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1. INTRODUCTION

It is well-known that there are many examples of the infinite dimen-
sional Fréchet-Lie groups. For instance, suppose that M is a compact
manifold with symplectic (or contact) structure Q. Then it is known
that the group Diffq(M) of all diffeomorphisms on M preserving the
structure € is an infinite dimensional Fréchet-Lie group. Moreover, the
group (FIO)°(N) generated by the invertible Fourier integral operators
of order 0 on compact Riemannian manifold N is also an infinite di-
mensional Fréchet-Lie group (cf.[Om], [OMY], [OMYK], [ARS]). From
the physical point of view, the group Diffo(M) (resp. (FIO)’(N))
gives the framework of the dynamics of classical (resp. quantum) me-
chanics, that is, the fundamental solution of the Hamiltonian equation
(resp. Schrodinger eqaution) is 1-parameter group in Diffq(M) (resp.
(FIO)°(N)). Furthermore, the group (F10)°(N) can be viewed as the
quantized group of Diffo(M).

On the other hand, as mentioned in [Ma] and [Ar]|, the geometri-
cal structure § induces the notion of the Lagrangian-Grassmannian
variety, Lagrangian submanifold and Maslov form.

In order to define Maslov form, we fix a Lagrangian submanifold, and

Maslov form is defined as a closed 1-form on the Lagrangian submani-
fold.
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" The purpose of this work is to define Maslov form on Di ffa(T*N)

and (FIO)°(N) by regarding a diffeomorphism ¢ € Diffo(T*N) as a
Lagrangian submanifold, that is, we regard the Lagrangian submanifold
as a variable on Diffq(T*N). Furthermore, as seen in §4, this form

is essentially determined by the determinant of the “complex part” for
the push-forward dy (cf.[Mi2]).

In this article, we restricted our concern to the groups of all con-
tact dlffeomorphlsms on unit cosphere bundle on compact Riemannian
manifold and the group generated by invertible Fourier integral oper-
ators. By a similar way, we can define Maslov forms on the group of
all contact diffeomorphisms on the odd dimensional sphere S™, and the

group generated by invertible oscillatory integral transformations (cf.
[Mil],A [Mi3]).

2. PRELIMINARIES

-2.1. Examples of infinite dimensional Lie group. We recall some
examples of infinite dimensional Lie groups (cf.[Om], [OMY], [OMYK],
[ARS]). First we assume that N is an orientable compact Riemannian
- manifold. In this article, we treat the following groups: |

e The group of contact transformations on unit cosphere bundle:
(2.1)
Diffe(S*™N) ={¢) : diffeomorphism | o0 =fy-0
(wheref; is a non-varnishing C'*°-function on
S*N depending on go)}
e The group of homogeneous symplectic diffeomorphisms:

(2.2) |
Diff (TyN) ={p € Diff(T}N) | ¢'© = 6,

o(z, 7€) =(0D(z,£), 70O (2, €)) (¥r # 0)},

where T; N =T*N — N.
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e The group of invertible Fourier integral operators:
(2.3)
(FIO)’(N) = generated by {F(a, $) : Fourier integral operator on N
a(z,r&)(~ ao(z, &) + a_i(z, Orl+..-=1)isan
amplitude function,

¢ is a phase function determined by <p},

where ¢ stands for a homogeneous symplectic diffeomorphism on
the punctured cotangent bundle T} N. 7
The group Diffye(S*N) can be identified with Diffg)(T:N) using the
following mapping;: ‘

(24)  i:Diffy(5*'N) 3 ¢ ¢ € DiffQ(T:N),
where
—(o® 5@
- (2.5) p(z,r€) =(¢(z, £), ACX5M (,£)),

r € (0,00), (z,£) € S*N.
On the other hand there exists a mapping # of (FI0)°(N) onto the
identity component D¢ ffé)1 )(T:N )o-

(2.6) | | |
#: (FIO)’(N) 5 F(a,$) = WF(F(a,)) = ™' € Diff§ (T N),,

where WF(F(a, ¢)) is the wave front set of the distribution kernel of
Fourier integral operator F(a, ¢).

2.2. Summary of Maslov form. We review the definition of Maslov
form briefly (cf.[Ar]).

Let (V, h) be an n-dimensional Hermitian space with Hermitian inner
product h, and g(u,v) = Re h(u,v), o(u,v) = Im h(u,v). By fixing
an orthonormal basis (e1,--- ,e,), we can identify (V, h) with (C", h),

! /

where h(z,2') = £ 2 - Z for 2 = (21, - ,z), 2 = (2],-++,2)) €



C". Let A(n) be the Lagrangian-Grassmannian manifold of symplectic
space (C",0): '
(2.7)

A(n) ={X : subspace of C" |dimR)\: n, 0(z,2) =0 (Vz, 2 € A)}.

- It is well-known that the unitary group U(n) acts on A(n) transitively,
and also A(n) = U(n)/O(n) (cf.[Ar]). Let A\ip, = {iz|z € R"} € A(n).
Then, for any A € A(n), there exists Uy € U(n) satisfying A = Uy\ip,.
Using this Uy, we can define mappings W of A(n) into U(n) and Det?
of A(n) into S? as follows: |

(2.8) W(A) = Up'Uy,  Det?()) = detW()\);

Next, let L be a Lagrangian submanifold of C*, and let + be the inclu-
sion mapping. Then ¢,(T,L) can be regarded as a Lagrangian subspace
of C" (Vp € L). For any p € L, define 7 : L — A(n) by 7(p) = t.(T,L).
Maslov form my, of L is given by ' '

(2.9) my =(Det20'r)*( . dz),

ory/—1 2
where z€ C, |z|=1. |

Next we recall the construction of the generating function of La-
grangian submanifold L of C". For example, let py be a point of L such
that T, L transversely intersects Az, = {£|§ € R™}. Then there is a
neighborhood V' of py in L parameterized by the variable x € A, i.e.
Lly = {(z,&(z))|lz € U C Aim}. On the other hand, the restriction of
standard canonical 1-form @ to L is a closed 1-form. Thus, we have a
local potential function S of 8|y as follows: '

(2.10) S(z) = ;:0, where po = (0,£(0)), p = (z,&()).

Hence we have
0S(x)
oz

(2.11) Lly ={(=, )|z € U}.

69



70

We shall refer to the function S as the generating function of L around
. Furthermore, it is well-known in [Ar] that

E — \/:lawamS(IL‘)lw(p)
E + \/:laxaxS(wa(p)

where E is the n x n-identity matrix.

(2.12) W(r(p)) =

- 3. NOTATIONS

3.1. Complex part. First of all, we mention the notion of the “com-

plex part” of matrix. Let J = ((1) _(_)1), Q= (é g) be 2n X 2n-matrix

and 7 be the identification mapping:
: B ;
J: (_AB A) — A+ +v-1B.

Using these notations, we define the complez part of matrix as follows:

co-3{(¢ 326 )

(3.1) ;1(A+D B—C)

“2\-(B-C) A+D
Using the above notation, we easily have:

Lemma 3.1. (1) J&(p) = €(p)J.

(2) fU e U(n), €U)=U. _

(3) If H is a real Hermitian(symmetric), ‘C(H) = ¢(p).

(4) If H is a real Hermitian symplectic, JH = H~'J.

(5) If H is a real Hermitian symplectic and U 1is a unitary matriz,
C(UH) = lU(H + HY).

(6) If p € Sp(n R), €(p) is a reqular matriz.

(7) If we take the polar decomposition p = UH, €(p) = 5= det U IT%, (\i+
A2, where X;, A7 are eigenvalues of the symplectic matriz ®.

Remark. The compleX part depends on the choice of symplectic
coordinate.
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3.2. Symplectic normal coordinate of cotangent bundle of ori-

entable Riemannian manifold. Let N be an orientable Riemannian

manifold and Uy be an open covering of N. Suppose that e;) (1 =

1, +++,n) is an orthonormal frame on U). Then the dual frame €} =
e;, (1 = 1,--- ,n) is an orthonormal frame of cotangent bundle (T*N, =, N).

Usmg this frame we can define symplectic normal coordznate of cotan-

gent bundle around p = (xo, £) as follows:

(3.2) |
(XY X™E By (expmo(ZX’ez(wo)) (dexp,,): ' Y- Eie* (z0))-

For any symplectic diffeomorphism ¢, we denote the push-forward dy,
as '

(33) dX'/0X 0X'/OE

' o='/0X o='[6E )|
where
(3.4)

(Xll Xn,"—'l:' : :E;z)

— (expgy (X X ei(n(p(p))); (dexp,, )it 3 Eie(n(i0())))

is a symplectic orthonormal coordinate around ¢(p).

4. DEFINITION OF IM-FORM

Using these notation we define Maslov function on Di ffo(S*™N) as
follows: Fix a reference point p € S*N

Definition 4.1.
(4.1) @,(ip) = det(~2j o €(dypl,y)),

where
( AB i) — A+ +v-1B.

Then we have the following:
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Proposition 4.2.

42 o) -au[- - X (22

~ Note that this function is well defined as a C*-function on Diff,(S*N).
Although this function is determined by using symplectic orthonormal
-coordinate at the point p, it is independent of the choice of normal
coordinates.

Using the above function(4.2), we define the following closed 1-form:
(4.3) Mpe = —l—d arg ®,.
We call this closed 1-form as 90 form Furthermore, using the followmg
mapping(cf. (2.6)): ,
(4.4) i : (FIO)’(N) — Diffy(S*N),
we define the following closed 1-form
(4.5) L Mpg = T My,

Remarks Let p’ be another reference point of S*N, (s) is a smooth
curve from p to p’ and ¢; is a curve in Diffy(S*N). Then ¢;(7(s))
gives a homotope between ¢,(p) and ¢;(p'). If we do not fix the point
p € S*N, then we have a function ® of S*N x Diffe(S*N) into C.

Proposition 4.3. Suppose that N = S™. Set P = ,/—A + (%} 522, and
®p is a solution of the Schrodinger equation ,,

d

(4.6) 5% = —V=1P2p, @p(0)=1d.
Then
(4.7) A my #0, /. @y e 7 0.

As a result, if N = S" then ,
(4.8) mi(Diffg(S*S™)) #0, m((FIO)°(S™) #0
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Proof. In fact, the fundamental solution @, of (4.6) gives a closed curve
of (FIO)" (S"‘) and 7(®,) is the geodesm flow on S*. By direct com-
putation, we see (4.7). O -

5. THE RELATION BETWEEN MASLOV FORM AND 9-FORM

In order to define Maslov form on the infinite dimensional Lie groups
by the same way as usual Maslov form on the Lagrangian submanifolds,
we need the following diagram:

(FIO)Y(N) & Diff(-”( *N)’
4 |
F(a, ¢) - WF(F(a, ¢)) !
5 A@2n) =U(2n)/0(2n) % U2n) ()
. w w w
— A= Ui — Uy Uy — (detUA)2

where 7(y) is the tangent space of the graph of ¢ at the reference point
(p, ¢(p)) and A(2n) is the Lagrangian-Grassmaniann manifold.

Note that, in general, the canonical graph of symplectic diffeomor-
phism on symplectic manifold (M,w) is a Lagranglan submanifold in
(M x M,wow). =

We call (det oW o 7)* (d0) (resp. (detoW o 7 o #)*(df)) as Maslov

form on Diffy(S*N) (resp. (FIO)°(N)) (cf. (2-8)). Then we have the
following:

)

Proposition 5.1. |
(6.1) mpe = (detoW o 7)*(df), m,, = (det oW o 7 o 7)*(d8).

Proof. We use the notations prepared in §3.2. Also 0 denotes the
derivative at p. .

Let ¢ be an element of Di ffe(S*N). Set a system H of functions as
follows: :

) Hi(p, X, 2, X, E)=X"-5(X,E) (i=1,---,n),
Hi(p, X,E, X"\ =E - X"(X,5) (=1,--,n),

m

(5.2)
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where (X, Z) = (X"(X, E),E;(X, Z))i=1. n is the symplectic diffeo-
morphism on T N.Then, the level surface of H = 0 coincides with the
graph of symplectic diffeomorphism ¢. If T,Graph(y) is transversal to
Are = {(0,Z,X’,0)|E, X’ € R"}, then any point of a neighborhood of
p of the Graph(yp) is parameterized by the variable (X, EN of U C Aim.
In this case Aim = {(X,0,0,Z') | X, ' € R"}, since we now regard
. 0 1 0 O
R*" as a symplectic space with canonical structure (_01 0 _01) . Then
0 0 1 0
we have the generating function S(X,Z’) of ¢ around p.

Since IHI(X, g, 0x=z)S(X, E’)) = 0, we have

(5.3) | |
=) S(X,E) = —OxzH - el (X, E, dxz)S(X, E)).

Substituting this equality into (2.12), then we get the desired conclu-
sion.

If the T,Graph(y) is not transversal to Age, then we can show the
proposition using Legendre transformation (see [Yo], [Fu] for details). O
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