Finite Hilbert Networks

島根大学 山崎 稀嗣 (Maretsugu Yamasaki)

1 Introduction

Let $N = \{X, Y, K\}$ be a finite connected graph which has no self-loof. Namely X is a finite set of nodes, Y is a finite set of arcs and K is the node-arc incidence matrix.

Let \mathcal{H} be a real Hilbert space with an inner product (\cdot, \cdot) and the norm $\|\cdot\|$. Denote by $L(X; \mathcal{H})$ the set of all functions u on X such that $u(x) \in \mathcal{H}$. We call an element of $L(X, \mathcal{H})$ a \mathcal{H} -potential. The meaning of the notation $L(Y; \mathcal{H})$ is similar. Let $\mathcal{L}(\mathcal{H})$ be the set of all positive invertible linear operator from \mathcal{H} to \mathcal{H} . Let $r \in L(Y; \mathcal{L}(\mathcal{H}))$. For each $y \in Y$, we have $r(y) \in \mathcal{L}(\mathcal{H})$ and there exists $\rho(y) > 0$ such that

$$(r(y)h, h) \ge \rho(y)||h||^2$$
 for all $h \in \mathcal{H}$.

Here r(y)h means the image of h under r(y), i.e., r(y)(h). In this paper, we use this convention unless no confusion occurs from the context. Denote by $r(y)^{-1}$ the inverse operator of r(y). Since $r(y) \in \mathcal{L}(\mathcal{H})$, there exists $\rho^*(y) > 0$ such that

$$(r(y)^{-1}h, h) \ge \rho^*(y) ||h||^2$$
 for all $h \in \mathcal{H}$.

By [1], we see that there exists a unique square root $r(y)^{1/2} \in \mathcal{L}(\mathcal{H})$ of r(y) for each $y \in Y$, i.e.,

$$[r(y)^{1/2}]^2 = r(y).$$

Definition 1.1 Let e be a fixed element of \mathcal{H} such that ||e|| = 1.

Lemma 1.1 For every $y \in Y$, the following relations hold:

- (1) $|(r(y)w(y),e)|^2 \le (r(y)w(y),w(y))(r(y)e,e).$
- (2) $(r(y)^{-1}e, e)(r(y)e, e) \ge 1;$

Proof. By Schwarz's inequality, we have

$$|(r(y)w(y),e)|^{2} = |(r(y)^{1/2}w(y),r(y)^{1/2}e)|^{2}$$

$$\leq ||r(y)^{1/2}w(y)||^{2}||r(y)^{1/2}e||^{2}$$

$$= (r(y)w(y),w(y))(r(y)e,e).$$

2) follows from (1) by taking $w(y) := r(y)^{-1}e$. \square

Definition 1.2 For $u \in L(X; \mathcal{H})$, let δu be the potential drop of u and let du be the discrete derivative of u:

$$\delta u(y) := \sum_{x \in X} K(x,y) u(x)$$
 $du(y) := -r(y)^{-1} (\delta u(y)) = -r(y)^{-1} \delta u(y).$

The Dirichlet sum of u is defined by

$$D(u) := \sum_{y \in Y} (r(y)du(y), du(y)) = \sum_{y \in Y} (r(y)^{-1}\delta u(y), \delta u(y)).$$

Definition 1.3 For $w \in L(Y; \mathcal{H})$, let $\partial w(x)$ be the divergence of w and let H(w) be the energy of w:

$$egin{aligned} \partial w(x) &:= \sum_{y \in Y} K(x,y) w(y) \ H(w) &:= \sum_{y \in Y} (r(y) w(y), w(y)). \end{aligned}$$

Notice that D(u) = H(du).

Lemma 1.2 Let $u \in L(X; \mathcal{H})$ and $w \in L(Y; \mathcal{H})$. Then

$$\sum_{u \in Y} (w(y), \delta u(y)) \le H(w)^{1/2} D(u)^{1/2}.$$

Proof. We have by Schwarz's inequality

$$\begin{split} \sum_{y \in Y} (w(y), \delta u(y)) &= \sum_{y \in Y} (r(y)^{1/2} w(y), r(y)^{-1/2} \delta u(y)) \\ &\leq \sum_{y \in Y} \| r(y)^{1/2} w(y) \| \| r(y)^{-1/2} \delta u(y) \| \\ &\leq [\sum_{y \in Y} \| r(y)^{1/2} w(y) \|^2]^{1/2} [\sum_{y \in Y} \| r(y)^{-1/2} \delta u(y) \|^2]^{1/2} \\ &= H(w)^{1/2} D(u)^{1/2}. \quad \Box \end{split}$$

To emphasize the analogy to [2], we put

$$D(N;\mathcal{H};a):=\{u\in L(X;\mathcal{H});u(a)=0\}.$$

Note that $D(u) < \infty$ for every $L(X; \mathcal{H})$, since G is a finite graph. We see that $D(u)^{1/2}$ is a norm on $D(N; \mathcal{H}; a)$ by the following lemma:

Lemma 1.3 Let $a \in X$. For any $x \in X$, there exists a constant M_x which satisfies:

$$||u(x)|| \leq M_x D(u)^{1/2}$$

for all $u \in L(X; \mathcal{H})$ with u(a) = 0.

Proof. There exists a path P from a to x. Let $C_X(P)$ and $C_Y(P)$ be the sets of nodes and arcs on P respectively (cf. [2]), i.e.,

$$C_X(P) := \{x_0, x_1, \cdots, x_n\} \ (x_0 = a, x_n = x)$$

$$C_Y(P) := \{y_1, y_2, \cdots, y_n\}, e(y_i) = \{x_{i-1}, x_i\} \ (i = 1, 2, \cdots, n).$$

Let $u \in L(X; \mathcal{H})$ and u(a) = 0. We have

$$D(u) \geq \sum_{y \in P} (r(y)^{-1} \delta u(y), \delta u(y))$$

$$= \sum_{i=1}^{n} (r(y_{i})^{-1} \delta u(y_{i}), \delta u(y_{i}))$$

$$\geq \sum_{i=1}^{n} \rho^{*}(y_{i}) \|u(x_{i}) - u(x_{i-1})\|^{2}$$

$$\geq \sum_{i=1}^{n} \rho^{*}(y_{i}) [\|u(x_{i})\| - \|u(x_{i-1})\|]^{2},$$

so that, for $i = 1, 2, \cdots$

$$||u(x_i)|| - ||u(x_{i-1})|| \le D(u)^{1/2} [\rho^*(y_i)]^{-1/2}.$$

Since u(a) = 0, we have

$$\|u(x)\| = \sum_{i=1}^{n} [\|u(x_i)\| - \|u(x_{i-1})\|] \le M_x D(u)^{1/2}$$

with

$$M_x := \sum_{i=1}^n [\rho^*(y_i)]^{-1/2}.$$

This completes the proof. \Box

Since G is a finite graph, the following fact is obvious:

Proposition 1.1 $D(N; \mathcal{H}, a)$ is a Hilbert space with respect to the inner product:

$$D(u_1, u_2) := \sum_{y \in Y} (r(y)^{-1} \delta u_1(y), \delta u_2(y)).$$

 $L(Y; \mathcal{H})$ is a Hilbert space with respect to the inner product:

$$H(w_1,w_2) := \sum_{y \in Y} (r(y)w_1(y),w_2(y)).$$

2 \mathcal{H} -flows

Definition 2. 1 Let a and b be distinct nodes. We say that $w \in L(Y; \mathcal{H})$ is a \mathcal{H} -flow from a to b if

$$\partial w(x) = 0$$
 for all $x \in X$, $x \neq a, b$.

Denote by $F(a, b; \mathcal{H})$ the set of all \mathcal{H} -flows from a to b.

Notice that

$$\partial w(a) + \partial w(b) = 0,$$

since G is a finite graph.

Definition 2. 2 For $w \in F(a, b; \mathcal{H})$, we define two real valued functions:

$$egin{array}{ll} I_e(w) &:=& (\partial w(b),e) = -(\partial w(a),e), \ I(w) &:=& \|\partial w(a)\| = \|\partial w(b)\|. \end{array}$$

3 Extremum problems

Let us consider several extremum problems related to \mathcal{H} -potentials and \mathcal{H} -flows:

$$egin{array}{lll} d(a,b;\mathcal{H},e) &:=& \inf\{D(u);u\in L(X;\mathcal{H}),u(a)=0,\;u(b)=e\} \ d_e(a,b;\mathcal{H}) &:=& \inf\{D(u);u\in L(X;\mathcal{H}),(u(a),e)=0,\;(u(b),e)=1\} \ d(a,b;\mathcal{H}) &:=& \inf\{D(u);u\in L(X;\mathcal{H}),u(a)=0,\;\|u(b)\|=1\} \ d^*(a,b;\mathcal{H},e) &:=& \inf\{H(w);w\in F(a,b;\mathcal{H}),\;Kw(b)=e\} \ d^*_e(a,b;\mathcal{H}) &:=& \inf\{H(w);w\in F(a,b;\mathcal{H}),\;I_e(w)=1\} \ d^*(a,b;\mathcal{H}) &:=& \inf\{H(w);w\in F(a,b;\mathcal{H}),\;I(w)=1\} \end{array}$$

Clearly

$$d_e(a, b; \mathcal{H}) \le d(a, b; \mathcal{H}, e), \quad d(a, b; \mathcal{H}) \le d(a, b; \mathcal{H}, e),$$

 $d_e^*(a, b; \mathcal{H}) \le d^*(a, b; \mathcal{H}, e), \quad d^*(a, b; \mathcal{H}) \le d^*(a, b; \mathcal{H}, e).$

Lemma 3. 1 Let u be a feasible solution for $d(a, b; \mathcal{H}, e)$ and w be a feasible solution for $d_e^*(a, b; \mathcal{H})$. Then $1 \leq H(w)^{1/2}D(u)^{1/2}$.

Proof. By definition and Lemma 1.2

$$egin{array}{lll} 1 = I_e(w) & = & (Kw(b), e) = \sum_{x \in X} (Kw(x), u(x)) \ & = & \sum_{y \in Y} (w(y), \delta u(y)) \ & \leq & H(w)^{1/2} D(u)^{1/2}. & \Box \end{array}$$

Similarly we can prove

Lemma 3. 2 Let u be a feasible solution for $d_e(a, b; \mathcal{H})$ and w be a feasible solution for $d^*(a, b; \mathcal{H}, e)$. Then $1 \leq H(w)^{1/2} D(u)^{1/2}$.

By the above observation, we obtain

Theorem 3.1 The following relations hold:

- $(1) \quad 1 \leq d(a,b;\mathcal{H},e)d_e^*(a,b;\mathcal{H}),$
- (2) $1 \leq d_e(a,b;\mathcal{H})d^*(a,b;\mathcal{H},e)$.

Lemma 3.3 There exists a unique optimal solution for $d(a, b; \mathcal{H}, e)$.

Proof. Let $\{u_n\}$ be a minimizing sequence for $d(a, b; \mathcal{H}, e)$, i.e., $\{u_n\} \subset L(X; \mathcal{H})$, $u_n(a) = 0$, $u_n(b) = e$ and $D(u_n) \to d(a, b; \mathcal{H}, e)$ as $n \to \infty$. Since $(u_n + u_m)/2$ is a feasible solution for $d(a, b; \mathcal{H}, e)$, we have

$$d(a,b;\mathcal{H},e) \leq D((u_n + u_m)/2) \leq D((u_n + u_m)/2) + D((u_n - u_m)/2) = [D(u_n) + D(u_m)]/2 \to d(a,b;\mathcal{H},e)$$

as $m, n \to \infty$. Therefore $D(u_n - u_m) \to 0$ as $n, m \to \infty$. It follows from Lemma 1. 3 that $\{u_n(x)\}$ is a Cauchy sequence in \mathcal{H} for each $x \in X$. Therefore $\{u_n(x)\}$ converges stronly to $\tilde{u}(x) \in \mathcal{H}$ for each $x \in X$, we see easily that $\tilde{u}(a) = 0, \tilde{u}(b) = e$ and $d(a, b; \mathcal{H}, e) = D(\tilde{u})$. Namely \tilde{u} is an optimal solution. \square

Now we study some properties of the optimal solution \tilde{u} of $d(a, b; \mathcal{H}, e)$.

Lemma 3.4 Let $\tilde{w}(y) := d\tilde{u}(y)$. Then $\tilde{w} \in F(a,b;\mathcal{H})$ and $I_e(\tilde{w}) = D(\tilde{u})$.

Proof. Let $f \in L(X; \mathcal{H})$ satisfy f(a) = 0 and f(b) = 0. Then for any $t \in \mathbf{R}$, $\tilde{u} + tf$ is a feasible solution for $d(a, b; \mathcal{H}, e)$, we have

$$D(\tilde{u}) \leq D(\tilde{u} + tf)$$

$$= D(\tilde{u}) + 2tD(\tilde{u}, f) + t^2D(f).$$

By the standard variational argument, we have

$$D(\tilde{u}, f) = 0.$$

On the other hand, we have

$$D(\tilde{u}, f) = \sum_{y \in Y} (\tilde{w}(y), \sum_{z \in X} K(z, y) f(z))$$

$$= \sum_{z \in X} \sum_{y \in Y} (K(z, y) \tilde{w}(y), f(z))$$

$$= \sum_{z \in X} (\partial \tilde{w}(z), f(z)).$$

Denote by ε_x the characteristic function of $\{x\}$, i.e., $\varepsilon_x(x) = 1$ and $\varepsilon_x(z) = 0$ for $z \neq x$. Let $x \neq a, b$. For any $h \in \mathcal{H}$, we may take $\varepsilon_x h$ for f, and hence

$$(\partial \tilde{w}(x), h) = 0.$$

Therefore $\partial \tilde{w}(x) = 0$ for $x \neq a, b$. Let $\hat{e} \in L(X; \mathcal{H})$ such that $\hat{e}(x) = e$ for all $x \in X$. By taking $\hat{e} - \tilde{u} - \varepsilon_a e$ for f, we obtain

$$D(\tilde{u}, \hat{e} - \tilde{u} - \varepsilon_a e) = 0,$$

so that

$$D(\tilde{u}) = -D(\tilde{u}, arepsilon_a e) = -(\partial \tilde{w}(a), e).$$

Therefore $I_e(\tilde{w}) = D(\tilde{u})$. \square

Theorem 3. 2 $d(a, b; \mathcal{H}, e)d_e^*(a, b; \mathcal{H}) = 1$.

Proof. It suffices to show that $d(a, b; \mathcal{H}, e)d_e^*(a, b; \mathcal{H}) \leq 1$. Let \tilde{u} be the optimal solution for $d(a, b; \mathcal{H}, e)$ and put $\tilde{w}(y) := d\tilde{u}(y)$. Then we see by the above observation that $\tilde{w}(y)/D(\tilde{u})$ is a feasible solution for $d_e^*(a, b; \mathcal{H})$, so that

$$d_e^*(a,b;\mathcal{H}) \leq H(\tilde{w}(y)/D(\tilde{u}))$$

$$= D(\tilde{u})/D(\tilde{u})^2$$

$$= 1/D(\tilde{u}) = 1/d(a,b;\mathcal{H},e). \quad \Box$$

Lemma 3.5 There exists a unique optimal solution \tilde{w} for $d^*(a, b; \mathcal{H}, e)$.

Proof. There exists a minimizing sequence $\{w_n\}$ for $d^*(a, b; \mathcal{H}, e)$. Since $(w_n + w_m)/2$ is a feasible solution for $d^*(a, b; \mathcal{H}, e)$, we have

$$d^{*}(a, b; \mathcal{H}, e) \leq H((w_{n} + w_{m})/2)$$

$$\leq H((w_{n} + w_{m})/2) + H((w_{n} - w_{m})/2)$$

$$= [H(w_{n}) + H(w_{m})]/2 \rightarrow d^{*}(a, b; \mathcal{H}, e)$$

as $m, n \to \infty$. Therefore $\{w_n\}$ is a Cauchy sequence in the Hilbert space $L(Y; \mathcal{H})$ and converges to $\tilde{w} \in L(Y; \mathcal{H})$. Then we see easily that \tilde{w} is an optimal solution for $d^*(a, b; \mathcal{H}, e)$. We omit the proof of the uniqueness of the optimal solution. \square

Definition 3.1 We say that $\omega \in L(Y; \mathcal{H})$ is a cycle if $\partial \omega(x) = 0$ for all $x \in X$. Denote by $C(Y; \mathcal{H})$ the set of cycles on N.

By the standard variational argument, we have

Lemma 3.6 Let \tilde{w} be the optimal solution of $d^*(a, b; \mathcal{H}, e)$. For any cycle $\omega \in C(Y; \mathcal{H})$,

$$H(\tilde{w},\omega) := \sum_{y \in Y} (r(y)\tilde{w}(y),\omega(y)) = 0.$$

Definition 3.2 Let $P_{a,x}$ the set of all paths from a to $x(x \neq a)$.

Theorem 3.3 $d_e(a, b; \mathcal{H})d^*(a, b; \mathcal{H}, e) = 1.$

Proof. Let \tilde{w} be the optimal solution of $d^*(a, b; \mathcal{H}, e)$. Let $h \in \mathcal{H}$ and let $P_1, P_2 \in \mathbf{P}_{a,x}$. Then

$$\omega(y)=(p_1(y)-p_2(y))h\in C(Y;\mathcal{H}),$$

where p_1 and p_2 are path indices of P_1 and P_2 respectively. By Lemma 3.6, we have $H(\tilde{w}, p_1 h) = H(\tilde{w}, p_2 h)$. We set $\tilde{u}(a) = 0$. For $x \neq a$ and a path index p_x of a path $P \subset \mathbf{P}_{a,x}$, the function $\tilde{u} \in L(X)$ defined by $\tilde{u}(a) = 0$ and

$$ilde{u}(x) := \sum_{y \in Y} p_x(y) ilde{w}(y)$$

is well-defined by the above observation. Then we have $\delta \tilde{u}(y) = -\tilde{w}(y)$. In case $P \in \mathbf{P}_{a,b}$, $\tilde{w} - pe$ is a feasible solution for $d^*(a,b;\mathcal{H},e)$, so that $H(\tilde{w},\tilde{w}-pe)=0$ or

$$H(\tilde{w}) = H(\tilde{w}, pe) = (\tilde{u}(b), e).$$

Now \tilde{u}/β is a feasible solution for $d_e(a, b; \mathcal{H})$ and

$$d_e(a,b;\mathcal{H}) \leq D(\tilde{u}) = H(\tilde{w})/H(\tilde{w})^2 = 1/H(\tilde{w}) = 1/d^*(a,b;\mathcal{H},e).$$

4 Extremal length

Let a and b be distinct two nodes. The extremal length $EL(a, b; \mathcal{L}(\mathcal{H}))$ is defined by the inverse of the value of the extremum problem (EL):

Minimize H(w) subject to

$$w \in L(Y; \mathcal{H}),$$

$$\sum\nolimits_{y\in P}\|r(y)w(y)\|\geq 1\quad\text{for all}P\in\mathbf{P}_{a,b}.$$

The extremal length $EL_e(a, b; \mathcal{L}(\mathcal{H}))$ is defined by the inverse of the value of the extremum problem (EL_e) :

Minimize H(w) subject to

$$w \in L(Y; \mathcal{H}),$$

$$\sum\nolimits_{y \in P} |(r(y)w(y),e)| \geq 1 \quad \text{for all} P \in \mathbf{P}_{a,b}.$$

Since $|(r(y)w(y), e)| \le ||r(y)w(y)|| ||e|| = ||r(y)w(y)||$, we have

(4.1)
$$EL(a,b;\mathcal{L}(\mathcal{H})) \geq EL_e(a,b;\mathcal{L}(\mathcal{H})).$$

Lemma 4.1 $d_e(a,b;\mathcal{H}) \geq EL_e(a,b;\mathcal{H})^{-1}$.

Proof. Let u be any feasible solution for $d_e(a, b; \mathcal{H})$. Then

$$w(y) := r(y)^{-1} \delta u(y) \in \mathcal{H}$$

for each $y \in Y$. As in the proof of Lemma 1.3, for $P \in \mathbf{P}_{a,b}$ let

$$C_X(P):=\{x_0,x_1,\cdots,x_n\}\;(x_0=a,x_n=b)$$
 $C_Y(P):=\{y_1,y_2,\cdots,y_n\}, e(y_i)=\{x_{i-1},x_i\}\;(i=1,2,\cdots,n).$

Then we have

$$\sum_{y \in P} |(r(y)w(y), e)| = \sum_{i=1}^{n} |(r(y_{i})w(y_{i}), e)|$$

$$= \sum_{i=1}^{n} |(\delta u(y_{i}), e)|$$

$$\geq \sum_{i=1}^{n} |(u(x_{i}) - u(x_{i-1}), e)|$$

$$\geq (u(b), e) - (u(a), e) = 1.$$

Therefore

$$EL_e(a,b;\mathcal{H})^{-1} \leq H(w) = D(u),$$

so that $EL_e(a, b; \mathcal{H})^{-1} \leq d_e(a, b; \mathcal{H})$.

Lemma 4.2 Let w be a feasible solution for the problem (EL_e) . Then

$$d_e(a,b;\mathcal{H}) \leq \sum_{y \in Y} (r(y)w(y),w(y))(r(y)e,e)(r(y)^{-1}e,e).$$

Proof. Put V(y) := |(r(y)w(y), e)|. Then

$$\sum_{y \in P} V(y) \ge 1$$
 for all $P \in \mathbf{P}_{a,b}$.

By the duality between the max-potential problem and the min-work problem, there exists $\beta \in L(X; \mathbf{R})$ such that $\beta(a) = 0$, $\beta(b) = 1$ and $|\delta\beta(y)| \leq V(y)$ on Y. Let $u(x) := \beta(x)e$. Then $u \in L(X; \mathcal{H})$, u(a) = 0 and u(b) = e, so that by Lemma 1.1 (1)

$$egin{array}{lll} d_e(a,b;\mathcal{H}) & \leq & D(u) = \sum_{y \in Y} (r(y)^{-1} \delta u(y), \delta u(y)) \ & = & \sum_{y \in Y} (\delta eta(y))^2 (r(y)^{-1} e, e) \ & \leq & \sum_{y \in Y} V(y)^2 (r(y)^{-1} e, e) \ & \leq & \sum_{y \in Y} (r(y) w(y), w(y)) (r(y) e, e) (r(y)^{-1} e, e) \end{array}$$

Theorem 4.1 Let $M(r) := \sup\{(r(y)e, e)(r(y)^{-1}e, e); y \in Y\}$. Then

$$EL_e(a,b;\mathcal{H})^{-1} \leq d_e(a,b;\mathcal{H}) \leq M(r)EL_e(a,b;\mathcal{H})^{-1}.$$

Corollary 4. 1 Assume that $(r(y)e,e)(r(y)^{-1}e,e)=1$ for all $y \in Y$. Then $d_e(a,b;\mathcal{H})=EL_e(a,b;\mathcal{H})^{-1}$.

Remark 1. Let I be the identity map of \mathcal{H} and let $\gamma \in L(Y; \mathbf{R})$ be positive. Then $r(y) = \gamma(y)I$ is positive and invertible. Clearly, we have $(r(y)e, e) = \gamma(y)$ and $(r(y)^{-1}e, e) = 1/\gamma(y)$, so that the condition in the above theorem holds in this case.

We show by an example that the equality $d_e(a, b; \mathcal{H}) = EL_e(a, b; \mathcal{H})^{-1}$ does not hold in general.

Example Let $X = \{x_0, x_1, x_2\}, Y = \{y_1, y_2\},\$

$$K(x_i, y_i) = 1, K(x_{i-1}, y_i) = -1 (i = 1, 2)$$

and K(x,y)=0 for any other pair. Then $\{X,Y,K\}$ is a finite graph. Take \mathcal{H} as \mathbf{R}^2 and define r(y) by

$$r(y_1) := \left(egin{array}{cc} 1 & 0 \ 0 & s \end{array}
ight), \quad r(y_2) := \left(egin{array}{cc} 1 & 0 \ 0 & t \end{array}
ight).$$

Then

$$r(y_1)^{-1} = \left(egin{array}{cc} 1 & 0 \ 0 & 1/s \end{array}
ight), \quad r(y_2)^{-1} = \left(egin{array}{cc} 1 & 0 \ 0 & 1/t \end{array}
ight).$$

Let $a = x_0$, $b = x_2$ in the above setting and let $e = (e_1, e_2)^T \in \mathbf{R}^2$. Let $u \in L(X, \mathbf{R}^2)$ be a fesible solution for $d_e(a, b; \mathbf{R}^2)$ and set $u(x_1) = (\alpha, \beta)^T$. Then

$$D(u) = \alpha^2 + \beta^2/s + (\alpha - e_1)^2 + (\beta - e_2)^2/t.$$

It is easily seen that

$$d_e(a,b;{f R^2}) = rac{e_1^2}{2} + rac{e_2^2}{s+t}$$

and $\tilde{u}(x_1) := (e_1/2, e_2 s/(s+t))^T$ is the optimal solution. For $w \in L(Y, \mathbf{R}^2)$, set $w(y_1) = (p_1, q_1)^T$, $w(y_2) = (p_2, q_2)^T$. Then

$$H(w) = p_1^2 + sq_1^2 + p_2^2 + tq_2^2.$$

Clearly, $\mathbf{P}_{a,b}$ is a singleton. The feasibility of $w \in L(Y, \mathbf{R}^2)$ for the problem (EL_e) implies

$$(p_1+p_2)e_1+(sq_1+bq_2)e_2\geq 1.$$

Therefore we have

$$EL_e(a,b;{f R^2})^{-1}=rac{1}{2e_1^2+(s+t)e_2^2}$$

and the optimal solution is given by

$$p_1 = p_2 = rac{e_1 \lambda}{2}, \quad q_1 = q_2 = rac{e_2 \lambda}{2} \quad ext{with} \quad \lambda := rac{2}{2e_1^2 + (s+t)e_2^2}.$$

We have

$$d_e(a,b;\mathbf{R^2}) - EL_e(a,b;\mathbf{R^2})^{-1} = rac{e_1^2 e_2^2 (c-2)^2}{2c(2e_1^2 + ce_2^2)} \geq 0 \quad ext{with} \quad c = s+t.$$

Thus the equality holds only if c = 2 or $e_1 = 0$ or $e_2 = 0$.

5 Extremal width

Let a and b be distinct two nodes. Denote by $\mathbf{Q}_{a,b}$ the set of all cuts between a and b (cf. [2]). For $Q \in \mathbf{Q}_{a,b}$, there exist two disjoint subsets Q(a) and Q(b) of X such that $a \in Q(a)$, $b \in Q(b)$, $X = Q(a) \cup Q(b)$ and $Q = Q(a) \ominus Q(b)$. The index function $u_Q \in L(X; \mathcal{H})$ of Q is defined by

$$u := \epsilon_{Q(A)} e = \sum_{z \in Q(A)} \varepsilon_z e.$$

The characteristic function s_Q of Q is defined by

$$s_Q := \delta u_Q e = \sum_{z \in Q(A)} \delta arepsilon_z e.$$

Notice that $|\delta \varepsilon_{Q(A)}(y)| = 1$ if $y \in Q$ and $\delta \varepsilon_{Q(A)}(y) = 0$ otherwise. Observe that $||s_Q(y)|| = 1$ if $y \in Q$ and $||s_Q(y)|| = 0$ otherwise.

The extremal width $EW(a, b; \mathcal{H})$ is defined by the inverse of the value of the extremum problem (EW):

Minimize
$$H(w)$$
 subject to $w \in L(Y; \mathcal{H})$,

$$\sum\nolimits_{y \in Q} \|w(y)\| \ge 1 \quad \text{for all} \quad Q \in \mathbf{Q}_{a,b}.$$

The extremal width $EW_e(a, b; \mathcal{H})$ is defined by the inverse of the value of the extremum problem (EW_e) :

Minimize
$$H(w)$$
 subject to $w \in L(Y; \mathcal{H}),$

$$\sum\nolimits_{y\in Q}|(w(y),e)|\geq 1\quad\text{for all}\quad Q\in \mathbf{Q}_{a,b}.$$

Since $|(w(y), e)| \le ||w(y)|| ||e|| = ||w(y)||$, we have

(5.1).
$$EW(a,b;\mathcal{H}) \ge EW_e(a,b;\mathcal{H})$$

Lemma 5.1 $d_e^*(a,b;\mathcal{H}) \geq EW_e(a,b;\mathcal{H})^{-1}$.

Proof. Let w be any feasible solution for $d_e^*(a,b;\mathcal{H})$ and let $Q \in \mathbf{Q}_{a,b}$ Then

$$egin{array}{lll} 1 = I_e(w) &=& -(\partial w(a), e) = -\sum_{x \in X} (\partial w(x), arepsilon_Q(x) e) \ &=& -\sum_{y \in Y} (w(y), \delta arepsilon_Q(y) e) \ &\leq& \sum_{y \in Q} |(w(y), e)| \end{array}$$

Therefore $EW_e(a,b;\mathcal{H})^{-1} \leq H(w)$, so that $EW_e(a,b;\mathcal{H})^{-1} \leq d_e^*(a,b;\mathcal{H})$. \square

Lemma 5.2 Let w be a feasible solution for the problem (EW_e) . Then

$$d_e^*(a, b; \mathcal{H}) \leq \sum_{y \in Y} (r(y)w(y), w(y))(r(y)e, e)(r(y)^{-1}e, e).$$

Proof. Put V(y) := |(w(y), e)|. Then

$$\sum_{y \in Q} V(y) \ge 1$$
 for all $Q \in \mathbf{Q}_{a,b}$.

By the duality between the max-flow problem and the min-cut problem, there exists $\varphi \in L(Y; \mathbf{R})$ such that $|\varphi(y)| \leq V(y)$ on Y,

$$\partial \varphi(x) = 0$$
 for $x \in X \setminus \{a, b\}$ and $-\partial \varphi(a) = \partial \varphi(b) = 1$.

Let $w(y) := \varphi(y)e$. Then $w \in F(a, b; \mathcal{H})$ and $I_e(w) = 1$. Therefore

$$\begin{array}{lcl} d_e^*(a,b;\mathcal{H}) & \leq & H(w) = \sum_{y \in Y} (r(y)\varphi(y)e, \varphi(y)e) \\ \\ & = & \sum_{y \in Y} [\varphi(y)]^2(r(y)e,e) \\ \\ & \leq & \sum_{y \in Y} |(w(y),e)|^2(r(y)e,e) \\ \\ & \leq & \sum_{y \in Y} (r(y)w(y), w(y))(r(y)^{-1}e,e)(r(y)e,e). \quad \Box \end{array}$$

Theorem 5.1 Let $M(r) := \sup\{(r(y)e, e)(r(y)^{-1}e, e); y \in Y\}$. Then

$$EW_e(a,b;\mathcal{H})^{-1} \le d_e^*(a,b;\mathcal{H}) \le M(r)EW_e(a,b;\mathcal{H})^{-1}.$$

Corollary 5.1 Assume that $(r(y)e,e)(r(y)^{-1}e,e)=1$ for all $y \in Y$. Then $d_e^*(a,b;\mathcal{H})=EW_e(a,b;\mathcal{H})^{-1}$.

We recall the example in Section 4 and calculate $EW_e(a,b;\mathcal{H})^{-1}$ and $d_e^*(a,b;\mathcal{H})$ in this case. If $w \in F(a,b;\mathbf{R}^2)$, then $w(y_1) = w(y_2) = (p,q)^T$ and

$$H(w) = 2p^2 + (s+t)q^2, \quad I_e(w) = pe_1 + qe_2.$$

By a simple calculus, we see easily that

$$d_e^*(a,b;\mathbf{R}^2) = rac{1}{e_1^2/2 + e_2^2/(s+t)}.$$

On the other hand, if w is feasible for $EW_e(a, b; \mathbf{R}^2)^{-1}$, then we have

(*)
$$p_1e_1 + q_1e_1 \le 1, \quad p_2e_1 + q_2e_1 \le 1$$

with $w(y_1) = (p_1, q_1)^T$, $w(y_2) = (p_2, q_2)$. Minimizing H(w) subject to the condition (*), we have

$$EW_e(a,b;\mathbf{R}^2)^{-1} = rac{s}{se_1^2+e_2^2} + rac{t}{te_1^2+e_2^2}.$$

Therefore

$$d_e^*(a,b;\mathbf{R}^2) - EW_e(a,b;\mathbf{R}^2)^{-1} = \frac{(s-t)^2 e_1^2 e_2^2}{[(s+t)e_1^2 + 2e_2^2](te_1^2 + e_2^2)(se_1^2 + e_2^2)} \ge 0$$

and the equality holds if s = t or $e_1 = 0$ or $e_2 = 0$.

References

- [1] P.A. Fuhrmann, Linear Systems and Operations in Hilbert Space, McGraw-Hill, 1981.
- [2] M. Yamasaki: Extremum problems on an infinite network, Hiroshima Math. J. 5(1975), 223–250.
- [3] A.H. Zemanian, Infinite networks of positive operators, Circuit Theory and Applications, 2(1974), 69-78.