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An Inverse Assignment Problem
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Abstract

In this paper we focus our attention on the famous “Plane Assignment Problem”
in Beckmann’s Dynamic Programming of Economic Decisions and develop a further
theory of the assignment problem. Formulating the problem into an optimal (main)
stopping problem, we propose a new inversion of the stopping problem. By exchange

- of objective function and constraint function together with replacement of optimizer
min by Max, we introduce an inverse assignment problem, which is also an optimal
stopping problem. We establish several inverse theorems between main and inverse
stopping problems. We also analyze the finite-stage (nonstopping) problems and
specify the enveloping relation to the stopping problems. Detailed numerical solutions
for both problems are specified.

1 Introduction

In this paper we devote ourselves exclusively to the study of the so called Plane Assign-
ment Problem which has its origin in Beckmann and Laderman [1]. The Plane Aassignment
Problem is one of the most typical resourse allocation problems [4]. For its simple struc-
ture and elegant economic interpretation, this problem has several approaches, for instance,
linear programming, integer programming, combinatorial programming, and dynamic pro-
gramming (see [8]). Beckmann (2] illustrates heuristically the principle of optimality [3]
through the problem.

In this paper we develop a further inverse theory of the assignment problem. We formu-
late the problem into an optimal stopping problem, which we call main stopping problem.
We propose an inversion of the stopping problem. By.exchange of objective function and
constraint function together with replacement of optimizer min by Max ([5],[6],(7]), we in-
troduce an inverse assignment problem, which is called an inverse stopping problem. An
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inverse relation between main and inverse stopping problems is condensed into four inverse
theorems; Weak Inverse Theorem, Strong Inverse Theorem, Strict Inverse Theorem and
Inverse Stopping Time Theorem. We specify detailed numerical optimal solutions for both
problems. . ,

In Section 2 we formulate Beckmann'’s Plane Assignment Problem into an optimal stop-
ping problem in a deterministic sense. We show the monotonicity of optimal value function
and derive the recursive equation.

In Section 3 we introduce its inverse problem, show the monotonicity of its optimum
value function, and derive the recursive equation for the inverse problem. The three inverse
theorems are established. :

In Section 4 we discuss both main and inverse nonstopping (finite-stage) problems. We
give both problems their optimal solutions and show inverse relations. An enveloping
property between stopping and nonstopping problems is shown for both main and inverse
problems, respectively. Further an inverse relation between both optimal stopping times is
established. \

In Section 5 we illustrate detailed numerical solutions both for Beckmann’s Assignment
Problem and for its inverse problem.

2 Main Stopping Problem

We begin to consider the Beckmann’s Plane Assignment Problem [2] in the following quata-
tion:

Example [BECKMAN/LADERMAN ([1](1956)]: Plane Assignment.
As an illustration of the principle of optimality consider the problem of find-
ing the best combination of two indivisible resources to meet a given demand.
Let the demand be a number of passengers and the resources to be two types
of planes

Plane | Capacity Cost
DC 3 38 1.0
DC 6 o8 14

Let the cost of operating a DC 6 on a given flight be 1.4 times that of
running a DC 3. For any number n of passengers up to n = 200 it is desired to
find the cheapest combination of planes that will carry them.

From 1 to 38 passengerss are carried most cheaply by one DC 3; from 39 to
58 passengers by one DC 6. _

To decide which is the cheapest cost of trnasporting 59 passengers we denote
the minimum cost of transporting m passengers by v(m) and have the recursive
relation

v(m) = min[1.4 + v(m — 58), 1.0+v(m —38)] in particular

v(59) = min[1.4 + v(1), 1.0 + v(21)]



165

where “min” means the smaller of the two values in the brackets.
Since v(1) = v(21) = 1.0 one has v(59) = 2.0. And so on.

Now let us formulate Beckmann’s Assignment Problem into a stopping problem and
analyze it. ‘ ,

Throughout the paper, we use the cost function f : {1,2,...,38,...,58} — {1.0,1.4}
defined by

f)=f2)=---=f(38):=10, f(39)=---= f(58):=14 (1)
Thus the assignment problem is formulated into the following minimization problem :

minimize f(z;) + f(z2) + -+ + f(zs)
MSP(200) subject to (i) z3 +z9+---+ =z =200 (2)
(i) 1<z,<58 1<n<t
(i) 1<t<200

The condition (iii) means when to stop assigning. Thus the deterministic variable ¢ is
considered as a stopping time. This is the main reason why we call MSP(200) a main
stopping problem. Of course, the problem is a problem of finding not only an optimal
stopping time ¢ but also an optimal assignment itself (1, .. ., z;), which together yields the
minimum cost.

Let v(200) be the minimum value. In general, let v(m) be the minimum value of MSP(m)
with the right-hand side parameter m in place of 200, where m ranges on the set of natural
numbers N = {1,2,...,200,...}. Let < 1.0,00 > be the set of discrete real numbers
1.0,1.1,... with step-size 0.1:

< 10,00 >={1.0,1.1,...,5.2,...}.

Note that the set < 1.0,00 > contains all the possible values that the optimal value
function v takes. '
First we have the monotonicity of optimum value function v(-) as follows:

LEMMA 2.1 The minimum value function v : N —< 1.0,'00 > 1s nondecreasing, and
it goes to 00 as so does m. ‘

Second we have the following recursive equation.

THEOREM 2.1

v(m) = min[1.4 + v(m — 58), 1.0 + v(m — 38)] m =59,60,.... (3)
v(l) =v(2) =---=v(38) = 1.0, v(39) =v(40) =---=v(58) = 1.4 (4)
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Let us define the optimal pocicy =* : N — {38, 58} by

m*(m) = { gg if { iéizgz ___ gg; attains the minimum in (3) (5)
~ where
(1) =..-=7"(38) =38, 7*(39)=--- =nx*(58) = 58. (6)

In the last section, Table 1 shows an optimal solution - a pair of optimal value and
optimal policy - for MPS {v(-),7*(-)}. Figure 1 illustrates that an successive application
of optimal policy 7*(-) from the given initial state m = 200 generates an optimal decision
tree for the given Beckmann’s problem. In summary, the optimal decision tree states that
the cheapest cost 5.2 of transporting 200 passengers is attained by use of a combination of
one DC 3 and three DC 6.

3 Inverse Stopping Problem
In this section, as an inverse problem, we consider the following maximization problem :

Maximize z;+zo9+---+ 2

ISP(5.2) subject to (i) f(z1) + f(®2) +--- + f(z) < 5.2 7
(i) 1<z.<58 1<n<t
(iil) > 1.

This is also a stopping problem. Thus we call this problem Inverse Stopping Problem.

Let u(5.2) be the maximum value. In general, let u(c) be the minimum value of ISP(c)
with the right-hand side parameter ¢ in place of 5.2, where c ranges on the set of discrete
real numbers < 1.0,00 >= {1.0,1.1,1.2,...}. Then we have the monotonicity of optimum
value function u(-) as follows:

LEMMA 3.1 The marimum value function u :< 1.0,00 >— N is nondecreasing, and
it goes to 00 as so does c.

We have also the following recursive equation.

THEOREM 3.1

u(c) = Max[58 + u(c — 1.4), 38 + u(c—1.0)] c=1.5,1.6,.... (8)
©(0.1) = u(0.2) = --- = u(0.9) = 0, -
w(1.0) = u(l1) =--- =u(1.3) =38, u(l4)=58 | ()

We define the optimal pocicy 6 :< 1.0, 00 >— {38, 58} by

~ N __ | 58 . 58 + u(c — 1.4) . . .
6(c) = { 38 if { 38 + u(c — 1.0) attains the maximum in (8) (10)
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wehere : ' / ‘
6(1.0)=---=6(1.3) = 38, 4(1.4) = 58. (11)

The optimal solution for IPS {u(-),6(-)} is shown in Table 2 in Section 5. Figure 2
illustrates that an successive application of optimal policy 6(-) from the given initial total
cost ¢ = 3.2 generates an optimal decision tree for the inverse problem. The optimal
decision tree states that the maximum total number of passengers 212 for the total cost
5.2 or less is also attained by use of the combination of one DC 3 and three DC 6.

Furthermore, we have the following inverse relationship between Main and Inverse Stop-
ping Problems:

THEOREM 3.2 (Weak Inverse Theorem I)

(i) v(u(c) <e ¢ é< 1.0,00 > (12)
(i) w(v(m))>m méeN. : (13)

It is verified in Tables 2 and 1 that Egs. (12),(13) hold, respectively.

Let w: X — Y be a nondecreasing function, where X,Y are nonempty discrete subsets
in one-dimensional Euclidean space R!. Then we define two kinds of its inverse function
as follows: One is the upper-semi inverse function w=!:Y — X

y) :=min{z € X |w(z) >y} (14)
The other is the lower-semi inverse function w_;:Y — X
w-1(y) :=Max{z € X |w(z) <y} (15)

We say that a value y € Y is attainable if there exists some z € X satisfying w(z) = y.
Then we have the following properties.

LEMMA 3. 2

w_1(y) > wt(y)  for attainabley €Y (16)
w_1(y) <w Yy) for nonattainable y € Y. a7

Furthermore, for any nonattainable y € Y, both w_1(y) and w='(y) take two adjacent
(neighbouring) values in X . '

Moreover, we have a rather strict inverse relations as follows:

THEOREM 3.3 (Strong Inverse Theorem I)

(1"

v_i(c)=ulc) c€<1.0,00> (18)
(i) w!

(m)=v(m) meN. (19)

As for Egs. (18),(19) see Tables 2 and 1, respectively. Further, one pair of optlmal value
function and optimal policy characterizes the other pair as follows:
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THEOREM 3.4 (Strict Inverse. Theorem I)

Table 1. Optimal Solution for MSP and Composite Solution

- no. of minimum optimal composite u.s. inverse composite
passengers cost policy function function policy
m vm)  w(m)  u(w(m) ulm) (ul(m))
1 1.0 38 38 1.0 38
38 1.0 38 38 1.0 38
39 1.4 58 58 1.4 58
58 14 58 58 1.4 58
59 2.0 38 76 2.0 38
76 2.0 38 76 2.0 38
7 24 38 or 58 96 2.4 38 or 58
96 2.4 38 or 58 96 2.4 38 or 58
97 2.8 58 116 2.8 58
116 2.8 58 116 2.8 58
117 34 38 or 58 134 3.4 38 or 58
134 34 38 or 58 134 34 38 or 58
135 3.8 38 or 58 154 3.8 38 or 58
154 3.8 38 or 58 154 3.8 + 38 or 58
155 4.2 58 174 4.2 58
174 4.2 58 174 4.2 58
175 4.8 38 or 58. 192 4.8 38 or 38
192 4.8 38 or 58 192 4.8 38 or 58
193 5.2 38 or 58 212 5.2 38 or 58
200 5.2 38 or 58 212 5.2 38 or 58




169

Symbolically we write

6=7m"ov_; on <10,00> 7 =Gou! on N - (22)

, Where o is the composition operator between functions.
As for Egs. (20),(21) see Tables 2 and 1, respectively.

Table 2. Optimal Solution for ISP and Composite Solution

given | maximum no. optimal composite ls. inverse composite
cost | of passengers  policy function function policy
c u(c). 6(c) v(u(c)) vi(e) - 7w (voa(e)
1.0 38 38 1.0 38 38
1.3 38 38 1.0 38 38
14 58 58 14 58 58
1.9 58 58 14 58 58
2.0 76 38 2.0 76 - 38
2.3 76 38 2.0 76 38
2.4 96 38 or 58 2.4 96 38 or 58
2.7 96 38 or 58 24 96 38 or 58
2.8 116 58 2.8 116 58
3.3 116 58 2.8 116 58
3.4 134 38 or 58 3.4 134 38 or 58
3.7 134 38 or 58 3.4 134 38 or 58
3.8 154 38 or 58 3.8 . 154 38 or 58
4.1 154 38 or 58 3.8 154 38 or 58
4.2 174 58 4.2 174 58
4.7 174 58 4.2 174 58
4.8 192 38 or 58 4.8 192 38 or 58
5.1 192 38 or 58 4.8 192 38 or 58
5.2 212 38 or 58 5.2 212 38 or 58
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4 Nonstopping Problems |

In this section we consider the nonstopping problems. Let n be any given total number
of planes. Then two problems arise. One is a main problem. For any given total number
of passengers m, we consider the problem of finding the minimum total cost of carrying
m passengers by n planes. The other is its inverse problem. For any given total cost of
operating ¢, we consider the problem of finding the maximum total number of passengeres
that n planes carry for not more than the total cost c. Since all the results in the following
are proved in a similar way as in Sections 2 and 3, the proof is omitted in this section.

4.1 Main Problems

For any n € N, let us define the following two discrete intervals;

N, = {n,n+1,...,58n} ' (23)
C. = {1.0n,1.0n+01,...,14n+0.5}. (24)

Then the interval N,, contains all the possible total numbers of passengers n planes can
carry. The interval C,, does all the possible total costs for which or less n planes can carry.

Given two positive integers n, m satisfing m € N,,, we consider the problem.of dividing
m into n possible natural numbers between 1 and 58 and minimizing the summed value
measured through the cost function f:

minimize f(z1) + f(z2) + -+ + f(zn)
NMP(m; n) subject to (i) z1+zo+ -+ =m (25)
(i) 1<<58 1<i<n

Let v,(m) be the minimum value. Then we have the following double-monotone property
and recursive equation:

LEMMA 4.1 (i) The minimum value function v, : N, — C, is nondecreasing :
vp(m) <vp(m+1) m,m+1€N,. (26)

(#) The sequence of minimum functions {v, }n>1 is nondecreasing:

Vp(m) < vpp1(m)  m € NyN Npyq. | (27)

THEOREM 4. 1 |
’vl(m) = f(m) méE N (28)
Unt1(m) = min[f(z) + va(m —2)] M E Npyy, n21 (29)

where z : ¥ means that the minimization is taken for all x satisfying
1<z<58 m-—z€N,. (30)
In particular, when {m — 38, m — 58} C N,,, Fq.(29) reduces V

Unt1(m) = min[1.0 + v,(m — 38), 1.4 + v, (m — 58)]. (31)
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Let m; ,(m) C {1,2,...,58} be the set of all minimizers for (29), where
71(1) =+ =77(38) =38, m(39) =--- =m}(58) = 58. (32)

Then the point-to-set valued function =y, : N, — {1,2,...,58} is called n-th optimal deci-
sion functzon We call the sequence of optimal decision functlons = {n}, 75, ..., 7k,...}
an optimal policy for Nonstopping Main Problem NMP(m;n).

Further we have the following relation between Stopping Problem and Nonstoppmg Prob—
lem:

THEOREM 4.2 (Main Envelope Theorem)

- . N.
v(m) = nlrrlnqé%nv (m) me (33)

Let t*(m) be the first positive integer n such that v(m) = v,(m). Then t* is the optimal
stopping time for MSP: : ‘
v(m) =vs(m) méE N. (34)

As for Egs. (33),(34), see Table 3.

4.2 Inverse Problems
We consider the inverse problem of NMP(m;n) as follows:

Maximize x;+ 23+ .-+ z,
NIP(c; n) subject to (i) f(z1)+ fl@e) +--+ flza) <c - (35)
) 1<z; <58 1<i<n |

where ¢ € C,, n > 1. Let u,(c) be the maximum value. Then the maximum value
functions enjoy the following double-monotone property and recursive equation:

LEMMA 4.2 (i) The mazimum value function u, : C, — N, is nondecreasing :
Un(c) L up(c+0.1) ¢ c+0.1€C,. (36)

(ii) The sequence of mazimum functions {un}gzl 18 monincreasing:

Un(c) S uppi(c) c€CrNCpyr- ' - (37)

'THEOREM 4. 3 |
u(10) = u(1.1) = - = uy(1.8) = 38, u(ld4)=---=u(19) =58  (38)
unt1(¢) = Max{z + un(c — f(z))]  c€Cnpn | (39)

where  : % denotes that the mazimization is taken for all x satisfying
1<z<88, ¢c—flx)eCr , ~ (40)
In pamcular when {c — 1.0, c— 1.4} C C,, Eq.(39) reduces
un+1(c) Max(38 + un(c — 1.0), 58 + up(c — 1. 4)] (41)
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Let 6n41(c) € {1,2,...,58} be the set of all maximizers for (39), where

61(1.0) =--- =61(1.3) = 38, 6¢(1.4)=---=6,(1.9) = 58. (42)
Then the point-to-set valued function 6, : Cp, — {1,2,...,58} is an n-th optimal decision
function. Thus the sequence of optimal decision functlons 6 =-{61,6 02, veyOpny:..} isan

optimal policy for Nonstopping Inverse Problem NIP(c; n)
We have the following enveloping relation.

THEOREM 4.4 (Inverse Envelope Theorem)

u(c) = I}Aggc un(c) c€<1.0,00>. (43)

Let £(c) be the first posmve integer n such that u(c) = un(c). Then £ is the optimal stopping
time for ISP: ' AR . :
u(c) = uyi(c) c€<1.0,00 >. (44)

As for Eqs. (43),(44), see Table 4. Furthermore, we have three corresponding inverse
theorems for Nonstopping Problems.

THEOREM 4.5 (Weak Inverse Theorem II) Forn > 1

i) wn(un(c) <c  c€Cp T (45)
(i) up(vn(m))>m  m€E N, (46)

THEOREM 4. 6 (Strong Inverse Theorem II) Forn > 1

@ @)@ =wle) c€C @)
) @) 'm)=w(m)  meN. @)

THEOREM 4.7 (Stmct Inverse Theorem II) Forn > 1

(i) &n(c) =m((vn)-1(c))  c€Cy _ (49)

(i) m(m)=6a((us)'(m)) m€E N, (50)
‘Symbolically we have | |

*

On =1 0(s)-1 00 Cp, T =060 (up)™ on Ny R €20

Further both optimal stopping times a.re'charag:terized in the following inverse sense:

THEOREM 4.8 (Inverse Stopping Time Theorem)

A

t=t"ov. on <1.0,00>, t*=tou™l on N. o (52)

‘Finally we we specify Tables 4 and' 5, which illustrate optimal value functions, optimal
policies and optimal stopping times for the main and inverse nonstoppmg problems, re-
spectively. Further the forementioned relations are also shown in tables. The spemﬁcatlon
verifies that all the results in both Inverse Theorems and Envelope Theorems are valid.



Table-3. Envelope Property and Optimal Stopping Time for MPS

[ m [v(m) wn(m) w(m) vs(m) vy (m) -~ t'(m) |
1] 1.0 1.0 o 1
2 1.0 1.0 2.0 1
3110 1.0 20 30 1
4110 10 20 30 40 1
38 1.0 10 20 30 40 1
39 | 1.4 14 20 30 40 1
58| 14 14 20 30 40 1
59 | 2.0 20 30 40 )
76 | 2.0 20 30 40 2
7| 24 24 30 40 2
96 | 24 94 30 40 - 2
97 | 2.8 58 30 4.0 2
114 | 2.8 28 30 40 2
115 | 2.8 28 34 4.0 9
116 | 2.8 28 34 40 9
117 | 34 T 34 4.0 BEE
134 | 34 34 4.0 3
135 | 3.8 38 4.0 3
152 | 3.8 38 40 -+ 3
153 | 3.8 38 44 - 3
154 | 38 38 44 ... 3
155 | 4.2 12 44 - 3
172 | 4.2 4.2 4.4 3
173 | 4.2 42 48 .- 3
174 | 4.2 42 48 - 3
175 | 4.8 48 .- 4
192 | 4.8 4.8 4
193 | 5.2 5.2 1
200 | 5.2 5.9 4

173



Table 4. Envelope Property and Optimal Stopping Time for IPS

(¢ Jul®) wi(o) w(c) uslc) wale) --- ic) B
1.0 38 38 1
1.3| 38 . 38 1
14| 58 58 1
19| 58 58 1
20| 76 76 2
23| 76 76 2
2.4 | 96 96 2
271 96 26 2
2.8 | 116 116 2
2.9 | 116 116 2
3.0 | 116 116 114 2
3.3 116 116 114 2
34| 134 ‘ 134 3
3.7 | 134 134 3|
3.8 | 154 154 3
(39| 154 154 3 .
4.0 | 154 154 152 3
| 4.1 154 154 152 3
4.2 | 174 174 152 3
43| 174 174 152 3
44| 174 174 172 3
47| 174 174 172 3
48] 192 192 4
5.0 | 192 192 4
5.1 192 192 4
52| 212 212 4

174
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