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Finite Hilbert Networks
BRKZE U R (Maretsugu Yémasaki)

1 Introduction

Let N = {X,Y, K} be a finite connected graph which has no self-loof. Namely X is a finite
set of nodes, Y is a finite set of arcs and K is the node-arc incidence matrix.

Let H bea real Hilbert space with an inner product ( -,-) and the norm || - ||. Denote
by L(X;H) the set of all functions u on X such that u(z) € 1. We call an element of
L(X,H) a 'H-potential. The meaning of the notation. L(Y"; ) is similar. Let £() be the
set of all positive invertible linear operator from 7 to H. Let r € L(Y; L(7{)). For each
y € Y, we have r(y) € L(H) and there exists p(y) > 0 such that

(r(m)h, k) > p()|IR]|* forall heH.

Here r(y)h means the image of h under r(y), i.e., r(y)(h). In this paper, we use this
convention unless no confusion occurs from the context. Denote by r(y)~! the inverse
operator of r(y). Since r(y) € L(H), there exists p*(y) > 0 such that

| (r(y) 'k, k) > p*(W)I|AI* forall heH.
By [1], we see that there exists a unique square root r(y)/? € L(H) of r(y) foreachy € Y,

ie.,
[r() ) = r(y).
Definition 1.1 Let e be a fized element of H such that ||e|| = 1.

Lemma 1.1 For everyy € Y, the following relations hold:
(1) r@wy),e)l < (r(y)w(y), w(y))(r(y)e, ).
(2) (r) e e)(r(y)e.e) >1; |

Proof. By Schwarz’s inequality, we have
(r@Ww(), o) = [(r()w(y), r(y)?e)f
| < lr@®) 2w @) PIr(y) 2el?
= (r@w(y), w®))(r(v)e,e).
2) follows from (1) by taking w(y) := r(y)~te. O
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Definition 1.2 For u € L(X;H), let 6u be the potential drop of u and let du be the
discrete derivative of u: '
suly) = . K(,y)u(z)
du(y) := —r(y) " (Suly)) = —r(y) " Suly).
The Dirichlet sum of u is defined by ‘ |
D) =3, (r(y)du(y),du(y)) =3_ _, (r(y) " u(y), 6u(y)).

Definition 1.3 For w € L(Y;H), let dw(z) be the divergence of w and let H(w) be the
energy of w: ' :
dw(z) == Y, Klz,y)u(y)

Hw) =3  (r@wy),wy).
Notice that D(u) = H(du).
Lemma 1.2 Letu € L(X;H) and w € L(Y;H). Then
> ey (W), 8u(y)) < H(w)"*D(w)”.
Proof. We have by Schwarz’s inequality

>y @@, 8u®) = 3 () w(y), r(y) " *6u(y))
> ey IF@) 2@ lir ()2 8u(y)|

D= er Ir @ Pw@IPI 212, () 26u(y) |72
= H(w)l/zD(u)1/2. O
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To emphasize the analogy to [2], we put
D(N;H;a) := {u € L(X; H);u(a) = 0}.

Note that D(u) < oo for every L(X;H), since G is a finite graph. We see that D(u)Y/? is
a norm on D(N;H;a) by the following lemma:

Lemma 1.3 Let a € X. For any z € X, there exists a constant M, which satisfies:
lu(@)l| < M, D(w)"/2

for all u € L(X; H) with u(a) = 0.
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Proof. There exists a path P from a to z. Let Cx(P) and Cy(P) be the sets of nodes
and arcs on P respectively (cf. [2]), i.e., ,

CX(P) = {:EO)Z'l)""xn} (-TO =0,Typ = .'1?)

CY(P) = {y17 Y2, - ,yn}, e(yi)r = {xi—la It} (1’ - 17 27 ot 7"’)
Let u € L(X; 'H) and u(a) = 0. We have

D(u) 2> Zyep(r(y) 6u(y), Su(y))

- ;(r(y,-)-‘au(yi),éu(y,-))

> 3 0)lute:) ~ ulae )P
> 3l — eI,

so that, forz =1,2,---

Nz — llw(zi)|| < D(u)2[p* (y:)] V2.

Since u(a) = 0, we have

lu@)ll = 3 llu(zs) | — ulzenll] < My D)2

i:1 :
with

M, = 3l ()] 2.
=1 :
This completes the proof. 0O

Since G is a finite graph, the following fact is obvious:
Proposition 1.1 D(N;H,a) is a Hilbert space with respect to the inner product:
D(us,wp) =3 (r(y) " 6ur(y), Suz(y)).
L(Y; M) is a Hilbert spdce with mépect to the inner product:

H(wy,wy) = Y, (rm)ws(y), wa(y)-
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2 H-flows

Definition 2.1 Let a and b be distinct nodes. We say that w € L(Y; H) is a H-flow Jfrom
atobif
Oow(z) =0 forall z€ X, z#a,b.

Denote by F(a,b;H) the set of all H-flows from a to b.

Notice that
ow(a) + Ow(b) =0,

since G is a finite graph.

Definition 2.2 For w € F(a,b; H), we define two real valued functions:
L(w) = (Bw(b),e) = —(0w(a),e),
I(w) = [Bw(a)]| = ||ow(®)||

3 Extremum problems

Let us consider several extremum problems related to H-potentials and H-flows:
d(a,b;H,e) := inf{D(u);u € L(X;H),u(a) =0, u(b) = e} 4
de(a,b;H) = inf{D(u);u € L(X;H), (u(a),e) =0, (u(b),e) =1}
d(a,b;H) = inf{D(u);u € L(X;M),u(a) =0, |lu(d)| = 1}
d*(a,b;H,e) = inf{H(w);w € F(a,b;H), Kw(b) = e}
de(a,b;H) = inf{H(w);w € F(a,b;H), L(w) = 1}
d*(a,b;H) = inf{H(w);w € F(a,b;H), I(w) = 1}
Clearly
de(a,bH) < d(a,b;H,€), d(a,b;H) < d(a,b;H,e),
de(a,bH) < d*(a,b;H,e), d'(a,bH) < d*(a,b;H,e).
Lemma 3.1 Let u be a feasible solution for d(a,b;H,e) and w be a feasible solution for
di(a,b;H). Then 1 < H(w)Y2D(u)Y2.
Proof. By definition and Lemma 1. 2
1=Lw) = (Kw®),e)=Y  (Kuw(z),u(z))
= D ey (W), bu(y))
< Hw)*Dw)Y?. O

Similarly we can prove
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Lemma 3.2 Let u be a feasible solution for d.(a,b;H) and w be a feasible solution for
d*(a,b;H,e). Then1 < H(w)V/2D(u)'/2.

By the above observaﬁon, we obtain

Theorem 3.1 The following relations hold:-
(1) 1<d(a,b;H,e)d:(a,b;H),
(2) 1<d.(a,b;H)d"(a,b;H,e€).

‘Lemma 3.3 There exists a unique optimal solution for d(a,b; H,e).

Proof. Let {u,} be a minimizing sequence for d(a, b; H, e}, i.e., {u.} C L(X;H), u,(a) =
0, u,(b) = e and D(u,) — d(a,b;H,e) as n — co. Since (u, + un)/2 is a feasible solution
for d(a,b; H,e), we have

d(a,b;H,e) < D((tn+ upm)/2)
<

D((un + um)/2) + D((un — um)/2)
[D(un) + D(um))/2 ——)ld(a,'b; H,e)

as m,n — oo. Therefore D(u,, — u,,) — 0 as n,m — co. It follows from Lemma 1.3 that
{ua(z)} is a Cauchy sequence in H for each £ € X. Therefore {u,(z)} converges stronly
. toii(z) € H for.each x € X. we see easily that ii(a) = 0,4(b) = e.and.d(a,b; H, e) = D(&).
Namely % is an optimal solution. We omit the proof of the uniqueness of the optimal
solution. O

Now we study some properties of the optimal solution @ of d(a, b; H, e).

Lemma 3.4 Let w(y) := dii(y). Then @ € F(a,b;H) and I (%) = D().

Proof. Let f € L(X;H) satisfy f(a) — 0 and f() =0. Then foranyt € R, @+ tf is a
feasible solution for d(a, b; H, €), we have

D(@) < D(i+tf)
= D(@)+ 2tD(@, f) + 2D(f).

By the standard variational argument, we have
D(&, f) = 0.
On the other hand, we have » ’
D@, f) = > @), Zzex K(z,y)f(2))
= D ex Doyey K (2 9)ay), f(2))
= Y, x(09(2), f(2)).
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Denote by &, the characteristic function of {z}, i.e., ;(z) = 1 and &,(2) = 0 for z # =.
Let x # a,b. For any h € H, we may take €,k for f, and hence

(0w(z), h) = 0.

Therefore 0 (z) = 0 for = # a,b. Let & € L(X;H) such that é(z) = e for all z € X. By
taking é — 4 — g4e for f, we obtain ,
D(ﬂ'7é—ﬂ" ae) = 0)
so that :
- D(@) = —D(i,e,e) = —(0w(a),e).
Therefore I, (@) = D(@). O

Theorem 3. 2 d(a, b;H,e)d;(a,b; H) = 1.

Proof. It suffices to show that d(a, b; H, e)d:(a, b; ) < 1. Let i be the optimal solution for
d(a,b;H,e) and put w(y) := di(y). Then we see by the above observation that w(y)/ D(4)
is a feasible solution for d}(a, b; H), so that

di(a,b;H) < H(d(y)/D(@))
—  D(&)/D(@)*
= 1/D(@) = 1/d(a,b;H,e). O

Lemma 3.5 There exists a unique optimal solution w for d*(a,b; H,e).

Proof. There exists a minimizing sequence {wy} for d*(a, b; H, e). Since (w, + wp)/2 is a
feasible solution for d*(a, b; H, e), we have

d'(a,b;H,e) < H((wp+ wn)/2)
< H((wn + wm)/2) + H((wn — wm)/2)
= [H(wn) + H(wm)]/2 — d'(a,b;H,€)
as m,n — 0. Therefore {w,} is a Cauchy sequence in the Hilbert space L(Y; H) and

converges to w € L(Y; H). Then we see easily that @ is an optimal solution for d*(a, b; H, €).
We omit the proof of the uniqueness of the optimal solution. O

Definition 3.1 We say that w € L(Y;H) is a cycle if Ow(z) = 0 for all x € X. Denote
by C(Y; H) the set of cycles on N.

By the standard variational argumént, we have
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Lemma 3.6 Let W be the optimal solution of d*(a,b; H,e). For any cycle w € C (Y; 'H) ,

H(,w) =} _ (r(y)i(y),w(y)) =0 | |
Definition 3.2 Let P, the set of all paths from a to z(z # a).
Theorem 3.3 d.(a,b; H)d*(a,b; H,e) = 1. ,
Proof. Let w be the optimal solution of d*(a, b;H,e). Let h € Hand let P, P, € P...
Then .

w(y) = (P1(y) — p2(¥))h € C(Y; H),
where p; and p, are path indices of P; and P, respectively. By Lemma 3.6, we have
H(w,p1h) = H(w,psh). We set i(a) = 0. For z # a and a path index p, of a path
P C P,, the function @ € L(X) defined by i(a) = 0 and
i(z) =)\ P=(y)(y)
is well-defined by the above observation. Then we have 6i(y) = —(y). In case P € P,
w — pe is a feasible solution for d*(a, b; M, e), so that H(w,®w — pe) = 0 or
| H(w) = H(i, pe) = (i(b), ).
Now i/ is a feasible solution for d.(a, b; H) and
dola,bH) < D(@) = H(@)/H(@)? = 1/H(@) = 1/d"(a,b;H,e). O

4 Extremal length

Let a and b be distinct two nodes. The extremal length EL(a,b; L(H)) is defined by the
inverse of the value of the extremum problem (EL):

Minimize H(w) subject to
we L(Y;H),
3 pllr@uw@) > 1 for allP € Py,

The extremal length E L (a, b; £L(H)) is defined by the inverse of the value of the extremum
problem (EL,):
Minimize H(w) subject to

w € L(Y;H),
5 o @), 21 for allP € Py,
Since |(r(y)w(y), €)| < [Ir)w®)llllel = lIr(y)w(y)ll, we have
(4-1) EL(a,b; L(H)) > EL.(a,b; L(H)).
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Lemma 4.1 d.(a,b;H) > EL.(a,b;H) .
Proof. Let u be any feasible solution for d.(a,b; ). Then
w(y) = r(y) 'uly) e H
for eachvy €Y. As in the proof of Lemma 1.3, for P € P, let
Cx(P) = {zo,z1,- - - ,Zn} (zo = a, T, = b)

CY(P) = {yl7y2a tte 7yfl}7 e(yi) - {xi—laxi} (1’ - 1727' ° 7"’)'
Then we have

> er lr@w(),e)] = an |(r (y)w(w), e)|
. ill(éu(yi),en

ZI(U(L) —u(Zi-1),¢€)|

=1

2 (U(b) e) — (u(a),e) = 1.

Y

Therefore
EL.(a,bH)"" < H(w) = D(u),

so that ELc(a,b;H) ™! <d.(a,b;H). O
Lemma 4.2 Let w be a feasible solution for the problem (EL,). Then
» de(a,b;M) <3 (r@)w(y), w®))(r(v)e, ) (r(y) e, e).
Proof. Put V(y) := |(r(y)w(y), e)|. Then
Zye pV(y) =1 forall PePgyp.

By the duality between the max-potential problem and the min-work problem, there exists
B € L(X;R) such that 8(a) =0, B(b) = 1 and |68(y)| < V(y) on Y. Let u(z) := ﬂ(:z:)e
Then u € L(X;H), u(a) = 0 and u(b) = e, so that by Lemma 1. 1 (1)

de(a,bH) < D(uw)=3_ _ (r(y)” bu(y),bu(y))

> ey 0BW))*(r(y) e,e)

> VOrE) )

> ey TWw), w@)rW)e, ) (r@y) 'e,e) O

IA
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Theorem 4.1 Let M(r) := sup{(r(y)e,e)(r(y) 'e,e);y € Y}. Then
ELc(a,b;H) ! < do(a,b;H) < M(r)ELe(a,b;H) .

Corollary 4.1 Assume that (r(y)e,e)(r(y)~'e e) =1 forally €Y. Then d.(a,b;H) =
EL(a,b; M)~

Remark 1. Let I be the identity map of H and let v € L(Y; R) be positive. Then

“r(y) = y(y)I is positive and invertible. Clearly, we have (r(y)e, €) = y(y) and (r(y) 'e,e) =
"~ 1/7(y), so that the condition in the above theorem holds in this case.

We show by an example that the equality d.(a,b; H) = ELc(a,b;H)™" does not hold in
general.

Example Let X = {x(),l'l,l'g},y = {y17 y2}7

K(xi,yi) - 17 K(l'i—lyyi) =—1 (l = 1,2)
and K(z,y) = 0 for anyi other pair. Then {X,Y, K} is a finite graph. Take M as R? and

define r(y) by N . .
e (10), (3 )

) = ((1) (1)/3 ) ry2) " = ((1) (f/t )

Let a = zg, b = ; in the above setting and let e = (e1,e2)T € R%. Let u € L(X,R?) be a
fesible solution for d.(a,b; R?) and set u(z;) = (a,8)T. Then

D(u) = a?+ B*/s+ (a—e))* + (B — e2)?/t.

It is easily seen that

2 2
du(a,b;R%) = 3 + 2

and i(zy) == (e1/2,e25/(s +1))" is the optimal solution. For w € L(Y,R2), set w(y;) =
(p1, ¢1)T, w(ye) = (p2,q)T- Then

H(w) = p? + st +p} + tq2.
Clearly, P,y is a siﬁgleton. The feasibility of w € L(Y,R?) for the problem (EL,) implies

(-t p2)er + (squ + bg)ex > 1.
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Therefore we have 1

 2et+(s+1)ed

EL (a b; R2) =
and the optimal solution is given by

61)\ egA . 2
— =g = — . with. XA:=
g NTRT W 22 + (s + 1)

h=p=

We have

>0 with c=s+t.
‘26(261 + ce3) W c=s+

d.(a,b;R?) — EL.(a,b;R?) ! =

Thus the equality holds only if ¢ — 2 or er=0ore =0.

5 Extremal width

Let a and b be distinct two nodes. Denote by an’b the set of all cuts between a and b
(cf. [2]). For @ € Qqp, there exist two disjoint subsets Q(a) and Q(b) of X such that
a € Q), be Qb), X = Q) UQ®) and Q = Q(a) © Q(b). The index function
ug € L(X;H) of Q is defined by ,

U = €QA)E = ZZEQ(A) £,€

The characteristic function sg of () is defined by
sq = buge = Z eQ(A) b¢e ,e.

Notice that |6ega)(y)| = 1ify € Q and 65Q( 4) (y) = 0 otherwise. Observe that ||sg(y)|| =1
if y € Q and ||sq(y)|| = O otherwise.
The extremal width EW(a b; H) is defined by the inverse of the value of the extremum
problem (EW):
Minimize H (w) subject to

w € L(Y;H),
Yo le@ll =1 forall Q€ Qup.

The extremal width EW (a b; H) is defined by the inverse of the value of the extremum
problem (EW,): -

Minimize H(w) sub_]ect to

w e L(Y;H),
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> peo|(@®),0)| 21 forall Q€ Q.
Since |(w(y), e)| < [lw(y)llllell = lw(y)|l, we have
(5.1). EW/(a,b;H) > EW,(a,b; H)
Lemma 5.1 d:(a,b;H) > EW,(a,b;H)™".
Préof. Let w be any feasible solution for d}(a,b; ) and let Q € Qqp Then

1=IL(w) = —(0w(a),e)=-)"  (0uw(z) cq(z)e)

T

= =3 (w(), 550(v)e)
< Yool
Therefore EW,(a,b;H)™ ! < H(w), so that EW,(a,b; H)"! < dt(a,b;H). O
Lemma 5.2 Let w be a feasible solution for the problem (EW.). Then
dy(a,byH) <Y (r@)w(y), w(®))(r(y)e, e)(r(y) e, e).
Proof. Put V(y) := |(w(y),e)|- Then

,Zye 0 V(i) >1 forall Q€ Qqp.

By the duality between the max-flow problem and the min-cut problem, there exists ¢ €
L(Y;R) such that |p(y)| < V(y) on Y,

Op(z) =0 for ze€ X\ {ab} and — Op(a)= dp(b)=1.
Let w(y) := ¢(y)e. Then w € F(a,b;H) and I.(w) = 1. Therefore
Hw) =3 (r@e@)e e
> le@Prwee)
> ey (@@, e)F(r()e,e)
> e TWw(), w@)(r(y) e, ) (r(y)e,e). O

Theorem 5.1 Let M(r) := sup{(r(y)e,e)(r(y) 'e,e);y € Y}. Then

de(a, b; H)

IANIAN I IA

EWe(a,b;H)™" < di(a,b;H) < M(r)EW,(a,b;H) .
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Corollary 5.1 Assume that (r(y)e,e)(r(y) e e) =1foralyeY. Then di(a,b;H) =
EW,(a,b; H)™ L.

We recall the example in Section 4 and calculate EW,(a,b; H)~! and d¥(a,b; H) in this
case. If w € F(a,b;R?), then w(y:) = w(yz) = (p,q)T and

H(w) = 2" + (s + t)¢%, I.(w) = pe; + ges.

By a simple calculus, we see easily that

1
e2/2+e2/(s+1)

d;(a, b R?) =

On the other hand, if w is feasible for EW,(a,b; R?)~!, then we have
(%) piertqe1 <1, per+ e <1

with w(y1) = (p1,41)7, w(ys) = (pa, go)- Minimizing H (w) subject to the condition (*), we

have
s t

sel +e3  te? + e

EW,(a,b;R?*)7!
Therefore

i (s— 19t 9
~ (s + t)e? + 23] (te? + e2)(se? + €2) T

d:(a7 b, Rz) - EWe(a7 ba R2)_1

and the equality holds if s =t or e; = 0 or e; = 0.
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