
Fast Algorithms to Enumerate All Common Intervals
of Two Permutations and Their Applications

東京工業大学 宇野毅明
京都大学 柳浦睦憲

(Takeaki $\mathrm{U}\mathrm{n}\mathrm{o}$) ϕ

$($Mutsunori $\mathrm{Y}\mathrm{a}\mathrm{g}\mathrm{i}\mathrm{u}\mathrm{r}\mathrm{a})^{\iota}$

Abstract
Given two permutations of n elements, a pair
of intervals, one from each permutation, con-
sisting of the same set of elements is called
a common interval. Some genetic algorithms
based on such common intervals have been
proposed for sequencing problems, and have
exhibited good prospects. In this paper,
we introduce three types of fast algorithms
to enumerate all common intervals. One of
them is an algorithm with $O(n+K)$ worst
case running time (denoted $\mathrm{R}\mathrm{C}$; abbreviation
for reduce candidate), where $K(\leq-)$ is the
number of common intervals.

Then, given two trees with labels on their
leaves, we consider the enumeration of all
common subtrees, i.e., pairs of subtrees hav-
ing the same set of leaf labels. This problem
has an application in constructing evolution-
ary trees. By using the algorithm $\mathrm{R}\mathrm{C}$, we
can derive a fast randomized algorithm with
$O(n\log n)2$ expected running time if we are
given two binary trees of depth $\log_{2}n$, where
n is the number of leaves. The expected run-
ning time becomes $O(n)$ if the same two bi-
nary trees of depth $\log_{2}n$ are given as the

ϕ Department of Systems Science, Tokyo Insti-
tute of Technology, 2-12-1 Oh-okayama, Meguro-ku,
Tokyo 152, Japan. E-mail: uno@is. titech. $\mathrm{a}\mathrm{c}$. jp

$\iota \mathrm{c}_{\mathrm{o}\mathrm{r}}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ author: Department of Ap-
plied Mathematics and Physics, Graduate School
of Engineering, Kyoto University, Kyoto 606-
01, Japan. Phone: +81-75-753-5514, E-mail:
$\mathrm{y}\mathrm{a}\mathrm{g}\mathrm{i}\mathrm{u}\mathrm{r}\mathrm{a}\emptyset \mathrm{k}\mathrm{u}\mathrm{a}\mathrm{m}\mathrm{p}$. kyoto-u. $\mathrm{a}\mathrm{c}$. jp

input. The latter special case is a trivial in-
stance; however, this case is intuitively con-
sidered to be tough for this algorithm, and
hence, it is expected that the proposed al-
gorithm runs in $O(n)$ expected time for most
of the practical instances, although the worst
case running time is $O(n^{2})$ for any instance.

Keywords: common intervals of permu-
tations, common subtrees, evolutionary tree,
genetic algorithm, linear time algorithm, ran-
dom permutations, randomized algorithm,
Monge property, subtour exchange crossover.

1 Common Intervals

Two permutations σ_{A} and σ_{B} of set $N=$
$\{1, \ldots, n\}$ are given as the input, where
$\sigma_{A}(\dot{i})=j$ (or $\sigma_{A}^{-1}(j)=i$) denotes that j

is the \dot{i}-th element of $\sigma_{A}(\sigma_{B}$ is similarly
defined). Let $[x, y]$ denote the index set
$\{x, x+1, \ldots, y\}$. We call a pair of intervals
$([_{X_{A,yA}}], [x_{B}, yB])(1\leq x_{A}<y_{A}\leq n,$ $1\leq$

$x_{B}<y_{B}\leq n)$ a common interval if it satis-
fies

$\{\sigma_{A}(\dot{i})|\dot{i}\in[_{X_{A}}, y_{A}]\}=\{\sigma B(\dot{i})|\dot{i}\in[x_{B}, y_{B}]\}$.

The length of
a common interval $([x_{A}, y_{A}], [x_{B}, y_{B}])$ is de-
fined to be $y_{A}-X_{A}+1$.

Some genetic algorithms based on common
intervals have been proposed for sequencing
problems (e.g., traveling salesman problem,
single machine scheduling problem, etc.) and
have exhibited good prospect [1, 6, 7, 12].

数理解析研究所講究録
1015巻 1997年 120-123 120

In this paper, we consider enumeration of
all common intervals of length 2 to n . Three
algorithms are proposed, which are improved
versions of a simple $O(n^{2})$ time algorithm
proposed in [11]:

1. A simple $O(n^{2})$ time algorithm (called
LHP), whose expected running time be-
comes $O(n)$ for two randomly generated
permutations.

2. A practically fast $O(n^{2})$ time algorithm
(called MNG) using the reverse Monge
property.

3. An $O(n+K)$ time algorithm (called $\mathrm{R}\mathrm{C}$),
where $K(\leq.)$ is the number of out-
puts.

$-$.

It is also shown that the expected number
of common intervals of length 2 to $n-2$ for
two random permutations is $2+O(n^{-})1$. This
implies that the expected number of common
intervals of length 2 to n is $O(1)$, since the
number of common intervals of length $n-1$
or n is at most 3. This result gives a reason
for the phenomenon that the expected time
complexity $O(n)$ of the algorithm LHP is in-
dependent of K . We also give an example
for which both LHP and MNG require $\Omega(n^{2})$

time, although $K=O(n)$.
Amon.g the three algorithms proposed in

this paper, RC is most desirable from the
theoretical point of view, but is quite com-
plicated compared to LHP and MNG. There-
fore, it is possible that RC is slower than the
other two algorithms in some cases. For this
reason, computational experiments for vari-
ous types of problems with up to $n=10^{6}$ are
conducted. The results indicate that

1. LHP and MNG are much faster than RC
for two randomly generated permuta-
tions (e.g., LHP is about 13 times faster
than $\mathrm{R}\mathrm{C}$).

2. MNG is rather slower than LHP for ran-
dom inputs; however, there are cases
that LHP requires $\Omega(n^{2})$ time, but MNG
runs in $o(n^{2})$ time and is faster than
both LHP and $\mathrm{R}\mathrm{C}$.

The details of the algorithms and a recom-
mendation about the use of the three algo-
rithms is in [10].

These results are $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}_{\mathrm{C}}\mathrm{a}\mathrm{b}\overline{1}\mathrm{e}$ to the similar
problem defined on two cyclic permutations
[11].

2 Common Subtrees
Two rooted trees T_{A} and T_{B} are given as the
input, each of which has n leaves labeled with
1, 2, . . . , n . A subtree $T_{A}(u)$ is defined to be
the subgraph of T_{A} induced by u and all de-
scendants of u . Let $L_{A}(u)$ be the set of labels
of the leaves in $T_{A}(u)$. $T_{B}(u)$ and $L_{B}(u)$ are
similarly defined. We call a pair of subtrees
$(T_{A}(u), TB(v))$ a common subtree if it satisfies

$L_{A}(u)=L_{B}(v)$,

where u and v are neither a root nor leaf. We
assume that every inner vertex of T_{A} or T_{B}

has at least two children, so that the number
of inner vertices is $O(n)$.

Genetic algorithms based on common sub-
trees are proposed for VLSI design [5]. Com-
mon subtree also has an application in evolu-
tionary trees for species sets, which are used
in biology. Unfortunately, there are many
proposals for constructing evolutionary trees,
which are then compared to form consensus.
The number of common subtrees is one of the
basic measures for consensus [4, 8, 9], among
others [2].

The proposed algorithm is based on the fol-
lowing observation. Let $\sigma_{T_{A}}$ be the permuta-
tion of leaf labels of T_{A} defined by the order

121

where they are scanned by depth-first search,
in which the left to right order of choosing the
children of each inner vertex is determined
arbitrarily. Let $l_{A}(u)$ (resp., $r_{A}(u)$) be the
label of the left (resp., right) most leaf of
$T_{A}(u)$. $\sigma_{T_{B}},$ $l_{B}(u)$ and $r_{B}(u)$ are similarly de-
fined. Then $(T_{A}(u), T_{B}(v))$ is a common sub-
tree if and only if $([\sigma_{\tau_{A}}^{-1}(lA(u)), \sigma_{\tau A}^{-1}(r_{A}(u))]$,
$[\sigma_{\tau_{B}}^{-1}(lB(v)), \sigma_{TB}^{-1}(rB(v))])$ is a common inter-
val of two permutations $\sigma_{T_{A}}$ and $\sigma_{T_{B}}$. Note
that there are common intervals of $\sigma_{T_{A}}$ and
$\sigma_{T_{B}}$ that do not correspond to any subtrees.

The basic framework of the algorithm is as
follows.

$.\backslash$

$:-$
.-.

1. Apply depth-first search to T_{A} and T_{B} ,
choosing randomly the order of the chil-
dren at each inner vertex. Denote the
two permutations of the leaf labels of T_{A}

and T_{B} by $\sigma_{T_{A}}$ and $\sigma_{T_{B}}$, respectively.

2. Enumerate all common intervals of $\sigma_{T_{A}}$

and $\sigma_{T_{B}}$ one by one, and if the two inter-
vals corresponding to each common in-
terval define subtrees of T_{A} and T_{B} , re-
spectively, then output the correspond-
ing pair of subtrees.

Step 1 can be executed in $O(n)$ time. We
can check in Step 2 if an interval of $\sigma_{T_{A}}$ (resp.,
$\sigma_{T_{B}})$ defines a subtree of T_{A} (resp., T_{B}) in
$O(.1)$ worst case time by using the data struc-
ture called perfect hash [3], which can be con-
structed in $O(n)$ expected time and in $O(n^{2})$

worst case time.
’

Let $K(\sigma_{T_{A}}, \sigma\tau_{B})$ be the number of com-
mon intervals of two permutations $\sigma_{T_{A}}$ and
$\sigma_{T_{B}}$. $K(\sigma_{T_{A},\tau_{B}}\sigma)$ may be the dominating
factor of the running time of our algorithm.
Note that $K(\sigma_{T_{A}}, \sigma\tau_{B})=$ in the worst
case, although the number of common sub-
trees is $O(n)$. It is also noted that the result
about the expected number of common in-
tervals for two random permutations stated

in Section 1 is not applicable in this case,
since the probability space is different. We
show that the expected value of $K(\sigma_{T_{A}}, \sigma\tau_{B})$

is $O(n\log n)2$ if the given two trees are bi-
nary and the depth of them is $\log_{2}r\tau$. We also
show that the exp..ected value of $K(\sigma T_{A}, \sigma TB)$

is $O(n)$
. if the same two binary trees of depth

$\log_{2}n$ are given as the input. The latter spe-
cial case is a trivial instance as the common
subtree enumeration problem. However, in
this case, $K(\sigma\tau_{A}, \sigma\tau_{B})=$ if we do not
randomize the children order of each inner
vertex, which is the largest possible value of
$K(\sigma_{T_{A}}, \sigma\tau_{B})$. Hence, this is considered to be
a tough instance for our algorithm. There-
fore, we believe that the expected value of
$K(\sigma_{T_{A}}, \sigma_{\tau_{B}})$ is small (e.g., $O(n)$) for most of
the practical instances, although theoretical
-res’ults are limited to the above special cases.

Actually, it is observed by computational
experiments on some types of randomly gen-
erated trees with up to $n=10^{6}$ that the av-
erage value of $K(\sigma_{T_{A}}, \sigma\tau_{B})$ is $O(n)$ for all the
tested instances, in which trees of depth $\Omega(n)$

are included.

If we use the algorithm RC to enumer-
ate common intervals in Step 2, the ex-
pected running time of the above algorithm
is $O(n+K(\sigma\tau_{A}, \sigma_{T_{B}}))$, which is $O(n\log^{2}n)$ if
the given two trees are binary and the depth
of them is $\log_{2}n$, and $O(n)$ if the same two
binary trees of depth $\log_{2}n$ are given as the
input. The worst case running time is $O(n^{2})$

for any input, since $K(\sigma_{T_{A}}, \sigma\tau_{B})$ is $O(n^{2})$ in
general.

Similar algorithms are applicable to similar
problems defined on two unrooted trees, in
which two connected components defined by
deleting an edge are considered as subtrees.

122

References . ..

.. ’

[1] R. M. Brady, Optimization Strategies
Gleaned from Biological Evolution, Na-
ture, 317 (1985), 804-806.

[2] M. Farach and M. Thorup, Sparse Dy-
namic Programming for Evolutionary-
Tree Comparison, SIAM. J. $c_{omp}.u\dot{t}..’ 26$

(1997), 210-230.

[3] M.L. Fredman, J. Koml\’os and E. Sze-
mer\’edi, Storing a Sparse Table with
$O(1)$ Worst Case Access Time, J. ACM,
31 (1984), 538-544.

[4] M.D. Hendy, C.H.C. Little and D.
Penny, Comparing Trees with Pendant
Vertices Labeled, SIAM J.. Appl. Math.,
44 (1984), 1054-1065.

[5] s. $\mathrm{I}<_{\mathrm{o}\mathrm{a}\mathrm{k}\mathrm{s}\mathrm{u}}\mathrm{u}\mathrm{t}$, Private Communication.

[6] S. Kobayashi, I. Ono and M. Yama-
mura, An Efficient Genetic Algorithm
for Job Shop Scheduling Problems, Proc.
6th ICGA, 1995, pp. 506-511.

[7] H. M\"uhlenbein, M. Gorges-Schleuter
and O. Kr\"amer, Evolution Algorithms
in Combinatorial Optimization, Parallel
Computing, 7 (1988), 65-85.

[8] D. Penny and M.D. Hendy, The Use
of Tree Comparison Metrics, Systematic
Zoology, 34 (1985), 75-82.

[9] F.J. Rohlf, Consensus Indices for
Comparing Classifications, Mathemati-
cal Biosciences, 59 (1982), 131-144.

[10] T. Uno and M. Yagiura, Fast Algo-
rithms to Enumerate All Common In-
tervals of Two Permutations, Techni-
cal Report #96015, Department of Ap-
plied Mathematics and Physics, Gradu-

1. ate School \‘Of Engineering, Kyoto Uni-
versity, (1996).

[11] M. Yagiura, H. Nagamochi and T.
Ibaraki, Two Comments on the Sub-
tour Exchange Crossover Operator (in
Japanese), J. Japanese Society for Arti-
ficial Intelligence, 10 (1995), 464-467.

[12] M. Yamamura, T. Ono and
S. Kobayashi, Character-Preserving Ge-
netic Algorithms for Traveling Salesman
Problem (in Japanese), J. Japanese So-
ciety for Artificial Intelligence, 7 (1992),
117-127.

123

