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A Noncooperative Analysis of ,Spa,tial Duopoly‘
~ with Discriminatory Pricing
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Abstract

In this paper we extend the location problem of spatial competition given by
Hotelling[2] to include the discriminatory pricing . We characterize various types of
asymmetric equilibrium , in which the two players choose different location strate-
gies. ; » :

1 Introduction

‘The first important contribution to the study of Location Problem of Spatial Compe-
tition was made by Hotelling[2]. He studied duopolistic competition in a liner market and
claimed existence of a Nash equilibrium in prices. However his model was re-examined
by d’Aspremont,Gabszewicz & Thisse[3]. They point to a flaw in the original paper of
Hotelling because a pure strategy equilibrium in prices(given the "location’) does not
always exist. Recently, Helmut Bester|1] show that Hotelling’s model with quadratic con-
sumer transportation cost possesses an infinity of equilibrium in which the duopolists
randomize over locations.In our paper we consider a duopoly in which each firm selects
a location simultaneously and then chooses to price discriminatory in a linear market
where consumers are uniformly distributed. We can think of this model as a two-stage
non-cooperative game between the two firms. We present a price equilibrium and charac-
terize the location equilibrium. The paper is organized as follows. In section 2 we describe
the model precisely, in section 3 we discuss our results on the location equilibrium.

2 | The model

What is discriminatory price 7 Discriminatory Price is a price which a firm can
quote each customer a different mill price. In our paper, we assume that the firms set
discriminatory price. The model is described as follows.

Let two firms, denoted A and B, be located on line segment [0,1]. The locations of the
firms are denoted z and y (0 < 2 < 1,0 < y < 1) respectively. They sell the homogeneous
product with zero cost(the identical production cost can be normalized to zero)and the
customers are assumed to be uniformly distributed over the segment . Each customer
purchases one unit of the product. Since the product is homogeneous, a customer will
buy from the firm for which full price(mill price plus transportation cost) is lowest. It is
supposed that the transport is under the customer’s control, and the transportation cost
are assumed to be linear in distance with coefficients . We denote the transportation cost
function by C(d) (d is a Euclidean distance from customer’s location to firm’s location),
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ie. C(d) = td,C(0) = 0 . If the full prices are the same, the customer buys from
the firm located closer to him, and if both prices and distances are equal , he selects
the firm to buy randomly with probability 1 3- We can think this model as a two-stage
non-cooperative game. In the first stage, two firms select location. (z,y) sunultaneously,
and then having observed the locations selected, choose discriminatory price (pa,ps)
sunultaneously The customers choose accordlng to the criterion above, and the firms
receive their profits. We assume p4 € [0,00) , pg € [0,00) .

Let pa(2), pB(z) be the discriminatory price charged by the firm A, B respectively for
the location z’s customer. Let Ca, Cp be the region served by firm A B respectively,
then

Ca = {z€][0,1]:pa(2) + t|z —z| < pp(2) + t|z—y| and |z —z| < |z —y|};
Cg = {z€[0,1]:pp(2) +t|lz—y| < pa(z) + t|]z — z| and |z —y| < |z —z|}.

The payoff functions are :
ma(pa,pe,zy) = [ PaAE(dz  wpparazy) = [ pe(f@dz  2D)
A B

where f(z) =1,z € [0,1]. . e

At the first , for any given location (z,y), we present the price equilibrium pair
(P4(2),p5(2)) for the location zs customer, to capture the location z’s customer, firm A
has to charge a price pA(z) satisfying -

pA(z) +tlz —z| <pp(z) +tlz—y|,ifzr < y.

ie. pA(z) < pp(2) +tlz—y|— t|zv— z|. However, to capture the same customer, firm B
will cutdown his price ,

pB(2) =0, pa(2) <tlz—y| -tz —=z|

Hence, p4(2) = max{tlz —y| —t|z — z|, 0} .ie.

tly—z), - if 0<z<«z
Pa(z) =X tly+z—22), if r<z< —;—y; (2.2)
0, o.w o
similarly, pg(2) = maz{t|z — z| — t|z — y|,0}. i.e.
t(y'—x)a : 'Lf y<z<1
SN . THY ,
pp(2) = t(22—y—uz), if —5 <z<uy. (2.3)
0, o.w
If z > y, by symmetry we get the price equilibrium: ’
t(z —v), if z<2<1
gy ., T+Y
Palz) = t@2z—2z—y), if 5 SZST (24)

0, o.w
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tz—y), . if 0<z<y T -
Pe2) ={ tly+z—22), if y<z< Ty (2.5)
0, - - ow ‘ B :
Proposition 1:  (p',p%) is a pair of Nash equilibrium. i.e |
{ WA(P;;,p’;g,l',y) 2 WA(pA,P};g,x{y), fo'r Vpa € [Oa OO);
TrB(.p:l’p*Baxay) > WB(qu,pB,m,y), ‘ fO’I" VpB € [07 OO)
Proof:  Without loss of generality, we only show:
Ta(Pis P52 Y) 2 Ta(Pa, Pp,2,y),  for Vpa € [0,00),ifz < y.
Let - :
Ca = {z€[0,1]:p4(2) +t|z — z| < pp(2) + t|z — yland|z — z| < |z —y[};
Ca = {2€[0,1]:pa(2) + t|z — z| < pp(2) + t|z — yland|z — z| < |z — y|}.
Obviously, C% = C,. '
mapa oY) = [, Pal@)f(2)dz

. A

S /C:‘ [ps+tlz—y| =tz — i]]f(z)dz
= /C'A |z —y| —t|z - z||f(z)dz

= [, pu@f(2)dz
Ci
= ﬂ'A(pZap*Ba Z, y) v QED
The payoffs under prices equilibrium for firms are : '
o * * 1 ] . 5 -
: TrA(pA7pB7x7 y) = Zt(y - Z)(y + 3$)7 Zf(l: < Yy : (26)
* + 1 .
ma(Pa: PB, 2,y) = Uz —y)(d ~y — 32),ifz >y (2.7)
for firm A, and ' ) '
(P Py y) = gte— W)@ +3y), ifz>y, (29
* * 1 .
| ma(pl Phs ) = 7ty — 2)(d — 2 = 3),ifz <y (29)
for firm B. '
Define _ . . ) _
ﬂA,(xvy) = TFA(p‘AapB7$7y)r (210)
ﬂB(:c)y) = TrB(p:hp*B’xay)‘ (211)
Notice that payoffs are symmetric in the sense that
ﬂ-A(‘T,y) = 7rB(l —-z,1— y)7 (212)

wa(z,1 —z) = mp(z,1 — z). | (2.13)
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3 Characterizations of the location equlllbrlum

In this section we investigate the location equlhbrlum of ﬁrms under price equilibrium.
Proposition 2 : In the above game two pure strategy location equlhbna ex1st They_

are(a:,y)~(1,2) a‘nd(xay)_(474 »
Proof:  Consider all (:z:, y) such that z <y then

o 1, _ ,
o4 =-t(y—3z)=0 ' T :1- : :
1 = 4 3.1)
=2 = ZtQ2+z-3y) =0 y ==
Oy 2 ’ 4
and A 2 3
P S0
s §t -0 - (3.2)
oy 2 '

Therefore there is exactly one equilibrium such that z* < y* , namely (z*,y ) = (3,3
By symmetry of payoffs, there is exactly one equilibrium such that z* > y* , namely

@)= G- | QED.

Proposition 2: In the above game there is a mlxed equilibrium strategy in which firm
B chooses Yyt = % with probability and y* = 2 g with probablhty 5 and firm A chooses

Tt=3 ! with probability 1 . Symmetrlca,lly there is an equilibrium in Wthh firm A chooses
¥ = — with probability 2 yand z* = ¢ With probability % and firm B chooses y* = % with
probablhty 1. ‘ ‘

Proof:  To prove the first part, we first show that , given the behaviors of firm B,
firm A cannot gain by deviating from z* = % . Indeed, firm A’s payoff function is

L @, D). (3.3)

8(0) = gmale, D)+ gmale

We will prove £* = 1 is a global maximizer for ¢(z) subject to z € [0,1] . |
Case 1: z € [0, 3] ’ ‘ : o

o(z) = ;’NA(.’E (1)_) + 27TA($7§)
11 1 15 5
= §t(§3—— x)( + 3z) + 8t(‘6‘ - -’17)(6 + 3z)
= Zt(36+$ 33:)
$(z) = llit(l —6z) 2>z = -é
§@) = —t<0,6(3) =gt
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Case 2: v € [1,3

1 1 1 )
—7TA($, g) + —7TA(Z'?V—) .

¢(z)

2 ™4
= G- -5 —30)+ 212 —a)C + 52)
- it(;—‘ﬁ_+ 3z — 322).
¢ (x) = i-t(?, —61).=> 1= %
. 8'(z) = '—gt<0,¢(%) = %t.
Case 3: z € [3,1] _‘
e = e i) .
= he- S~ S —3) + Stz - 2 g _ 3q)
= }it(—gg + 5z — 32%).
$@) = 66z >z=".
&'(z2) = —gt <0, ¢(§) - %t.

1

So z* = 3 is an optimal response of firm A to firm B’s strategy.

2 ‘
Conversely, against firm A’s strategy , firm B will select y* = % or y* = % . In fact
, firm A’s payoff functionis =~ | , o - ,
V) =7s(59)- o (3.4)

Case 1: y € [0, 1]

'w(y). = 773(%,3!)

= G -uG +3)
= 3Gy -3
W) = i-e)sy=1
| V) = 5t <0u(g) = 5t
Case 2: y € [3,1]
| b)) = ma(s0)
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1 1 1
= Zt(y - 5)(4 —3~ 3y)
1,7 ;
Y = HE-6)>y=o.
" 3 5 1
Vv (y) = —Et < Oﬂﬂ(g) = 1—2t-
As 9(3) = ¥(§) , this implies that both yt =1 and y* = 2 maximize firm B’s payoff.
This proves that randomizing over y* = and y 2 g s an optlmal response of firm B to
firm A’s strategy.
The second part of the proposition fol]ows by symmetry. Q.E.D.
Proposition 4 : In the above game there is a pair of location vectors (§,v) =
((z1y++-yTn), (Y1, -, Yn_1)) and a pair of probability vectors (a, 8) = ((a1, --., @n), (B, -+, Bn-1))

such that “frm A choosing z; with probability a; > 0 and firm B choosmg Vi with prob—
ability f3; is an equilibrium for any number n > 2 . Moreover, z; < y; < x;4; for all
i=1,..,n—-1. ‘ ' i

Proof: Defineze R by Z={{v|0<z;<y;<zipy<1lforalli=1,.,n—1}.
Obviously, Z is convex and compact. Let

alz,v,f) = zm(x w5, - (3.5)

SOB(yag’a) E ZWB(xjay)aj' (36)
J , ;
g | _
Note that —132(:;—’?» = —gt < 0Oforz >y and z <y . Therefore p4(e,v,B) is a strictly

concave function of z for all € (y;_1,¥;) , Where yo =0 and y, =1 . This, together
with the maximum theorem , implies that

fai(v,B) = arg mazseyy, ,404(z,v, f) 3.7)
is a continuous function of (v, 3). Similarly, o

fBi(g, a) =arg maxye[zi,zi+1]()03(ya§9 OL) (38)
is a continuous function of (£, a).
Define f4(®) = [fa1(®), ..., fan(e)] and fp(e) = [fBl('), o fBn_1(9)] .
Define Sy ={a € R"[E,a, =1} and Sp={B8€ R*!|Y,; 8 =1} . Then

9a(&,v,B) = arg minges, ZaiZWA(fi,yj)ﬂj, | (3.9)
i g

gB(§7U7 a) =arg minﬁESB Z/B‘i ZTrB(xjv yi)aj (310)
5 I S
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are convex valued, - upperhemicontinuous -correspondences. As a result,” the correspon-
dences h(¢,v,a, B) = fa(v, )  fa(€, @)  94(€,v, B) x g(€, v,) maps Z x 54 x Sp into
itself. ‘Also, it is convex valued and upperhemicontinuous so that' by Kakutani’s theorem
it has a fixed point.(£*,v*, o*, #*) . We will prove that the point (&*,v*, a*, 3*) satisfies
the conditions of Proposition 4. : R

First we show that pa(z},v*, 8*) = pa(zi,,,v*,B*) foralli=1,..,n —1 . Suppose
palz;,v*,B*) # pa(zi,,,v*,0) . Note that by definition of g4(e) one has o} =0 for
all ¢ such that pa(zj,v", 8*) > minjpa(z},v*,8*) . Suppose there is a k > 1 such that
SDA(:BLU*::B*) > minjg'oA(a:;-,v*,ﬁ*) for all's < k and SOA(:BZ,’U*MB*) = m?:anOA(.T;-,’U*,ﬁ*)
. Then pp(y,£*, a*) is strictly decreasing over [}, z};] because of =0 for all i < k. Ac-
cordingly, by definition of fg;(e) one has y} = z} for all i < k. Therefore, by definition
of far(e) , z} must maximize p4(z,v*,5*) subject to zp_; <z <y} . As pa(z,v*,5)is
strictly concave over [z}_;, y;] this yields a contradiction @4 (z}_;,v*, 8*) > @a(zi, v*, 5*)
. The same argument shows that there cannot be a k < n such that pa(z},v*, 5*) >
minjpa(zs,v*, 6*) forall i < k . ' , ' -

Suppose there is a k and an I such that k < I—1and pa(z},v*, 8*) > minjpa(z],v*, 5*)
for all £ < @ <1, and pa(z},v*, %) = walzi,v*, B*) = minjpa(z},v*,8*) . Then
¢B(y, &, o) is strictly concave over [z}, z}] and so one has y; = z},,; and Jor y;_; = z}_;
. In the first case, zj must maximize p4(z,v*, 5*) subject to yz_; <z < z},, . But then
0a(Tri1,v", B°) > palzy, v*, B*) leads to a contradiction because @4(e,v*, 5*) is strictly
concave over [y;_;,Z;,q] - In the second case, a similar argument yields a contradiction.
This proves pa(zf,v*, 8*) = palzi,,,v*,8*) foralli=1,..,n— 1. The same argument
as above can be used to show that pp(y;,£*, o) = ¢p(yi,,,&*a*) foralli =1,...,n—1.

Next we will show that z; < y; <z}, foralli=1,..,n—1. Clearly, one cannot
have z] = z}, because , otherwise, decreasing z; or increasing z,would increase firm A’s
payoff pa(z,v*,*) . Suppose there is a k such that 2} = y; < z},, . Then =z}, must
maximize pa(z,v*,5*) subject to 2} < z < yi,;. As pa(z,v*,B*) is strictly concave
over [z}, ¥y, 1] this leads to a contradiction to pa(z},v*, 8*) = pa(zf 1, v*,0*). By the
same argument one can rule out that zj < y; = zj,, for some k£ . Finally, y; , =
xp < yp or yp < Tp,; = Yp,1 would contradict that y; must maximize pp(y,&*,a*)
subject to z; < y < 7}, because pp(y,£*,a*) is strictly concave over [z},zj,,] and
on(y;, €, 0*) = pp(Yi, & at) forall i=1,..,n—1.

Last we will show that af > 0 and 8; > O for all ¢ . Suppose af = 0 . Then
vB(y,&*, o*) is strictly decreasing over [z}, 23] and so y; = z}], this leads to a contradic-
tion to our above result that z; < y;| foralli=1,...,n—1. Similarly, o} = 0 is impos-
sible. Suppose thereis a k and anlsuchthat k <!—1andaj >0, of >0, anda} =0
for all k <4 <. Then ¢p(y,£*,a*) is strictly concave over [z}, ;] and so y; = =},
and/or y;_; = z}_; . This again contradicts our above result. The same argument proves
that 8f >0forallz=1,..,n—1. Q.E.D.

By symmetry of payoffs we can show that there also is an equilibrium in which firm
A randomizes over n — 1 and firm B over n locations. Moreover, the same arguments as
in the proof Proposition 4 can be used to prove the next Proposition which both firms
randomly select one of n locations.
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Proposition 5 : . In the above game there is a pair of location vectors (§,v) =

((z1, ..., z0), (1, .- ,yn)) and a pair of probability vectors (a, 8) = (s, ..., an), (B, .- ,,6,123
such that firm A choosing z; with probability a; > 0 and firm B’ choosmg Vi Wlth pro

ablhty ,8z is an equilibrium for any number n > 2. Moreover, z; < Yi < Ty < yz+1 for
allei=1,...,n—1. : :
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