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1. Intr‘oducti'on

Stability and sensitivity analysis is not only theoretically interesting
but also practically important in optimization theory.

In this paper we provide some theoretical results concerning sensitiv-
ity analysis in multiobjective optimization. Since there are three types of
solution concepts, i.e., minimality, proper minimality and weak minimal-
ity with respect to the ordering cone for a multiobjective optimization
problem, we can consider three types of perturbation maps according to
those solution concepts for a given family of multiobjective optimization
problems that depend on a parameter vector. Each of the perturbation
maps, called perturbation map, proper perturbation map and weak per-
turbation map, is defined as a set-valued map which associates to each
parameter value the set of all minimal, properly minimal and weakly
minimal points, respectively, of the perturbed feasible set in the objec-
tive space with respect to a fixed ordering cone. The behavior of the
perturbation maps is analyzed quantitatively by using the concept of
contingent derivatives for set-valued maps in finite dimensional Fuclidean
spaces. Namely, we investigate the relationships between the contingent
derivatives of the perturbation maps and those of the feasible set map in
the objective space.

2. A Parametrized Family of Nonlinear Multiobjec-
tive Optimization Problems and Perturbation Maps

1This research was supported in part by BSRI-97-1440 and Center for Applied
Mathematics at KAIST
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‘We consider a family of parametrized multiobjective optimization

problems . ‘
minimize  f(x, )
| subject to = € X(u) C R"

where f is a p-dimensional vector-valued finction, z is a decision variable
in R*, u is a perturbation parameter vector in R™, f is a real-valued
objective function defined on R™ x R™ and X is a set-valued function
(multifunction) from R™ to R™.

" Let Y be a set-valued map from R™ to RP defined by

Y(u) ={y= flz,u) :x € X(v)} foreach ue€& R™.

Y is considered as the feasible set map in the objective space. In order to
define a solution of the multiobjective optimization problem we consider
a partial order in the objective space RP induced by a pointed closed -
convex cone K with a nonempty interior in RP, where K is said to be
pointed if K N (—K) = {0}. Then we can define the following three sets
for a set A in R”: '

MingA = {y € A: there exists noy € A such that y <x 9} .
—{je A (A-§)n(-K) = {0}
PrMingA = {4 € A : there exists a cone C' such that where
C'is a convex cone with (! 7 R” ‘and K\ {0} Cint C}, |
WMingA = {y € A: there exists; noy € A such that y <g 9}

v:‘ {ye A: (A-19) Vﬂ (—int K) = 0}

We call these three sets the sets of the K-minimal, properly K-minimal,
and weakly K-minimal points of A, respectively.

“According to these three solution concepts we can define the following
three set-valued maps W, G and S from R™ to RP by |

W(u) = MingY (u), for any u € R™,
G(u) = PrMingY (u), forany u € R™,

and
S(u) = WMingY (u), for any uv€ R™
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are called the perturbation map, the proper perturbation map and the
weak perturbation map, respectively.

3. Contingent Derivatives of Set-Valued Maps

In this section we briefly review the concepts of contingent derivatives
and T P-derivatives of set-valued maps aud provide some basic properties
which are necessary in the following section. The notions of derivatives of
set-valued maps are direct generalizations of the point-valued directional
derivatives. Thronghout this section, let. £' be a set-valued map from R™
to RP.

Definition 3.1. ([1, 2]) Let A be a nonempty subset of R™, and let
0 € R™. The set T4(0) C R™, defined by
Ta(@)={ve R™: I{*} Cc R™, 3{h;} C intR, such that
v* = v, by =0 andVk, 04 hot € A,

is called the contingent cone to A at ¢, where intR, is the set of all
positive real numbers.
The graph

graph F' = {(v,2) : z € F(v)} C R™ X RP.

Definition 3.2. ([12]). Let (¢,%) be a point in graph F. The set
T Pyraph r(0,£) C R™ x RP, defined by

TPgraph F(0,2) = {(v,z) € R"xRP: F{(v*, )} C graph F, 3 {ht} C intR,

such that v* — 4 and hy((v* — @) — v}.

is called the T P-cone to gr aph F at (0, 2).
It is clear that

Tgraph F("-A’) £)C TP graph F(@v £)

with equality holding if graph F'is convex.

Now we introduce two concepts of contingent derivatives of the set-
valued map F' defined by considering the above two cones to graph F,
respectively. |
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Definition 3.3. ([2]) Let (9,%) be a point in graph F. We denote
by DF(0,2)(-) the set-valued map from R™ to RP whose graph is the
contingent cone Tgraph (D, 2) and call it the contingent derivative of F
at (0, 2). | |

Definition 3.4. ([12]) Let (0, %) be a point in graph F. We denote
by PF(?, £) the sct-valued map from R to R? whose grapl is the cone
T Poraph (0, 2) and call it the T'P-devivative of F at (0, 2).
We consider the set-valued map F' + K from R™ to R? defined by
(F+ K)(v) = Fv) + K, forall ve R™
Proposition 3.1. ([12]) Assﬁme that
PF(0,2)(0) N (—K) = {0}.
Then, for any v € R™,
DF(v,2)(v) + K = D(F + K) (0, 2)(v).
Theorem 3.1. ([6]) Assume that | |
PF(0,2)(0) N (—=K) = {0}.
Then, for any v € R™,
(i) PrMingDF(9,2)(v) = PrMing D(F + K)(0, £)(v),
(i1) MingDF(9,2)(v) = Ming D(F + K)(9, £)(v),
(ili) WMing DF(9, 2)(v) C WMing D(F + K)(9, £)(v).
Moreover, if K is a closed convex cone with K C int K U {0}, then

(iii)’ WMing DF (%, 2)(v) = WMing D(F + K)(9, 2)(v).

4. Contingent Derivatives of Perturbation Maps

In this section we provide some relationships between the contingent
derivative DY of Y and the contingent derivatives DG, DW and DS of
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G, W and S, respectively. Throughont this section, when speaking of
the perturbation maps G, W and S, we fix the nominal value of w as 4
~and consider a point ¢ belonging to G'(i). W (w) and S(4), respectively.
A cone K is assumed to be a closed convex cone contained in (int. K)U{0}.

Definition 4.1. We say that
(i) Y is K-dominated by W near « il
Y(u) C Wiu) + K, for any u € Ny,
(ii) Y is K-dominated by S near w if
Y(u) C S(u) + K, for any u € Ny,
where N; is some neighborhood of 4 in R™.
Remark 4.1. Since W(u) C S(u), if Y is [\"-dominac’?ed by W near 4,
then Y is K-dominated by S near . I\’IOITGOVG}‘(,) when K = (int K)U {0},
if Y is K-dominated by W near 4, then Y is K-dominated by S near 4.
Theorem 4.1. ([(]) Assume that
PY (4,9)(0) N (= K) = {0}.
(i) IfY is K-dominated by W near . then
Ming DY (i, §)(u) C DW (i, y)(w), for anyu € R™.
(i) IfYis K-dominated by S near 4, then
WMing DY (4, 9)(u) € DS(i,y)(u), for anyw € R™.

In order to obtain the relationship between DY and DG, we intro-
duce the concepts of cone closedness and cone boundedness.

Definition 4.2. Let A be a nonempty set. in RP, and let D be a cone in
RP. Then A is said to be

(i) D-closed if A+ D is closed and

(if) D-bounded if AT N ( = {0},

where
At ={ye RP:3{h} C intRy, 3 {y*} C Asuch that

hiy — 0 and hyy® — y}.
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Remark 4.2. lct D be a pointed cone. If there exists ’(/ € RP such
that I' C y° + «cl D then it is clear that I" is D-bounded.

Remark 4.3. Let Y be a set-valued map from R™ to RP. A suffi-
cient condition for Y to be K-dominated by W near @ is that the set
Y (u) be a nonempty K-bounded, K-closed set for any u € N,,.

Lemma 4.1. ([6]) Let Y(«) be a K l)()uud(d K-closed set. for any
u € Ny. Then, for any v € U,

DG’('{L, y)(w) = DW (u,y)(w).

Theorem 4.2. ([G|) Assume that
PY (4,§)(0) N (—K) = {0},
fY(u ) is K-bounded and K- closed for any u L€ Nu, then
PrMinK_DY(il,:c])(u) C DG(u,9)(w), for any u € U.

Now we introduce here the notions of Dini upper and lower derivatives
from Penot [9]. Let F' be a set-valued map from R™ to RP.

~ Definition 4.3. Let v € R™, the Dini upper and lower derivatives
of F' at (4,9) € R™ x RP in direction u are given respectively by

Dy F (04, 9)(v) = limsup (F(@+ hv) = §)/h,

(hyw)— (0t u)

Do F' (1, §) (u) = o (1(1;{ u)(F ('ur» + hv) — y)/ h.
It is clear that Dy F'(f, §)(u) C DugpF'(4,9)(u) = DF(@,9)(u) and

these sets are closed.

Definition 4.4. The set-valued map F' is said to be semi-differentiable
at (@,9) € graph F' if Do F (1, §) = Dypp F (4, 9).

Remark 4.4. Let graph F be a convex set and let (i

,9) € graph F.
A sufficient condition for F' to be semi-differentiable at (1,1

) is that (i)
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graph F' has noumnpfy interior or (ii) graph F' is closed, @ € int (dom

F), where dom F' — {u € R™: F(u) # 0} (|9)).
Theorem 4.3. ([6]) If Y is semi-differentiable at (,y), then

DW (i, y)(u) C WMing DY (v, y)(u), for any w € U ‘

5. Contingent Derivatives of Perturbation Maps un-
der Convexity Assumptions

Throughout this section we impose the following convexity assump-
tions on the feasible decision set map X and the objective function f.

Convexity assumption (CA)
(1) The set-valned map X is convex, i.e. the graph of X

graph X = {(u,z) € R" x R": v € X(u)}

is a convex set in R™ X R™. In other words, for any ul,u? € R™ and any
a, 0<a<l,

aX(u') + (1 —a)X(u?) C X(au' + (1 — a)u?).

(2) The function f is K-convex, i.e., [or any (z!,u!), (z?, u*) € R™ X
Rmandanya' 0<a<l,

af(z',u') + (1 - a)f(z% ) € flox' + (1 - a)z?, au' + (1 - )u?)+K;
Proposition 5.1. ([15]) Under the convexity assumption (CA), the set-
valued map Y éeﬁned by
Y(u) = {y = f(z,u) : z € X(u)} veR"
is K-convex, i.e., for any u},u2 € R™ and any o, 0 < a < 1,
&Y (1) + (1= )Y () C Y(au' + (1 — a)u?) + K.
In other words, graph (Y + K) is convex.

We can omit the condition

PY (4,9)(0) N (-=K) = {0}
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under the convexity assumption (CA).

Theorem 5.1.
(i) Y is K-dominated by W near «. then

Ming DY (i, y)(w) C DW (4@, §)(u), for anyu € R™.
(ii) IfY is K-dominated by S near @, then
WMing DY (4, g)(w) C DS(u,y)(w), for anyu € R™.

Next we consider sufficient conditions for the converse inclusion of
the above theorem.

Definition 5.1. ([2]) Let A be a nonempty set in RP and 4 € RP. The
normal cone N4 (i) to A at ¢ is the negative polar cone of the tangent
cone T4(9), i.e.,

Na(@) ={Ta(9)}° ={n e R : (1,y) <0 Vy € Ta(9)}.

When A is a convex set and § € A,

Na(y) = {p € R”: {1, 9) > (. y) Vy € A}.

Definition 5.2. ([15]) Let A be a nonempty K-convex set in RP. If a
point ¥ € Ming A satisfies the condition

N, x(g) C int iU {0},
then § is called the normally K-minimal point of A.

Remark 5.1. A point ¥ € A is said to be a porperly K-minimal point
of a convex set A if

Tark(9) N (—K) = {0}.

In this case, there exists a vector u € N,k (y) Nint K°. Thus, the nor-
mal K-mirmality is a stronger concept than the proper K-minimality.
From the geometric viewpoint, the latter implies the existence of the
supporting hyperplane to A at § with the normal vector 1 € int K° and,
on the other hand, the former implies that all the normal vectors of the
supporting hyperplanes to A at ¢ belong to intP°.
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Theorem 5.2. ([15]) If @ € int(dom }') and y is a normally A'-minimal
point of Y (&), then

DW (4, 9)(u) C Ming DY (u,9)(w) Yu € R™,

where

dom Y = {w € R : Y (u) / 0}.

Theorem 5.3. I{ « € int(dAom Y), then

DW (&, §)(u) C DS(it, §)(u) € WMing DY (i, §)(uw) Yu € R™.

Theorem 5.4. Il « € int(dom Y'), y € G(@) and Y is K -dominated by
S near 4 for a closed convex cone K such that K Cint K U {0}, then

DW (4, 9)(uw) = DS(4,9)(u) = WMing DY (4, y)(u) Yu € R™.
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