X of $\dot{q} \in T_M^*X \setminus M$. We assume that the characteristic variety of P satisfies

$$Char(P) \subset \{q \in U; \ p_1(q) \cdot p_2(q) = 0\}$$

with homogeneous holomorphic functions p_1 and p_2 on U. We assume that

$$p_1$$
 and p_2 are real valued on $T_M^* X$, (1)

$$dp_1 \wedge dp_2 \wedge \omega_X(q) \neq 0 \text{ if } p_1(q) = p_2(q) = 0,$$
 (2)

$${p_1, p_2}(q) = 0$$
 if $p_1(q) = p_2(q) = 0$. (3)

Here ω_X is the canonical 1-form of T^*X , and $\{\cdot,\cdot\}$ the Poisson bracket on T^*X .

In this situation, we can define a regular involutive submanifold V by

$$V = \{q \in U; \ p_1(q) = p_2(q) = 0\}.$$

We assume, for simplicity, that $\dot{q} \in V$. Moreover Γ denotes the canonical leaf of V passing through \dot{q} .

A set K in Γ is called, in this article, a Γ -rectangle if there exists an injective real analytic map

$$\Phi: [0,1] \times [0,1] \longrightarrow \Gamma$$

with the following three properties.

•
$$\Phi([0,1] \times [0,1]) = K$$

- $\Phi(\cdot,t)$ is an integral curve of the Hamiltonian vector field H_{p_1} for any fixed $t \in [0,1]$.
- $\Phi(s,\cdot)$ is an integral curve of the Hamiltonian vector field H_{p_2} for any fixed $s \in [0,1]$.

We give, in this situation,

Theorem 1.1 There exists an open neighborhood U_0 of \dot{q} in Γ with the property that for any Γ -rectangle K contained in U_0 with the four vertices q_0 , q_1 , q_2 , and q_3 and for any microfuntion solution u to Pu = 0 on K,

$$q_1, q_2, q_3 \notin \text{supp}(u) \Longrightarrow q_0 \notin \text{supp}(u).$$

This theorem can be deduced from the model case given in the next section, where several remarks are also given.

2 Theorem in the model case

Let M be an open subset of \mathbf{R}^n with a complex neighborhood X in \mathbf{C}^n $(n \geq 3)$. We take a coordinate system of M (resp. X) as $x = (x_1, \dots, x_n)$ (resp. $z = (z_1, \dots, z_n)$). Then $(x; \sqrt{-1}\xi \cdot dx)$ (resp. $(z; \zeta \cdot dz)$) denotes a point in T_M^*X (resp. T^*X) with $\xi = (\xi_1, \dots, \xi_n)$ (resp. $\zeta = (\zeta_1, \dots, \zeta_n)$).

We take a point $q_0 = (0; \sqrt{-1}dx_n) \in T_M^*X$. Let P be a microdifferential operator defined in a neighborhood of q_0 whose principal symbol is of the form

$$\zeta_1^{m_1}\zeta_2^{m_2}$$

with $m_1, m_2 \geq 1$. We define an involutive manifold V of T_M^*X by

$$V = \{(x; \sqrt{-1}\xi \cdot dx); \xi_1 = \xi_2 = 0\}$$

and denote by Γ the leaf of V passing through the point q_0 . We take a rectangle K on Γ defined by

$$K = \{(x_1, x_2, x'' = 0; \sqrt{-1}dx_n); 0 \le x_1 \le t_1, \quad 0 \le x_2 \le t_2\}.$$

The vertices of K are denoted by

$$q_0, q_1 = (t_1, 0, 0; \sqrt{-1}dx_n), q_2 = (0, t_2, x'' = 0; \sqrt{-1}dx_n),$$

 $q_3 = (t_1, t_2, x'' = 0; \sqrt{-1}dx_n).$

Here $x'' = (x_3, \dots, x_n)$. Then we have

Theorem 2.1 Let u be a microfunction defined in a neighborhood of K. We assume that u satisfies

$$Pu = 0$$

and that the three points q_1, q_2, q_3 are not in supp(u):

$$q_1, q_2, q_3 \not\in \text{supp } (u).$$

Then

$$q_0 \not\in \operatorname{supp}(u)$$
.

Remark 2.1 The phenomenon in the above theorem was first observed by Y. Okada[O] for C^{∞} wavefront set of microdistribution solutions. His result concerns with the case $m_1 = m_2 = 1$ under a Levi condition on the lower order term of P. He employed a microlocal version of Goursat problem in the complex domain.

Remark 2.2 It is inevitable to assume the condition $q_3 \notin \text{supp}(u)$ in Theorem 2.1 For example, we define a hyperfunction

$$u(x_1, x_2, x_3) = (Y(x_1) - Y(x_2)) \cdot \delta(x_3),$$

which is a solution to $D_1D_2u = 0$. Then we have, for a positive constant t > 0,

$$q_1 = (t, -t, 0; \sqrt{-1}dx_3), q_2 = (-t, t, 0; \sqrt{-1}dx_3) \notin \text{supp}(u),$$

but

$$q_0 = (t, t, 0; \sqrt{-1}dx_3), q_2 = (-t, -t, 0; \sqrt{-1}dx_3) \in \text{supp}(u).$$

To give an implication of Theorem 1.1, we recall a result obtained by N. Tose [T2].

Theorem 2.2 Let u be a microfunction solution to Pu = 0 on an open subset U of Γ . Then there exist a family $\{b_{\lambda}^{(1)}\}_{\lambda \in \Lambda_1}$ of integral curves on Γ of $\partial/\partial x_1$ and another family $\{b_{\lambda}^{(2)}\}_{\lambda \in \Lambda_2}$ of integral curves on Γ of $\partial/\partial x_2$ which satisfy the property that $\operatorname{supp}(u)$ has unique continuation property on the set

$$\Omega = U \setminus \left(\bigcup_{\lambda \in \Lambda_1} b_{\lambda}^{(1)} \cup \bigcup_{\lambda \in \Lambda_2} b_{\lambda}^{(2)} \right).$$

More precisely, if a point $q \in \Omega$ is not in supp(u), then the connected component of Ω containing q is disjoint with supp(u).

In the situation of Theorem 2.2, we take a point

$$\dot{q} = (s_1, s_2, x'' = 0; \sqrt{-1}dx_n) \in \Gamma.$$

We assume that, for a neighborhood U_1 of \dot{q} , the only one integral curve $b_{\lambda_1}^{(1)}$ of $\partial/\partial x_1$ and the only one $b_{\lambda_2}^{(2)}$ of $\partial/\partial x_2$ pass U_1 . We assume, for simplicity, that the both two curves pass \dot{q} :

$$\dot{q} \in b_{\lambda_j}^{(j)} \quad (j = 1, 2).$$

We assume that

$$\operatorname{supp}(u) \cap U_1 \cap \{(x_1, x_2, x'' = 0, \sqrt{-1}dx_n); \ x_1 < s_1, \ x_2 > s_2\} = \emptyset$$

and that

$$\operatorname{supp}(u) \cap U_1 \cap \{(x_1, x_2, x'' = 0, \sqrt{-1}dx_n); \ x_1 > s_1, \ x_2 < s_2\} = \emptyset.$$

In this situation, if a point

$$\dot{q}' \in \{(x_1, x_2, x'' = 0, \sqrt{-1}dx_n); \ x_1 < s_1, \ x_2 < s_2\}$$

does not belong to supp(u), then it follows from Theorem 2.1 that

$$\operatorname{supp}(u) \cap \{(x_1, x_2, x'' = 0, \sqrt{-1}dx_n); \ x_1 > s_1, \ x_2 > s_2\} = \emptyset.$$

References

- [K-L] Kashiwara, M. and Y. Laurent, Théorèm d'annulation et deuxième microlocalisation, Prépublication d'Orsay, 1983.
- [K-O-T] Kataoka, K., Y. Okada and N. Tose, Decomposition of second microlocal singularities, "Microlocal Geometry" (ed. by T. Monteiro-Fernandes and P. Schapira), 1990.
- [K-S] Kashiwara, M. and P. Schapira, Sheaves on manifolds, Grundlehren der Math., Springer, 1990.
- [O] Okada, Y., Differential singularities of solutions of microdifferential equations with double characteristics, preprint.

- [O-T] Okada, Y. and N. Tose, FBI transformation and second microlcoalization, J. de math. pures et appl. 70(4) (1991), 427-455.
- [T1] Tose, N., On a class of microdifferential equations with involutive characteristics as an application of second microlocalization, J. Fac. Sci., Univ. of Tokyo, Sect. IA, Math. 33(1986), 619-634.
- [T2] —, On a class of 2-microhyperbolic systems, J. de Math. pures et appl. 67 (1988), 1–15.